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Abstract. One of the most time-consuming kernels of an epileptic seizure
detection app is the computation of the Dynamic Time Warping (DTW)
Distance Matrix. In this paper, we explore the design space of heteroge-
neous CPU, GPU, and FPGA implementations of this kernel. First, we
optimize the CPU implementation of the DTW Distance Matrix compu-
tation leveraging the latest C++26 SIMD library and compare it with the
SYCL implementation that also exploits the SIMD units. Next, run the
SYCL code on an on-chip GPU, iGPU, as well as on a discrete NVIDIA
GPU, dGPU. Finally we present the SYCL implementation on an Intel
FPGA. Our evaluations demonstrate that SYCL seems well suited to ex-
ploit the SIMD capabilities of modern CPU cores, and shows promising
results for the accelerating devices.

Keywords: Heterogeneous architecture · SIMD · GPU · FPGA · SYCL
· DTW · energy efficiency.

1 Introduction

Nowadays, embracing heterogeneous programming is also a must if we require
performance and reduced energy consumption from current computing plat-
forms. In this context, the “No transistor left behind” war cry conveys the idea
of all devices helping in accelerating different parts of an application. To help in
this regard, new heterogeneous programming models, such as SYCL [6], DPC++,
and oneAPI [9], are emerging in order to ease the development of heterogeneous
applications without compromising performance.

In this paper, we target a CPU, an integrated GPU, iGPU, an NVIDIA
discrete GPU, dGPU, and an FPGA that we exploit to accelerate the most ex-
pensive function of an epileptic seizure detection algorithm. In the process, we
tailor the function for the CPU, the GPUs and the FPGA devices, striving to
reduce the energy consumption and paying attention also to the programmabil-
ity. For the CPU, one of the latest standard C++ SIMD library [10] and SYCL
are used. For the GPUs and FPGA, we also leverage the SYCL compiler (a
High-Level Synthesis compiler in the case of the FPGA).

Epilepsy is one of the most common neurological diseases globally [17], which
makes the detection of epileptic seizures a socially impacting problem. Our goal
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is to devise a wearable with just two electrodes that can take an electroen-
cephalography (EEG) signal and warn the patient of epileptic seizures. To that
end, we have developed a seizure detection algorithm based on Dynamic Time
Warping (DTW) [14] distance matrix computation. This is a quite compute and
data-intensive algorithm that requires fast execution when trained with patient-
specific EEG recordings.

With all this, this paper proposes the following novel contributions:

1. A CPU version of the DTW Distance Matrix computation that leverages the
latest C++26 SIMD library features and SYCL SIMDimization capabilities.

2. Two accelerators of the DTW Distance Matrix computation, one for GPU
and another for FPGA, which take advantage of the latest oneAPI SYCL
compiler and its High-Level Synthesis capabilities for the FPGA.

3. A validation of the SYCL programming model in terms of performance porta-
bility and energy efficiency in four different heterogeneous architectures, dis-
cussing the strengths and limitations of our implementations for each device.

2 Background and related work

We rely on Figure 1 to illustrate key concepts that are required to understand
the EEG analysis we propose. A signal or channel, Sc, is defined as discrete-time

SF3-C3

Sc

EEG channel with n samples and 2 seizures

Sc- Sc+ Sc- Sc+ Sc-

Zk1,z1
Zk2,z2

QF3-C3
c,d

Patterns
PF3-C3

i PF3-C3
i+1

SF3-C3
a,b

Epochs

s e

EF3-C3
i EF3-C3

i+1

QF3-C3

Query
Seizures

Fig. 1. The problem at hand and notation.

sequence of real-valued numbers sci ∈ R, i.e., Sc = {sci ; 0 ≤ i < n}, where n
is the length of the sequence and c is a channel id or label. Each number sci
represents the electrical potential between two electrodes sampled at a specific
time ti. Channel labels in the 10-20 system [15] are used to identify each channel.
For example, in Figure 1, each channel sample SF3−C3 represents the electrical
potential measured between electrodes F3 and C3.

A seizure, denoted by Zc
k,z, is a subsequence in channel Sc that starts at

the sample k and has a length z, i.e. Zc
k,z = Sc

k,z when this subsequence has
been labeled as a seizure. In the dataset used, ictal (seizure) and interictal (non-
seizure) episodes are clearly identified through metadata, md, that specifies the
onset and offset timestamps of each seizure, from which we gather the k and z
values. The presence of seizures in Sc segments the signal into ictal, Sc+, and
interictal, Sc−, subsequences, as we see in Figure 1.

A query on channel Sc, Qc, is the concatenation of all N t
z seizures in Sct

one after the other in the order they appear. This can be expressed as: Qc =
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(Zc
k1,z1

, Zc
k2,z2

, ..., Zc
kNt

z
,zNt

z

). The total length of the query is nq =
∑Nt

z
i=1 zi. For

example, in Figure 1, QF3−C3 is the concatenation of the two seizures in F3-C3.
In order to find seizure patterns in a channel Sc, we only consider subse-

quences with a fixed length, e, and a fixed stride, s. We call epochs to these
particular subsequences that, in other words, virtually segment the channels
into smaller equidistant and fixed-size sliding windows. More precisely, an epoch
Ec

i = Sc
k,e with k ∈ {i · s; 0 ≤ i < ne}, being the number of epochs ne =

⌊(n − e)/s⌋ + 1. Similarly to the epochs, the patterns are the subsequences or
sliding windows of size e and stride s that fill in a query Qc. This is, a pattern
P c
i = Qc

k,e with k ∈ {i ·s; 0 ≤ i < np}, being np = ⌊(nq−e)/s⌋+1 the number of
patterns in the query of length nq. In Figure 1, we depict just two generic epochs
of the subsequence SF3−C3

a,b , labeled as EF3−C3
i and EF3−C3

i+1 and the patterns

PF3−C3
i and PF3−C3

i+1 of a query subsequence QF3−C3
c,d .

Let us remember that our goal is to automatically identify one or several
patterns that can discriminate between seizures and non-seizures in an EEG
channel. Such a suitable pattern should include a well-conserved shape that is
present in seizure epochs, E+, but not in non-seizure ones, E−. This can be
achieved by comparing patterns and epochs by computing the distance between
them in order to measure their similarities. However, there are many patterns
in the query, so we need to compute a quality metric for all of them in order to
find the best pattern (the one with the highest discriminative quality). In any
case, first we have to compute the distance matrix, DM , between all patterns,
Pi, and all epochs, Ej , as shown in Figure 2. Formally, we use di,j = d(Pi, Ej)
for the DTW distances between the patterns and the epochs.
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Fig. 2. Distance Matrix, DM.

We define the distance, d(P c
i , E

c
j ), between a pattern, P c

i and an epoch,
Ec

j , as the Dynamic Time Warping (DTW) [14,13] distance between the two
subsequences. DTW is an increasingly used algorithm for measuring similarity
between two temporal sequences that may vary in phase or speed. It is now
recognized as one of the most reliable similarity metrics [3]. Its higher compu-
tational cost in comparison with cheaper distances (as the Euclidean Distance,
ED), has spurred the development of many simplified and optimized variants.
One of the first simplifications was the cDTW (constrained DTW) [13] that
limits the warping path to a band, known as the Sakoe-Chiba band or warping
window, w, around the main diagonal of the cost matrix. When the warping
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window is set to 0, the cDTW degenerates into the ED. The cDTW is a good
compromise between the ED and the DTW, as it is faster than the DTW but
more accurate than the ED. In this work we use cDTW with warping window,
w = 16, as the distance metric between patterns and epochs. When the cDTW is
used to find the nearest neighbor, NN, for example to find the most similar epoch
to a pattern, further optimizations have been proposed, such as lower-bounding,
early abandoning, and pruning techniques [7].

In principle, the number of DTW distances that we have to compute is equal
to the number of patterns times the number of epochs, which can be prohibitive.
For example, for each of the 23 channels of the first patient of the CHB-MIT
dataset [5], with e = 1024 (4 seconds) and s = 256 (1 second), there are more
than 145K epochs and 269 patterns, which results in computing almost 40 million
DTW distances. Running a widely available Python DTW library1 [4] on an off-
the-shelf laptop, a single DTW distance of two subsequences of 1024 samples can
take tens of milliseconds, which would translate in several months to compute
all the distances of a single channel of a single patient.

Our work strives to optimize the computation of the DTW distance matrix,
DM , and validate its performance and efficiency on four different architectures:
CPU, iGPU, dGPU, and FPGA. We are not aware of any previous work that has
tackled this problem in such a comprehensive way. However, we can find related
work in the literature that has addressed the problem of computing another kind
of distance matrix in different ways. For instance, in [18], the authors propose a
parallel algorithm, STAMP, to compute the Matrix Profile, based on a distance
matrix that is used to find similar subsequences in time series. SCRIMP [19]
supersedes STAMP computing, in parallel, the diagonals of the distance matrix.
SCAMP [20] leverages the Pearson correlation to compare subsequences, instead
of using the ED. We contributed with a CPU+GPU implementation of SCRIMP
and a CPU+FPGA implementation of SCAMP in [11] and [12], respectively.
In [1] the DTW is used to compute the matrix profile instead of the ED, but
the distance matrix is not explicitly computed. However, in our work, we need
the whole DTW distance matrix because it is consulted many times in order to
compute the quality metrics to identify the best epilepsy seizure pattern.

3 CPU and GPU implementations

In Figure 3 we show an example of the cDTW distance computation. In the
top-left corner we see the Euclidean Distance between a hypothetical Epoch,
E, and Pattern, P , both of size e = 6. Each point of the Pattern is paired
with the corresponding one in the Epoch so that the Euclidean Distance is
dE =

∑e−1
i=0 (Pi − Ei)

2. However, below we see that using a warping window of
w = 2, the points of P , Pi, can be paired with points of E, Ej , with j ∈ {i−2, i−
1, i, i + 1, i + 2}. In this case, the cDTW distance is dDTW =

∑e−1
i=0 (Pi − Ej)

2,
where j is the index of the point in E, within the warping window, that minimizes

1 See https://dynamictimewarping.github.io/

https://dynamictimewarping.github.io/
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the distance. In this example, dDTW = 4 + 0 + 1 + 1 + 1 + 0 + 1 + 1 = 9, and
the warping path, highlighted in gray, identifies the pairs (i, j) that result in this
DTW distance.
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Fig. 3. Euclidean distance, cDTW distance example, and SIMD data structures.

The cDTW algorithm takes two vectors of data points, P and E, and com-
putes the distance between them. The distance is computed by traversing a
virtual (not stored) DTW matrix, D, of e × e from the top left corner to the
bottom right one. The distance between Pi and Ej is computed as the Euclidean
distance between them, d(Pi, Ej) = (Pi − Ej)

2, plus the minimum of the three
adjacent cells in the distance matrix, N , NW , and W in Figure 3 (from North,
North West, and West). The final distance is the value of the bottom right corner
of the matrix. The elements of the matrix out of the diagonal ±w are initialized
to ∞.

As we see on the left side of Figure 3, we can save memory space by only
storing the required information of the matrix in two vectors of size 2 · w + 1,
(5 elements in our example). These vectors, PRE (from previous) and CUR
(from current) store just the elements that are necessary to compute the band
of the matrix. At each i iteration, PRE and CUR are swapped and CUR is filled
with the new values. The values NW, N, and W represent neighboring cells in the
matrix used to compute the minimum distance at each step. For example, in
our example of Figure 3, at iteration i = 4, PRE={6,9,18,13,13} (from iteration
3) and for j = 4 we have NW = 18, N = 13, W = 7, and d(P4, E4) = 1, so
x4,4 = min(18, 13, 7) + 1 = 8.

The computation of the distance matrix, DM, offers several sources of par-
allelism that we can exploit. For instance, on the CPU, the simplest parallel
version uses OpenMP to parallelize the epoch dimension (the largest one) of the
DM. This is our baseline so we call it BASE. Besides, the pattern dimension
is also parallelizable, and in order to better exploit the cache hierarchy we can
“SIMDimize” the traversal in this dimension by comparing several patterns with
each epoch.

To achieve substantial speedup in the computation, we explored two alterna-
tives: i) using the C++26 SIMD library2 [10], which we refer to as SIMD; and
ii) using the SIMD features of SYCL, which we call SYCLCPU. Depending on
the chosen alternative (BASE, SIMD, or SYCLCPU), different data types and
implementations are selected to optimize the computation. In our implementa-

2 Or std::experimental::simd until C++26 is released
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tions, a dtw t type is defined differently depending on the chosen alternative.
For instance, dtw t is a float in BASE, a native simd in SIMD, and a
float16 in SYCLCPU. Also we include a constant SIMDw that is initialized
with the SIMD width (lanes), which, for dtw t=float, can be set to 4, 8, or
16 floats per SIMD register on our platforms.

To manage the computation of the DTW in the different versions (BASE,
SIMD, and SYCLCPU), we encapsulated the functionality within the DTW CPU
class. This class allows for the calculation of the DTW distance, leveraging con-
ditional compilation and the parametrization of the dtw t. On the far right of
Figure 3, we see the SIMD data structures, mainly registers PRE and CUR, and
variables NW, N, and W.

The constructor of the DTW CPU class initializes the input arrays with an
epoch, E, and several patterns, P. The entries of the patterns have been pre-
viously rearranged so that consecutive values correspond to different patterns,
optimizing the data layout for SIMD and SYCLCPU implementations. We im-
plement a calculate dtw method to traverse the rows of the DTW matrix
and the band registers, iterating through the matrix in a nested loop. During
each iteration, the the distance between the current elements of the epoch and
pattern is computed.

In the SIMD and SYCLCPU versions, a vectorized operation is performed by
loading a Psimd vector with multiple pattern samples and calculating several
distances in parallel, which takes advantage of the SIMD units for performance.
In contrast, the BASE version computes a single distance per iteration. The
computation uses three neighboring values from the previous and current band
registers, which are initialized according to the boundaries of the DTW matrix.
The function then calculates the distance and updates the current band register,
followed by a swap of the current and previous registers to prepare for the next
iteration.

A performance issue was identified in the where SIMD function of the SIMD
C++ library. By replacing where by stdx::min, a significant performance
improvement was observed (up to 3.62x on our evaluation platforms).

In the BASE and SIMD versions, the function calculate dtw() is called
from a double nested loop that traverses both the epochs and the patterns,
using OpenMP parallel for in the outer loop that traverses the epochs. In
SYCLCPU, a data-parallel kernel approach is used so that the same function is
called inside a kernel submitted to the CPU SYCL queue (that also feeds the 8
CPU cores of our platforms).

For the GPU implementation, SYCLGPU, taking advantage of the portabil-
ity of SYCL, we took the BASE code and compiled it for the iGPU and for the
NVIDIA dGPU. For the latest, we leverage the interoperability features of the
Intel oneAPI DPC++/C++ Compiler, by adding the required compiler flags
(as -fsycl-targets and -Xsycl-target-backend). As in the SYCLCPU
version, the SYCLGPU one invokes the function calculate dtw() from a
kernel which is now submitted to the corresponding GPU queue (the iGPU or
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the dGPU). In Section 5 we describe the methodology employed to identify the
optimal global work and work-group sizes for each device.

4 FPGA implementation

The FPGA implementation is also written in SYCL and compiled with the
oneAPI SYCL compiler, but the code used for the CPU and GPU has to be sub-
stantially rewritten to get the most out of the FPGA. Still, the SYCL language
allows us fast prototyping and design space exploration.

The core of the proposed architecture is based on the basic DTW accelerator
circuit presented in [8]. This circuit combines a very simple iterative scheme,
pipelining, and computation interleaving to produce a very efficient circuit in
terms of throughput using a very reduced area. It has been adapted to the Intel
FPGA architecture to create our IP kernel that we sketch in Figure 4. This kernel
is replicated as much as possible (24 times) to maximize the FPGA utilization.
Each kernel comprises several “DTW Computation” modules, along with one
“Epoch Generation”, one “Pattern Generation”, and one “Result Write-back”
module. The computation modules work in parallel with different epochs, but the
same pattern. Hence, the different epochs are sent in parallel to the computation
modules whereas the patterns are sent serially from one computation module to
the next. There are as many computation modules in a basic kernel as strides fit
in an epoch (four in our case, with e = 1024 and s = 256). The synchronization
of the whole system is data-driven based. That means that each module controls
how much data needs to be read or produced and the queues control signals stall
the modules whenever is required.

Kernel 23
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rn
al

 M
em

or
y Epoch

Generation

Pattern
Generation

Signal

Query

Epoch 4

Pattern DTW
Computation

DTW
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Result Write-backDTWs
DTW1 DTW2 DTW3 DTW4

Fig. 4. Basic kernel for DTW computation and kernel replication on the FPGA.

5 Experimental results

The major goal of SYCL is to improve the programmer productivity by allow-
ing different heterogeneous devices to be used in a single application. However,
although optimizations in the kernel code may differ across the devices in order
to exploit their specific capabilities as we have seen in the previous sections, it
is yet to be proven that this programming model guarantees performance porta-
bility across devices. This is the relevant point that we want to quantify here
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for our case of study. For this, in this section, we conduct a performance evalua-
tion of the various kernel implementations previously discussed. Our metrics of
interest are the throughput (measured as the number of DTWs per millisecond
-DTW/ms-) and the energy efficiency (measured as the throughput per Joule
-DTW/ms per Joule-). We also explore whether, despite the optimizations, hard-
ware bottlenecks appear in our executions.

5.1 Test bench

The experimental evaluation has been performed on two test benches: AlderLake
and SkyLake. All results (time and energy) are reported as the average value of
5 runs. We use 8 cores/threads in all CPU runs.

AlderLake features an Intel Core i9-12900K CPU, running at 3.20 GHz,
with 8 performance, P, cores and 8 efficiency, E, cores, and 30 MB L3. For
our study, we use the taskset command to confine the threads only on the P-
cores. This platform also includes the on-chip/integrated GPU, iGPU, Intel UHD
Graphics 770 and the discrete GPU, dGPU, NVIDIA RTX 4070 Ti. It has 128
GB of RAM and runs on Ubuntu 22.04.5 LTS. We compile with the Intel oneAPI
DPC++/C++ icpx compiler version 2024.0.2.

SkyLake has an Intel Core i7-7820X 3.60 GHz processor with 8 cores and 11
MB L3, plus 128 GB of DDR4 RAM. In addition, it has an FPGA Intel Stratix 10
MX with 32 HBMmemory banks, each with 512 MB, totaling 16 GB. The system
runs CentOS 8.1.1911. This unit lacks a graphics card, thus enabling the execu-
tion of all developed versions, with the exception of the GPU version, including
the FPGA implementation. On this platform, the baseline and SIMD versions
based on C++26 utilize the GCC 12.2.0 compiler, whereas the SYCLCPU and
FPGA versions are compiled with the Intel oneAPI DPC++/C++ Compiler
2022.0.0 (this is the latest version supported by our FPGA).

To evaluate energy consumption on both platforms, we use Intel Performance
Counter Monitor (Intel PCM)3 to accurately measure CPU and GPU power
usage. In addition, to monitor FPGA power usage, we utilize StratixMonitor-
Lib [16]. We rely on the NVIDIA Management Library (NVML) [2], a specialized
API created by NVIDIA to measure numerous metrics of its graphics cards, in-
cluding the ability to monitor power usage.

As a benchmark, we use a channel, Sc, with 162 hours of EEG signal sampled
at 256 samples per second which translates into n = 150∗106 samples. The query,
Qc, that contains the epileptic seizures has nq = 107, 263 samples. Using epochs
and patterns of length e = 1024 and stride s = 256, we end up with a number
of epochs, ne = 589, 823 and a number of patterns, np = 415, which results in a
Distance Matrix with more than 244 million of DTW distances.

5.2 Performance evaluation

Figure 5 depicts the throughput (DTW/ms) that our different implementations
achieve on AlderLake and SkyLake. BASE represents a parallel OpenMP CPU

3 See https://github.com/intel/pcm/

https://github.com/intel/pcm/
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implementation without the SIMD optimization that we take as the baseline.
SIMD represents a CPU implementation based on the C++26 SIMD library,
whereas SYCLCPU shows the results for a CPU implementation based on SYCL
(see section 3). In both cases, SIMDw=x states the number of SIMD lanes that
have been configured in each evaluation: 4, 8, and 16 floats per SIMD register.

Additionally, in AlderLake we see the results for the SYCLGPU implementa-
tion (see section 3) running on the integrated GPU (iGPU) and on the discrete
GPU (dGPU). To tune these versions, we use the Intel GPU Occupancy Calcu-
lator tool and the CUDA occupancy calculator that help us to explore different
iGPU/dGPU job size configurations. We found that the optimal configuration
for the iGPU was a global work size of 4096x32 and a work-group size of 64x8,
achieving ideally 96.2% of execution unit (EU) utilization. Also, after exploring
different combinations for the dGPU, we found that a global size of 12288x128
and a block size of 256x1, maximize ideally the multiprocessors (SM) utiliza-
tion, achieving 97.66% of occupancy in this case. The results shown in the figure
correspond to these configurations.

On the other hand, in SkyLake we see the results for the SYCL FPGA
implementation (see section 4) running on the Stratix 10 MX. Ideally, our im-
plementation is able to compute 24 DTWs per cycle.

Clearly, from Figure 5 we see that the SIMDimized CPU implementations
always outperform the baseline and that increasing the number of lanes improves
performance in both platforms, as expected. Moreover, SIMD code based on the
C++26 library performs slightly better than the SYCL version. The observed
performance degradation in SYCL is due to the kernel enqueueing and launching,
which represent up to 5% and 3% of overhead in AlderLake and SkyLake, re-
spectively. In any case, the optimal SIMDw=16 version outperforms the baseline
by 11.8x and 11.4x in AlderLake and SkyLake. In fact, we performed a roofline
analysis using the Intel Advisor tool and found that the function that represents
the hotspot in the optimal SIMDw=16 code is compute-bound, and it features a
headroom of just 1.4x and 2.4x to the ideal ALU peak in AlderLake and SkyLake
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respectively. In other words, there are no bottlenecks, and the SIMDimization
is fully exploiting the CPU capabilities in our CPU implementations (SIMD
library-based and SYCL).

In AlderLake we see that the SYCLGPU version running on the integrated
GPU (iGPU) performs 2.5x faster than the baseline. The Intel Advisor tool re-
ports a 75% of EU occupancy, which hints that SYCL is reasonably exploiting
the iGPU capabilities. Moreover, this SYCLGPU implementation running on the
discrete GPU (dGPU) achieves 5.1x improvement over the fastest SYCLCPU.
We also carried out a roofline analysis of this version using the NVIDIA NSight
Compute tool and found that the function that represents the hotspot is mem-
ory bound, achieving 81% and 43% of memory and SM occupancy, respectively.
Thus, although far from the expected ideal SM occupancy, this version fully ex-
ploits the attainable dGPU memory bandwidth, which represents the bottleneck
in this device.

In SkyLake we notice that the SYCL version running on the FPGA is 4.3x
faster than the baseline, but still 2.5x slower than the best SYCLCPU version.
From the Intel oneAPI FPGA Reports tool we discovered that the loop that
represents the hostspot has an initiation interval of 1, it is pipelined and works
at a frequency of 300 MHz. This loop is in fact the DTW computation module
shown in Fig. 4, and from the tool we learn that although it is fully optimized,
the FIFO-queues used to send one computed pattern from one computation
module to the next are effectively the bottleneck of the implementation because
they introduce several stalls. Other interesting result is that the area estimates
report tell us that our kernel uses 38% of ALUTs, 35% of on-chip block RAM
and 7% of DSPs. Despite the apparent availability of resources, the compiler
fitter module (quartus fit) was able to perform the placement and routing only
under this scenario.

5.3 Energy efficiency evaluation

The energy consumption metrics for AlderLake and SkyLake are shown in Fig-
ure 6. The solid bars show energy consumption in Joules (the higher the value,
the worse), while the patterned bars show the energy efficiency -DTW/ms per
Joule - in log scale (the higher the value, the better the efficiency).

From the energy consumption point of view, the SYCLGPU implementation
running on the iGPU and dGPU reports the smallest values on Alderlake. How-
ever, from the energy efficiency perspective, the two more efficient implemen-
tations are SYCLGPU on dGPU and SIMD with SIMDw=16 on the CPU. On
Skylake, the SYCLFPGA implementation exhibits the lowest energy consump-
tion and its energy efficiency is near the more efficient SIMD and SYCLCPU
with SIMDw=16 on the CPU.

6 Conclusions

In this paper, we propose a novel DTW distance matrix algorithm that we
tailor to four different architectures: CPU, iGPU, dGPU, and FPGA. We use
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Fig. 6. Energy consumption metrics in AlderLake and SkyLake: Energy -Joules- and
Energy Efficiency -DTW/ms per Joule-. The latter metric is in log scale, and the higher,
the better efficiency.

SYCL as the heterogeneous programming paradigm and evaluate its performance
portability and energy efficiency across devices. Our results demonstrate that
SYCL seems well suited to exploit the available SIMD capabilities of modern
CPU cores, both in terms of performance and energy efficiency. It also shows
promising results for accelerating devices, such as integrated and discrete GPUs
and FPGAs, although in these two latter devices the off-chip and on-chip memory
bandwidth are the bottlenecks, respectively.

These results make the case for using SYCL to systematically define the
kernel of our application, then apply device-specific optimizations, as illustrated
in this work, and finally dispatch each variant to the corresponding device. In
fact, our results tell us that heterogeneous executions in which CPUs, GPUs, and
FPGAs collaborate simultaneously to accelerate our application make sense, and
we will explore this issue in future work.
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