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Introduction
Slender and highly flexible structures can be found in multiple engineering applications. Such is the case
of flexible endoscopes, which is of particular interest to us. Due to the geometrically highly non-linear
behaviour of these structures, it is crucial to model these systems accordingly. Moreover, these devices
work in narrow and confined spaces and it is important to properly handle contact in simulations. In this
work, we focus on the contact problem of a 2-dimensional beam model, whose deformation is confined
by narrow and tortuous surroundings. To describe this problem, we propose a discrete augmented La-
grangian formulation of Euler’s elastica with unilateral contact potentials as in [1]. Then, a variational
integrator is derived by applying a discrete version of Hamilton’s principle of stationary action [5].

Planar Euler’s elastica
We consider a planar inextensible beam model, i.e., Euler’s elastica, in which the cross-section is assumed
to be constant along the arc-length s and perpendicular to the centreline q(s). Then, the deformation of
the centreline is a pure bending problem described by the following constrained second-order Lagrangian
L̂ : T (2)R2 ×R→ R
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where, q′(s) and q′′(s) denote the first and second spatial derivatives of q, respectively, EI is the bending
stiffness, Λ(s) is a Lagrange multiplier and Φ(q,q′) is the constraint function in Eq. 2, which guarantees
both the inextensibility and the arc-length parametrisation of the beam [4, 2].

Φ(q,q′) = ∥q′∥2 −1 (2)

Taking variations subject to the boundary conditions (q(0),q′(0)) = (q0,q′0) and (q(l),q′(l)) = (qN ,q′N),
where l ∈R, l > 0 is the length of the beam, yields the static equilibrium equations of the problem in the
form of Euler-Lagrange equations. For more details on the beam model and the spatial discretisation of
the problem see [3].

Unilateral contact problem
A further augmented Lagrangian L̃, presented in [1] as in Eq. 3, describes the problem of the elastica in
contact with a rigid wall.
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1
2

pg2 − 1
2p

(
dist

(
kΛc − pg,R+

))2 (3)

Here, k is a scaling factor, g(s) is the gap function w.r.t. the wall, Λc(s) is a Lagrange multiplier related
to the contact problem, and p is a positive penalty coefficient. This model describes the unilateral contact
problem, which implies impenetrability (g(s) ≥ 0), complementarity (Λc(s) q(s) = 0) and no traction



forces between the bodies (Λc(s)≤ 0). In this work, the gap functions g(s) used to model the rigid walls
are

g(q) = r1 −q for a straigth wall ,

g(q) = ∥
√

r2
2 − (xcircle − xC)

2 + yC∥−∥q∥ for a circular wall ,
(4)

where, r1 defines the distance of a straight wall from the horizontal axis, r2 is the radius of a semicir-
cle, xcircle represents the x-coordinates of a curved wall, (xC,yC) are the coordinates of the centre of a
semicircle.

Conclusions and remarks
Fig. 1 shows the deformed configuration of the elastica for given boundary conditions in blue in contact
with a straight narrow tube on the left, and a curved rigid wall on the right. More complex and narrow
geometrical shapes are of particular interest when using the presented contact Lagrangian formulation.

Figure 1: Static equilibria of a planar elastica of fixed length and fixed initial and final positions and
slopes in contact with a straight narrow tube on the left and a circular elbow on the right.
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