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Abstract— Despite its urgency, the prediction of 
greenhouse gas (GHG) emissions at the city level is hampered by 
limited quality and quantity of training data so most predictions 
of GHG emissions are carried out at the country level, using 
different feature spaces. Heterogeneous Transfer Learning 
(HeTL) is considered capable of getting around this limitation 
due to its ability to facilitate the transfer of knowledge between 
domains that have different feature spaces and distributions. 
However, the implementation of HeTL is still haunted by the 
potential of negative transfer in the knowledge transfer process. 
Current studies on mitigating negative transfer in HeTL still 
rely heavily on classical optimization techniques and focus solely 
on either feature-level or instance-level optimization. In this 
paper, a method is proposed to optimize the knowledge transfer 
process in HeTL using quantum annealing. The proposed 
optimization is carried out in three stages: (1) feature alignment, 
(2) common feature optimization, and (3) data instance 
optimization. The proposed method seeks to optimize the 
knowledge transfer process at both the feature and instance 
levels. It utilizes a combination of classical computing and 
quantum computing, thereby combining the advantages of the 
classical approach and the quantum approach to obtain 
optimal results.  
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I. INTRODUCTION 
Greenhouse gas emissions refer to the total emissions of 

greenhouse gases (GHG) produced by an individual, product, 
service, place, event, or organization, expressed in units of 
carbon dioxide equivalent (CO2e) [1]. These emissions 
include various gases such as carbon dioxide (CO2), methane 
(CH4), nitrous oxide (N2O), and fluorinated gases, all of 
which play a role in global warming and climate change. 
Globally, urban areas have become major contributors to 
greenhouse gas (GHG) emissions [2]. Even though the urban 
area is only 2.4% of the global area, it produces a staggering 
80% of emissions related to energy consumption [3] [4]. In 
addition, 60% of global CO2 emissions from fossil fuels are 
produced by urban areas. There is an urgent need for high-
quality city-level emissions inventories to aid international 
climate mitigation efforts [5]. Thus, urban areas play an 
important role in efforts to reduce greenhouse gas emissions 
globally [2]. 

Predicting greenhouse gas emissions is very important in 
reducing greenhouse gas emissions and mitigating climate 
change. With the ability to accurately predict future 
greenhouse gas emissions, steps for intervention can be 
formulated through changes in behavior or policies related to 
emission trigger factors.  

One of the challenges of predicting GHG emissions with 
machine learning is the limited training data [6]. GHG 
emission data at the city level is generally hampered by a lack 
of quantity or low quality of statistical data related to energy, 
especially for some less developed areas [2]. 
The concentration of emissions in urban areas highlights the 
critical need for accurate and detailed city-level emissions 
inventories. High-quality data at the city level can support 
international climate mitigation efforts by providing a clear 
picture of where emissions are highest and where 
interventions can be most effective. Unfortunately, a global, 
accessible, and standardized dataset of city-level emissions 
inventories is still unavailable [5]. Currently available city-
level GHG emissions data such as CEADS and MEIC are 
considered low in area and time coverage [5]. Developing 
cities in South America, Southeast Asia, the Middle East & 
Africa are some of the areas where data is most difficult to 
obtain. In contrast, most CO2 emissions inventories are 
performed at the national level, as it is more challenging to 
obtain fossil fuel consumption data at the city level [5].  

Transfer learning (TL) is considered a feasible solution to 
get around the limited training data for predicting GHG 
emissions [6]. Transfer learning is motivated by the 
observation that humans can leverage prior knowledge to 
address new challenges more efficiently or effectively. This 
approach permits differences between the domains, tasks, and 
distributions used in training and those used in testing, 
allowing knowledge to be drawn from one or more source 
tasks and applied to a target task [7][8].  

It should be noted that there are differences in the 
feature space used in predicting greenhouse gas emissions at 
the city level and the country level. Traditional Transfer 
Learning (TL) is only applicable in cases where the source and 
target domains share identical feature spaces and 
distributions [9]. In this case, the difference in feature space 
between city-level GHG emissions data and country-level 
GHG emissions data opens up opportunities for a specific type 
of transfer learning, i.e. Heterogeneous Transfer Learning 
(HeTL). HeTL enables the transfer of knowledge 



between domains that have different feature spaces and 
distributions, allowing machine learning algorithms to be used 
in a variety of applications without being limited by the need 
for identical distributions of training data and test data [9]. 
Generally, HeTL has various advantages over traditional 
transfer learning, i.e. better flexibility, the ability to handle 
data with complex connections, smaller domain adaptation 
costs, smaller risk of overfitting, and better scalability [9]. 

However, in the knowledge transfer process of HeTL, 
there is the potential for negative transfer, a phenomenon 
where the knowledge transfer process worsens model 
performance due to cross-domain noise. Most contemporary 
HeTL methods have not explicitly addressed this negative 
transfer problem [9]. The knowledge transfer process can be 
carried out at the feature level or instance level. Both aim to 
find features and instances that can be transferred from the 
source domain (SD) to the target domain (TD) to maximize 
the closeness between SD and TD to avoid negative 
transfer [8] which can be seen as an optimization problem. 

On the other hand, Quantum Annealing (QA) is designed 
to find the global minimum of a cost function to solve 
optimization problems [10]. QA is a quantum computing 
approach that utilizes the principles of quantum mechanics to 
search for the minimum energy state of a system [10]. 
QA has been successfully implemented for optimization tasks 
in various cases and problem domains, including 
machine learning.  

These successful implementations of QA have highlighted 
its promising potential for optimizing HeTL. Therefore, 
studies that present methods of implementing QA to optimize 
the knowledge transfer process in HeTL for city-level GHG 
emission prediction models are needed. This paper proposes 
a method to optimize the knowledge transfer process in 
heterogeneous transfer learning using quantum annealing. 
The rest of this paper is organized as follows: Section II 
discusses related studies about GHG emissions prediction, 
transfer learning, and quantum annealing; Section III presents 
a detailed proposed method to optimize heterogeneous 
transfer learning using quantum annealing; and Section IV 
highlights the conclusion and future research opportunities. 

 

II. RELATED WORK 
Predicting GHG emissions using machine learning can be 

done at the macroscopic level using data on economic 
development, population, urbanization energy consumption, 
industrial structure, and technological advancement [6], as 
well as through predictions of building energy needs. The five 
most popular models used in macroscopic GHG emissions 
prediction are  Long Short Term Memory (LSTM), Back 
Propagation Neural Network (BPNN), Support Vector 
Machine (SVM), Extreme Learning Machine (ELM), and 
Random Forest (RF) [6]. Meanwhile, three architectural 
groups of artificial neural networks, i.e. FFNN, CNN, and 
RNN are the most popular models used to predict the energy 
needs in buildings [11]. GHG emission predictions have also 
been carried out on a smaller scale, for example at universities, 
both based on building energy use [12] and based on human 
behavior and activities [13]. 

Several studies on GHG prediction at the city level 
mention obstacles related to the quality and quantity of data, 
limited global datasets available, as well as the limited area 
and time coverage of the available datasets [2] [5] while other 
studies focus on identifying the key predictors that can be used 

to predict city-level GHG emission [14]. Transfer learning is 
mentioned in [6] as a feasible solution to the problem of 
limited data for predicting GHG emissions. The development, 
categorization, and implementation of transfer learning has 
been widely discussed in [7] [8] and [15]. 

Heterogeneous Transfer Learning (HeTL) is a type of 
transfer learning that has the special ability to carry out 
knowledge transfer between domains that have different 
feature spaces. Various implementations and recent 
developments of HeTL are discussed in [9]. HeTL is more 
complex than traditional transfer learning but has the potential 
to significantly improve model efficiency [9]. Several studies 
have tried to optimize HeTL [16] [17] [18] [19] [20] [21]. 
Most of these studies focus on optimizing HeTL specifically 
for classification tasks [16] [17] [18] [19] [20]. Some of them 
carry out optimization at the feature level that aims to 
overcome the domain differences between the source domain 
and target domain feature spaces [16] [18] [20]. Other studies 
carry out optimization that focuses on knowledge transfer 
from source domain to target domain at the instance level [17] 
[19]. The optimization techniques used are still dominated by 
classical optimization techniques such as Hybrid PCA & 
Correlation Effect Analysis [16], Adaptive Clustering 
Transfer Learning [17], Particle Swarm Optimization [18], 
Successive Convex Approximation [19], alternating direction 
method of multipliers (ADMM) [20], and Centroid 
Distribution [21]. The feature-based HeTL is still relatively 
new and not widely used [9]. 

Generally, any GHG prediction model can be optimized 
both at the data level and algorithm level using several 
optimization techniques, although some models still have 
tendencies to fall into local optima [6]. Currently, classical 
swarm intelligence-based optimization techniques are 
prominent in the optimization of GHG emissions prediction 
models [6] [11]. However, quantum-based optimization 
techniques also have shown their potential. Quantum 
annealing (QA) has been implemented in various optimization 
tasks related to GHG emissions issues, for example, to 
optimize real-time traffic light control [22], assist bike-sharing 
operators in optimizing bike load balancing processes [23], 
optimize virtual machine allocation and tasks in cloud 
infrastructure [24] and optimize energy consumption in 
buildings [25]. Additionally, QA has been shown to optimize 
ensemble learning [26] and the implementation of QA for 
machine learning has been thoroughly discussed in [27]. The 
wide application scenarios indicate that QA has advantages 
and flexibility in various use cases and has great potential to 
be used to optimize GHG emission prediction models. 

 

III. PROPOSED METHOD 
To reduce the risk of negative transfer and increase the 

accuracy of city-level greenhouse gas emission prediction 
models, this paper proposes a knowledge transfer process 
optimization for heterogeneous transfer learning (HeTL) 
using quantum annealing (QA). This optimization process 
involves three interrelated steps: (1) identifying shared 
features between the source and target domains through 
feature alignment, (2) optimizing these common features to 
determine the best combination, and (3) optimizing data 
instances to select the ideal set of data instances for use as 
training data. An overview of the proposed method is shown 
in Figure 1.  



 

Figure 1. The proposed method

A. Feature Alignment 

Considering the differences in feature space 𝒳 between 
the source domain DS and the target domain DT, the feature 
alignment stage aims to find common features from both 
domains. After going through the pre-processing stage to 
improve data quality, the data from the source domain DS and 
target domain DT go through a feature transformation process. 
The flow of the feature alignment stage is shown in Figure 2. 

 

Figure 2. The feature alignment stage (classical computing) 

The feature transformation can be done using 2 
approaches, namely asymmetric transformation (AST) and 
symmetric transformation (ST) as described [9]. To discover 
a common latent feature space and then convert the source 
and target features into new representations, ST takes the 
target feature space XT and the source feature space XS and 
learns to transform them into a shared space XC, facilitating 
adaptation.  

 

Figure 3. Symmetric (a) and asymmetric (b) feature transformation [9] 

 
On the other hand, AST applies a transformation function 

search TS, which transforms the source features XS to match 
the target features XT. The illustration of ST and AST 
is depicted in Figure 3. 

B. Common Feature Optimization 
Generally, the feature alignment stage produces common 
features whose number increases rapidly compared to the 
number of original features from the source domain and 
target domain. However, not all of these common features are 
suitable for inclusion in the training process because there is 
the potential for negative transfer. The main goal of the 
common feature optimization stage is to find the optimal 
combination of common features using quantum annealing. 
An overview of the steps for the common feature 
optimization stage is shown in Figure 4.  

 

Figure 4. The common feature optimization stage (quantum computing) 

To formulate the objective function, a Quadratic 
Unconstrained Binary Optimization (QUBO) objective 
function can be used. Basic QUBO formulation can be 
expressed as [28] :  

f(𝑥) =  '𝑄!,!𝑥!
!

+'𝑄!,#𝑥!𝑥#
!$#

 (1) 

where x is a vector of binary decision variables and Q is an 
upper triangle matrix of the real weight. 
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C. Data Instance Optimization 
Previously, the common feature optimization stage 

produces an optimal common feature that maximizes the 
similarity between the source domain and the target domain. 
However, not all instances from the source domain are 
suitable to be included in the training process due to the 
potential of negative transfer, so it is necessary to select data 
instances to get an optimal subset of the source domain. 
Figure 4 shows an overview of the steps for optimizing 
instance data using quantum annealing.  

 

Figure 5. The data instance optimization stage (quantum computing) 

Quantum annealing is used in the common feature 
optimization and data instance optimization steps. In these 
two stages, there are four main steps taken; 1) formulating a 
classical approach to the QUBO objective function; 
2) embedding in the Quantum Processing Unit (QPU); 
3) carrying out the annealing process on the D-Wave 
quantum annealer device; and 4) reading the results (readout). 
The main goal of this data instance optimization stage is to 
find the optimal subset of the source domain using quantum 
annealing. This optimal subset will act as training data in the 
training phase to produce the optimized GHG emissions 
prediction model. 

D.  Performance Metrics 
The performance of the greenhouse gas emission prediction 
models can be measured using the following metrics[29][30]: 

1) RMSE (Root Mean Squared Error) 

𝑅𝑀𝑆𝐸 =	/
1
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2) Mean Absolute Error (MAE) 
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3) R-Squared (R2) 
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4) MAPE (Mean Absolute Percentage Error) 
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where Xi is the actual value for the ith trial, Yi  is the predicted 
value for the ith trial, and N is the number of prediction trials. 

Other evaluation metrics can also be used, including 
Adjusted R2, Coefficient of Variation of Root Mean Square 
Error (CV-RMSE), Normalized Root Mean Square Error 
(NRMSE), Mean Absolute Deviation (MAD), etc [30].  

 

IV. CONCLUSION 
This paper presents a method to optimize the knowledge 

transfer process in heterogeneous transfer learning using 
quantum annealing. The optimization is carried out to 
minimize negative transfer in the knowledge transfer process 
through three interconnected steps; (1) feature alignment: 
finding common features between the source domain and 
target domain, (2) common feature optimization: finding the 
optimal combination of common features, and (3) data 
instance optimization: finding the optimal combination of data 
instances to be included as training data. The common feature 
optimization stage and the data instance optimization stage 
utilize quantum computing, while other stages utilize classical 
computing. Unlike existing methods that focus solely on 
either the feature or the instance level, the proposed method 
seeks to optimize the knowledge transfer process at both the 
feature and instance levels. By utilizing a combination of 
classical computing and quantum computing, a hybrid 
approach combines the strength of the classical approach and 
the quantum approach to obtain optimal results. Since this 
paper focuses on regression tasks using tabular data, there are 
opportunities for further studies about the potential of utilizing 
quantum annealing to optimize the knowledge transfer 
process in heterogeneous transfer learning used for different 
tasks using various data types. 
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