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Abstract—In order to limit the negative impacts of wind 

energy fluctuations on power system performance, this research 

suggests an improved hybrid method to improve the accuracy 

and efficiency of wind energy forecasts. This strategy mainly 

consists of a two-phase modeling technique. First, a main model 

based on the wind power curve is developed, whose function is 

to anticipate the evolution of wind power using physical 

mechanisms. The errors of the initial model are then extracted 

and become the study objectives of the second phase. Using the 

modeling capabilities of data mining techniques, data-driven 

models for error correction are developed. The ultimate results 

of wind energy projection are a combination of these two steps. 

The analysis of a real wind farm demonstrates that the proposed 

method outperforms conventional models in terms of accuracy 

and cost analysis. Using a specific degree of improvement, the 

quantitative results reveal significant improvement over the 

baseline physical model and conventional statistical models. 
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I. INTRODUCTION  

To combat the challenges of fossil fuel energy and 
environmental pollution, renewable energy is being created on 
a global scale. Wind energy is one of the most promising 
renewable energies and has progressed quickly over the past 
decade [1]. Today, wind energy accounts for a significant 
fraction of the power system [2], particularly in regions with 
abundant wind resources, such as China, the United States, 
Europe, etc. Nonetheless, the fluctuating and stochastic 
character of wind poses significant obstacles to the steady 
functioning of power systems [3] in light of the substantial 
volume of wind power output. Indeed The usual physical 
model is founded on numerical weather prediction (NWP) [6], 
which forecasts wind speed before transforming it into wind 
power. This technique is often based on the wind power curve, 
which may be modeled using parametric or non-parametric 
approaches [7]. Physical models are superior at forecasting the 
long-term trend of wind variation because they incorporate the 
physical process of both wind growth and wind power 
generation. However, local area precision is low and time 
consumption is significant. Statistical models use a significant 
quantity of data to train a fitting model between inputs and 
outputs, such as parametric models (e.g., time series model, 
support vector machine (SVM) model, etc.) and non-
parametric models (e.g., neural networks (NN) model and 
other data-driven models) [8–10]. For instance, the auto-
regression and moving average (ARMA) model was 
fundamentally and routinely employed in the forecasting of 
wind speed or wind power time series [11]. Traditional NN 
models are commonly used non-parametric data-driven 
models; [12] utilized two advanced models by introducing the 
wavelet network and the feed-forward network. In [13], an 
improved wind power prediction model was developed by 

including the wavelet kernel function into the SVM algorithm. 
In general, statistical models exhibit great short-term forecast 
precision. However, error levels will grow as the forecast 
horizon lengthens. Hybrid models are innovative prediction 
approaches proposed to enhance wind power forecast ability 
[14]. They employ physical models to anticipate long-term 
trends and statistical models to increase the accuracy of local 
forecasts. Consequently, hybrid models have more 
applicability. However, the combination of two models will 
undoubtedly enhance wind power's time consumption. 

System operators are always expected to have accurate 
wind power forecast systems in order to prevent negative 
effects. 

According to the above description, the purpose of this 
study is to develop a highly effective and efficient wind power 
forecast system. Therefore, we suggest a future forecast 

 

technique in this work by integrating prediction of main 
wind power with error correction. The suggested technique is 
a hybrid model that takes physical mechanism and data 
mining into account. First, we use historical wind power and 
wind speed data to construct an appropriate wind power curve 
model. Using the created wind power curve, the primary wind 
power forecast could be made. This method provides benefits 
for getting the wind power trend from wind speed variation. 
Compared to conventional NWP approaches, the basic model 
is highly straightforward and requires less computation time. 
Second, we present an error correction model to increase wind 
power forecast accuracy. This model investigates the faults of 
the core models and incorporates the modeling benefits of 
data-driven models. Consequently, the accuracy of mistake 
correction can be ensured. 

Ultimately, the forecast is comprised of core model 
findings and error correction. Due to error correction, the 
suggested model provides more precision than conventional 
physical models. In contrast, it has a greater ability to 
represent the trend of actual wind power production when 
compared to statistical models. 

The above explanation leads us to the conclusion that the 
suggested method combines the benefits of two types of 
models. Experiments are conducted using industrial wind 
farm data in order to evaluate the performance of the 
suggested method. Then, many analyses are conducted, 
including discussion and comparison with other models, 
improvement degree calculation, data validation, cost 
analysis, and uncertainty analysis. All of the trials demonstrate 
that the suggested method can predict wind power with high 
effectiveness and efficiency. 



in this paper we will first describe the central concept of 
the method and the specific procedures. then we present the 
modeling of the wind power curve and how to use it to 
estimate the wind power. The prediction errors of model 1 are 
analyzed in the next part and then the error correction model 
will be built based on these data. 

II. METHODOLOGY AND DATA ANALYSIS 

II.1 Energy modeling 

 
 

 

Fig. 1. caption wind power curve. 

Figure 1 shows a diagram of an ideal wind power curve, 
which shows how wind turbines make power from the wind. 
There are three important points on the curve. Point c is the 
cut-in speed, point r is the rated speed, and point f is the cut-
out speed. 

When the wind speed is less than vc or more than vf, wind 
turbines produce nothing. When the wind speed is between vr 
and vf, the output of wind turbines stays the same. When wind 
speed drops between vc and vf, the power produced by wind 
turbines is found by (3). 

In order to determine energy production under the wake 

effect, it is necessary to calculate the power of each wind 

turbine. Some wind turbine power estimation methods were 

evaluated in [12]. An approximate estimate of wind turbine 

energy output is shown below. 
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Where, 

𝐶𝐸𝐹 represents the efficiency factor expressed in equation (4):                                                   

                    𝐶𝐸𝐹 = 𝐶𝑝𝜂𝑚𝜂𝑔                                   (2)                 

                                      

    In this research, the C EF is considered to be 40 percent. 

The total power generated by wind turbines operating under 

the wake effect is : 

 

               𝑃𝑊𝐹=∑ 𝑃𝑊𝑇
𝑁𝑡
𝑖=1                                        (3) 

                                       

The following equation describes the efficiency of the wind 

farm: 
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In order to assist in the optimization of the studied wind farm, 

the locations of the wind turbines are provided in Cartesian 

coordinates (x,y), the distances between the turbines, and the 

overall wind speed deficit, which includes overlapping zones, 

is used. [14,15] describes the total velocity decrease as 

follows:                  

 

𝑉𝑑𝑓𝑡 = √∑ (
𝐴𝑂𝑉

𝐴
) (𝑉𝑑𝑓)2𝑁𝑢𝑝
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            (5) 

 

where P is the wind power generation, A is the swept area 
of the wind turbine blades,ρ is the air density, Cp is the wind 
power output coefficient, and v is the wind speed. When air 
density and wind speed are supplied for a particular 
circumstance, equation (3) defines the physical process by 
which a certain wind turbine generates wind power. 
Therefore, wind power curve models are constructed in [13,6] 
to predict wind power. 

II.2 Methodology 

The curve of the logistic function g(x)=1/(1+e-x) is seen 
in Figure 3 [15]. Since it has the same trend as the portion of 
the wind power curve from point c to point f in Figure 2, the 
logistic function [5] was employed to fit the wind power 
curve. As shown in the table below, the created wind power 
curve model might serve as the principal forecast model. 

 

Figure 2 illustrates the central concept of the proposed 
wind power prediction, which aims to enhance the accuracy 
of wind power forecasts by using error correction. The 
procedure consists mostly of two components: data and data 
rectification. First, the wind power curve is modeled using 
historical wind data (including wind power and wind speed) 
so it may be utilized for wind power forecasting. Model 1 
predicts wind power based on wind-supplied speed; prediction 
errors are established by comparing wind forecasts to previous 
wind predictions. After assessing the error's composition, the 
rectification prediction model is constructed by selecting 
parameters and prediction algorithms. By merging the outputs 
of models 1 and 2, a more accurate forecast of wind energy is  

 

 

generated. The suggested methodology is reviewed and 
debated. 



 
 

 

 

 

 

 

 

 

 

 

Fig. 2. Example of a figure caption.  

The curve of a logistic function, g(x)=1/(1+ex), is shown 
in Figure 3[17]. It follows the same pattern as part of the wind 
power curve, so the logistic function was used to fit the wind 
power curve [16,18]. We could use the model-made wind 
power curve as our main prediction model. 

𝑝 = {
𝑘

1+𝑒(−𝑎𝑣+𝑏) + 𝜀   𝑣 < 𝑣𝑜𝑢𝑡

    0                               𝑣 ≥ 𝑣𝑜𝑢𝑡   
              (6) 

where : 

𝑣 : Wind speed 

𝑣𝑜𝑢𝑡 : Cut out speed 

𝑎, 𝑏, 𝑘 : Independent coefficients 

𝜀 : Random error of the model 

Fig. 3. Trend of logistic function. 

 

III. CORRECTION OF WIND ENERGY BASED ON THE ERROR OF 

THE SECOND MODEL  

III.1. Error evaluation 

Error is the difference between expected and observed values. 

According to the results of Model 1's prediction in Figure 5, 

the inaccuracy is significant at a certain period. Given that 

model 1 is based on the wind power curve, its predictions can 

accurately represent the wind power trend. By analyzing the 

wind power curve, it is impossible to determine the random 

and fluctuating components of wind power[19,20]. Therefore, 

a method for error correction is presented to increase the 

accuracy of predictions. First, a prediction model's mistakes 

are specified in (6). 

               𝑒𝑛 = 𝑝
𝑛

− �̂�
𝑛
                                 (7) 

where en is the predicted error; P and P  ̂are the observed and 

predicted values of wind power generation, respectively. 

 

Given that the provided wind power data is a time series, the 

related forecast errors are likewise time series. According to 

[21,22],historical data play crucial roles in time series 

forecasting.Therefore, we used this concept to determine the 

historical values of a parameter in time series prediction 

modeling, as shown below. 

 

�̂�(𝑡) = 𝑓(𝑦(𝑡 − 𝑡), 𝑦(𝑡 − 2𝑇), … , 𝑦(𝑡 − 𝑛𝑇)    (8) 

 

where �̂�(𝑡) and 𝑦(𝑡 − 𝑛𝑇) represent the forecast value and 

the 𝑛𝑡ℎ  historical observed value, respectively, and 𝑇 is the 

historical data prediction interval. In the error correction 

model, the output is the error e(t), and the fitting function f 

represents the prediction model. Due to the fact that mistakes 

in the primary model (Model 1) are connected to historical 

error values, wind power, and wind speed, the corrective 

model 2 is written as (10) 

𝑒(𝑡) = 𝑓(𝑒(𝑡 − 1), 𝑒(𝑡 − 2), … , 𝑒(𝑡 − 𝑚), 𝑣(𝑡 − 1), 
𝑣(𝑡 − 2), … , 𝑣(𝑡 − 𝑛), 𝑝(𝑡 − 1), 𝑝(𝑡 − 2), … , 𝑝(𝑡 − 𝑙))     (9) 
 

m, n, and l are the number of historical values; 𝑒(𝑡) 

represents error data; 𝑣(𝑡) represents wind speed data; and 

𝑝(𝑡) represents wind power data. 

 

III.2. Case Study: Gasiri Wind Farm 

the prediction and our models will be applied to the study of 

the Gasiri wind farm located in South Korea, precisely on 

Jeju Island. 

TABLE I.  FOUR SEASONS OF FITTING THE PARAMETERS OF A 

LOGISTIC FUNCTION. 

  k a b 

period 1 190 0,3985 3,9531 

period 2 190 0,5385 3,6255 

period 3 190 0,3985 3,7129 

period 4 190 0,3165 3,7131 

 
The adjustment parameters of the logistic function are 

shown in Table 1 by reducing the sum of squares error [13,23]. 
The forecasting model 1 for wind energy is created by 
averaging the parameters of the four logistic functions 
described before. 



IV. RESULTS AND DISCUSSION 

 

 

Fig. 4. Prediction  of wind power using Model 1.  

Figs. 4 illustrates the error prediction results. The 
projected periods p1, p2 and p3 of model 1 are predicted with 
high accuracy using data mining methods. 

In addition this figure 4 shows that the wind power 
forecast is performed. The use of wind power curve models 
for the prediction reveals that the anticipated wind power 
maintains the general trend of the measured values. It is also 
observed that there is a remarkable difference between the two 
parameters in terms of measurement and prediction, this 
proves the usefulness of the second step of our strategy which 
will reduce prediction errors. 

Fig. 5.  Prediction of errors based on NN algorithms. 

in the figure.5 , we notice a slight difference in prediction 
between the elements observed and from the period p2 to p4 
we observe that the difference in prediction increases, this 
means that our model has corrected the errors, we also note 
that our model requires a response time to collect the 
maximum amount of data and produces the results. 

TABLE II.  WIND POWER PREDICTION PERFORMANCE. 

 BIAS MAE RMSE 

Model1 -19,55 16,577 35,154 

Model2 0,003 11,526 16,547 

NN 0,075 15,2547 36,445 

 

 Table 5 illustrates the wind energy prediction error 
measures using our model, including Model 1 and model and 
data mining techniques to directly predict wind energy. 
Considering only traditional data-driven models, NN 
provides the best performance and lowest error measures for 
predicting wind generation. This also proves the power of NN 
algorithms to contribute to the minimization of prediction 
errors. 

 

Fig. 6. Prediction  of wind power using Model 1. 

In Figure 6, which compares wake losses for the two models 

discussed above, it is evident that model 2 significantly 

reduces wake loss. This notable development validates the 

desire of The forecast can be fixed using standard techniques 

by using a correction algorithm. By making this decision, it 

becomes possible to determine the best configuration for all 

of the wind turbines in the Gasiri wind farm, one that 

optimizes energy output while balancing wake losses.  

V. CONLUSION 

In this study, a novel hybrid model is developed to increase 

the precision and effectiveness of wind energy forecasting. 

First, the logistic function is used to develop a physical model 

(Model 1) based on the morphology of the wind power curve. 

Then, wind energy predictions are made using this primary 

model. This model approximates the wind energy 

development trend. Consequently, a corrective model (Model 

2) based on data-driven methodologies is developed to target 

Model 1's flaws. This procedure involves correlational 

analysis and parameter selection to maximize Model 2. The 

final wind energy projection is achieved by the outcomes. In 

comparison to existing models using error metrics, the 

suggested method improves accuracy by 35 to 73%, 

according to the study's findings. In the next study, we will 

attempt to validate our model against other models in the 

literature. 
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