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F -POLYNOMIALS AND NEWTON POLYTOPES

GLEB KOSHEVOY AND DENIS MIRONOV ∗

Abstract. We provide an effective algorithmic method for computation of
Gross-Keel-Hacking-Kontsevich potential, F-polynomials and Bernstein-Kazhdan
decoration function and it’s complexity bounds. For simply laced Lie algebras
we make conjecture and provide experimental evidence that Newton polytopes
for Gross-Keel-Hacking-Kontsevich potential do not contain any interior lattice
points.

1. F-polynomials and Gross-
Hacking-Keel-Kontsevich

potentials

Let G be a group with the Lie alge-
bra of simply-laced type, B+ and B− be
its Borel subgroups, with the set of sim-
ple roots αa, a ∈ I, W the Weyl group.
The Gross-Hacking-Keel-Kontsevich po-
tential (GHKK for short) WGHKK is
a function on the double Bruhat cell
Gw0,e = B−∩B+w0B+, defined using clus-
ter algebra’s tools [6]. Because of va-
lidity the Fock-Goncharov conjecture in
such cases [5], we get the polyhedral
parametrization of canonical bases of the
ring of regular functions on G/B arising
from the tropicalizations of the poten-
tial.

Specifically, the ring of regular func-
tions on the double Bruhat cell is en-
dowed with the cluster algebra structure.
Namely, for a reduced decomposition i of
the longest element w0 ∈W with length
N , let Σi be a corresponding X-cluster
seed and Qi be the corresponding quiver
(due to [1]). Then WGHKK is a polyno-
mial in the cluster variables Σi([10]).

Namely, a seed Σ with underlying
quiver Q is optimal for a frozen vertex
a ∈ I if after deleting arrows between
frozen vertices and a, the vertex a be-
comes a source of the quiver Q.

For the optimal seed Σ, the ath part
of the GHKK-potential is equal to the
value of the corresponding frozen,

Wa = Ya. (1)

For a frozen a ∈ I, there exists an appro-
priate reduced word i′, such that Σi′ is
an optimal seed for a.

Because of that, for a given reduced
decomposition i, one can compute the
half of the GHKK-potential

WGHKK =∑
a∈I

Wa

using cluster mutations corresponding to
3-braid moves between the reduced de-
compositions of w0 (for l and k, such
that alk = −1, skslsk = slsksl). Namely,
for computing Wa, we apply a sequence
of cluster mutations corresponding to 3-
braid moves which transform Σi into an
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2 F-POLYNOMIALS & NEWTON POLYTOPES

optimal seeds for a, then Wa is the X-
cluster variable at the frozen vertex la-
beled by a in the optimal seed computed
in the variables of the seed Σi. In vari-
ables of the seed Σi, such an X-cluster
variable is equal to the specification of
the F -polynomial (see [4, 9]) and takes
the form

Wa =Y c1a(t)
1 ⋯Y cNa(t)

N

∏
i

Fi(t)(Y1,⋯, YN)bia(t). (2)

In the above formula we take notations
of [9], where t means the end vertex of
the path in the mutation graph from the
optimal seed for a to Σi and Yj ’s are clus-
ter variables of Σi.

Precisely (see [10]) Wa is of the form
product of the frozen Ya(t) and an F -
polynomial.

2. Newton polytopes

We are interested of properties of
the Newton polytopes of the individual
terms Wa, a ∈ I, of the half-potential
WGHHK , as well as the Newton polytope
of WGHHK .

Fei in [3] conjectured that the New-
ton polytope of an F -polynomial has no
interior integer points.

For minuscule weight a ∈ I, the valid-
ity of this conjecture for F -polynomials
corresponding to terms Wa follows from
Remark 5.17 [7]. Namely in such a case,
the Newton polytope is a geometric real-
isation of a distributive lattice of the cor-
responding decorated graph DGa. Since
such a polytope is a convex hull of a
subset of the vertices of a unit cube the
claim follows.

An integer polytope without interior
integer points is void.

We state the following
Conjecture. For a simply-laced

groupG, and any reduced decomposition
i of w0, the Newton polytope ofWGHKK

is void.

Note that validity of this conjecture
implies that the Newton polytopes of F -
polynomials for frozens are void.

We made computer verification of
Conjecture for the following cases
An, n = 3,4,5,6,7, Dn, n = 4,5,6,7,

E6, E7

Note that the cluster computation of
WGHKK is time consuming, because the
division of Laurent polynomials in many
variables is time consuming.

We use another approach. Namely,
because of Theorem 1 in [5], we compute
WGHKK by applying the algorithm of [8]
for computing the Berenstein-Kazhdan
decoration function ΦBK .

Theorem 1. For simply-laced G, and a
given reduced decomposition i, the New-
ton polytopes ΦBK and WGHKK are iso-
morphic under a unimodular transfor-
mation.

Corollary 1. The Newton polytopes
ΦBK is void if and only if the Newton
polytopes WGHKK is void.

Thus, for the numeric verification
of Conjecture we compute the Newton
polytope ΦBK using the algorithm [8]
and Polymake.

3. Algorithm description

The algorithm for computation
Berenstein-Kazhdan decoration function
ΦBK is based on Theorem 4.4 in [8]. For
the input data consisting of a group G
and reduced word w0 = i. Let W be a
corresponding Weyl group, I be the set
of simple roots, Λi be i-th fundamental
weight.

We compute ΦBK as sum:

ΦBK =∑
j∈I

∆w0Λj ,sjΛj ,

where ∆ is generalized minor function
(see Defenition 2.2 in [8]). By The-
orem 4.4. [8] it is possible to com-
pute all monomials in ∆w0Λi,siΛi by
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set initial algebraic structures:
Weyl group,
Cartan matrix,
ring of Laurent polynomials

set initial value of word w

compute source monomial
compute weyl_action(i1, i2, ...ij)(αj) for all j
find index h(j) of one equal to exactly aj
set th(j) as starting monomial

start graph enumeration
set new variables

St=[[source monomial]] //layers of associahedron
Gs=[] //graph structure

until new_nodes=[1]
//until we get only one new monomial equal to 1)
mutate all monomials in last layer of St
add new monomials to new layer of St
add arrows to Gs for all mutations

with marks corresponding to A−1
k factors

return sum(flatten(St))
Listing 1: main loop of the algorithm

consequently applying multiplication by
monomials A−1

k , where

Ak = tjtj+ ∏
j<l<j+

tcil,ij

and
k+ ∶=min{l ∈ [1,N]∣wl = wk, l > k} ∪ {∞}
k− ∶=max{l ∈ [1,N]∣wl = wk, l < k} ∪ {0}

(3.7 [8]) starting from predefined source
monomial. The algorithm performs
graph enumeration for graph with ver-
tices being monomials of ∆w0Λj ,sjΛj and
edges are relations of monomials being
different by multiplication by A−1

k .
Computation of each ∆w0Λi,siΛi in

pseudo-code using SageMath computer
algebras system is shown in listing 1.

The mutation procedure in listing 2
checks which mutations are applicable
to a given monomial due to Theorem
4.4 [8] and computes new monomials.
To speed up computation we compute

the b-vector b0 of the source monomial
th(i) and then we apply Lemma 5.2 [8].
Computed b-vectors are stored for later
use. For +-notation see (3.5) [8]. The
pseudo-code for b-vectors implementa-
tion with reference to SageMath func-
tions is shown in listing 3.

After ∆w0Λi,siΛi are computed for all
simple weights all is left is sum them to
obtain ΦBK . Computation of it’s New-
ton polytope using Polymake is straight-
forward. We check it’s interior integer
lattice points using Polymake method
N_INTERIOR_LATTICE_POINTS.

For computation of monomials in
WGHKK it is necessary to compute each
set of monomials Wa from ΦBK compu-
tation data. Using

Wa =Y c1a(t)
1 ⋯Y cNa(t)

N

∏
i

Fi(t)(Y1,⋯, YN)bia(t).
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def mutate_node(M)
//M =∏N

m=1 t
dm
m

compute bj for node if it was not computed previously
set initial result as empty list
for all simple roots αl

for all k in Rl

if k+ <∞
if dk<2 and bk+>0

new_monomial = M ∗A−1
k

compute new_monomial bj:
Lemma 5.2 [8]
new_monomial bj = old_monomial bj
new_monomial bk +=1
new_monomial bk+ -=1

cache new_monomial bj
add new_monomial and graph edge to result

if dk == dk+
set lookup depth h=2
while k+h <∞ and dk+h = 0 and bkh+ = 0

h++
if dk+h = −1 and bk+h = 1

new_monomial = M ∗A−1
k

compute new_monomial bi:
[Lemma 3.4]
new_monomial bj = old_monomial bj
new_monomial bk +=1
new_monomial bk+ -=1

cache new_monomial bj
add new_monomial and graph edge to result

return result

Listing 2: mutation procedure

def b(M)
//M =∏N

m=1 t
dm
m

set bN = dN +
fundamental_weights[j].weyl_action(αj).

scalar(simple_coroots(iN))
for t from N-1 to 1

bt=dt+
fundamental_weights[j].weyl_action(αj).

scalar(simple_coroots(it))
for l from t to N
bt -= b[l]*ait,il+1

return b
Listing 3: b-vector computation
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compute GHKK support
b_start = get bi vector of source monomial in ∆w0Λi,siΛi

b_stop = get bi vector of stop monomial in ∆w0Λi,siΛi

ee = basis spanned by ek − ek+
GHKK_support = coordinates of b_stop-b_start in ee

compute Y_frozen
Y_frozen=Y[number last occurrence of j in i]

compute Wj

compute start monomial
Y_start = Y_frozen * ∏0<k<=len(i)Yk

W = dictionary with keys in monomials in ∆w0Λi,siΛi

W[start monomial of ∆w0Λi,siΛi] = Y_start
enumerate edges in graph Gs starting from source monomial:

v_b = start of the edge
v_e = end of the edge
k = mark on the edge
W[v_e]=W[e_b]*Y[k]

return set(values(W))
Listing 4: computation of WGHKK monomials

we Because in A-cluster variables tm =
Xm

Xm−
([2] Corollary 4.10). Recall, that

cluster variables are generalized minors
computed at the twisted matrix corre-
sponding to θ−i (t1,⋯, tN)). Namely, at
the vertex m

Xm ∶= ∆Λim ,sN⋯sm+1Λim
(ψw0,e(X)),

where X = θ−i (t1,⋯, tN), and ψw0,e(X)
is the twist, ψw0,e(X) ∈ Ue,w0 = U ∩
B−w0B−. Because of that relation to A
cluster variables X’s, we get by direct
computations, using p-map, the follow-
ing relations to X-cluster variables, Y ’s

Aj = tjtj+ ∏
j<l<j+

t
ail,ij

l =

Xj

Xj−

Xj+

Xj
∏

j<l<j+
( Xl

Xl−
)ail,ij

= ∏l′→jXl′

∏j→l′′Xl′′
= Yj .

Similarly, we get

tJ t
aiJ+1,i

J+1 ⋯taiN ,i

N = Y c1a(t)
1 ⋯Y cNa(t)

N = Yw0i.

Note, that the monomial in Y ’s vari-
ables corresponding to tk is the following

Yw0i∏
s∈S

Ys,

where S is defined by the decomposition
of b vectors

b(tk)−b(tJ t
aiJ+1,i

J+1 ⋯taiN ,i

N ) = ∑
s∈S

(es−ss+).

Because of above relation between
t’s coordinates and Y ’s coordinates and
since the 3-braid moves correspond to
cluster mutations, we apply the same
line of arguments as in [5] and get that
∆w0Λi,siΛi ○ θ−i (t1,⋯, tN) transformed
in Ym’s coordinates will coincide with
Yk(t). Therefore

∑
i

∆w0Λi,siΛi ○ θ−i (t1,⋯, tN)

coincides with W ′
GHKK wrt the change

of variables tm’s into Ym’s.
Now it is possible to apply same se-

quence of mutations corresponding to
edges in Gs graph starting from frozen
Ya (exchanging factor A−1

k with Yk).
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To determine starting monomial of F -
polynomial part it is needed to com-
pute GHKK support – coordinates of
bsource − bstop vector in basis ek − ek+
((3.5) [8]), where bsource is b-vector of
source monomial and bstop is b-vector of
last computed monomial in ∆w0Λi,siΛi

(listing 4).
Last step is to compute monomials in

WGHKK as ⋃j∈I Wj . Again, checking if
Newton polytope of WGHKK is void is
done via Polymake using same routine.

The implementation using SageMath
is provided in [13].

4. Algorithm complexity

We establish a bound on the com-
plexity of the algorithm computing
∆w0Λi,siΛi and Wj with respect to the
number of monomials in ∆w0Λi,siΛi . Let
K be the number of such monomials, and
r be the rank of the Lie algebra.

In the mutation function, each node
can produce at most N = length(i) mu-
tations, N ∼ O(r2). Note that mutation
branch with lookup in i need no more
than r cycles and k+ /k− operations can
also be computed in r operations if i
splitting into slices of same root number
is cached. With monomial multiplication
complexity (O(N)), we get O(r4K).

The main tree search can be done in
linear time using prefix trees for string
representation of monomials in alpha-
bet tj is of complexity O(r2K), because
monomials can have only N variables.
Therefore total complexity of generating
the monomials of ∆w0Λi,siΛi is of com-
plexity

O(r4K) ∼ O(r2∗
length of string representation).

Wj computation is bounded by multipli-
cation complexity and number of edges
in Gs: O(r2) ∗O(K ∗ r2) ∼ O(r4K). For
a fixed r, this complexity is the lowest
possible complexity being linear with re-
spect to actual complexity to print out

the answer. Complexity of lattice point
counting in polytopes has theoretical ex-
ponential upper bound with respect of
number of inequalities defining polytope
[11].

Actual computing speed is mostly de-
termined by speed of Polymake opera-
tions. Average time of ∆w0Λi,siΛi andWj

computation for single simple root of D6

with polytope checking is around 2 sec-
onds, for E7 – 8 seconds. For comparison,
one computation for single simple root
of D6 without any Polymake operations
takes around 70ms. For all computations
we used a PC with dual 3.8 Ghz Intel®

Xeon® Gold 5222 CPU running Ubuntu
Linux.

Computing all half-potentials and
WGHKK for given Dynkin type relies on
enumeration of all reduced decomposi-
tions of longest element in Weyl group.
This is done using SageMath library
with BraidOrbit[12] function. Original
BraidOrbit function provides full list
of reduced decompositions, which can
be enormous and not feasible to com-
pute in real applications (even for D5).
This can be resolved making it gener-
ator function, returning a new reduced
decomposition each call. Second diffi-
culty is related to algorithm comput-
ing all reduced decompositions. Function
loops trough all braid moves and ap-
plies them to given reduced decomposi-
tion, then compares new decompositions
to ones that were produced and stored
before. This leads to extensive memory
consumption when computing all half-
potentials for given Lie group. As can
be seen from algorithm, if two reduced
decompositions can be transformed one
into another using only 2-braid moves,
then the results of computation differ
only by variable exchange. If it is pos-
sible to enumerate all classes of reduced
decompositions up to equivalence by 2-
braid moves, it can drastically reduce
number of cases for computation (cf. for
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D4 number of classes is 182 and total
number of reduced words is 2316, for
D5 - 13198 and 12985968). (Number of
classes of equivalence fot type D can be
found in A180607 OEIS sequence.) Thus
we propose an open problem to find fast
algorithm to produce only relevant re-
duced decompositions which give differ-
ent half-potentials.

Problem. Find algorithm to enumerate
quotient by 2-braid moves equivalence
set of set of all reduced decompositions
of longest element of Weyl group and
produce one reduced decomposition from
each class with respect of equivalence by
far commuting braid moves. Complexity
of one step of generation should be poly-
nomial with respect of rank of Lie-group.
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