
EasyChair Preprint
№ 11333

An Empirical Survey on the Prevalence of
Technical Debt in Systems Engineering

Howard Kleinwaks, Ann Batchelor and Thomas Bradley

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 18, 2023

An Empirical Survey on the Prevalence of Technical
Debt in Systems Engineering

Howard Kleinwaks

Colorado State University
Modern Technology Solutions, Inc.

Engineering Building 202
6029 Campus Delivery

Fort Collins, CO 80523-6029
howard.kleinwaks@colostate.edu

Ann Batchelor
Colorado State University
Engineering Building 202

6029 Campus Delivery
Fort Collins, CO 80523-6029

ann.batchelor@colostate.edu

Dr. Thomas Bradley

Colorado State University
Engineering Building 202

6029 Campus Delivery
Fort Collins, CO 80523-6029
thomas.bradley@colostate.edu

Copyright © 2023 by Howard Kleinwaks, Ann Batchelor, and Thomas Bradley. Permission granted to INCOSE to publish and use.

Abstract. The technical debt metaphor is used within software engineering to describe technical
concessions that produce a short-term benefit but result in long-term consequences. Systems engi-
neering is subject to these concessions, yet there is a limited amount of research associating tech-
nical debt with systems engineering. This paper provides the results of an empirical survey inves-
tigating the prevalence of technical debt in systems engineering, including the occurrence of tech-
nical debt, the use of the metaphor, and the distribution of technical debt within the systems engi-
neering lifecycle. The results of the survey show that while technical debt is common in systems
engineering and occurs throughout the lifecycle, the metaphor and terminology of technical debt
is not consistently applied. These results emphasize the need to enrich the usage of the technical
debt metaphor within systems engineering to enable the management of technical debt and to re-
duce the risk of technical bankruptcy.

Introduction and Background
Modern technology and the digital engineering transformation are increasing the emphasis on de-
livering flexible systems more rapidly (Dunlap & Chesebrough 2021). Agile systems engineering
methods (Douglass 2016) and iterative and incremental development strategies (Mooz & Forsberg
2004) are used to increase flexibility and to limit the cost and schedule increases traditionally
associated with requirements changes (Schmidt, Weiss & Paetzold 2018). While Agile processes
can be mapped to the system development lifecycle (Darrin & Devereux 2017), the increased

mailto:ann.batchelor@colostate.edu

emphasis on shorter times to market can result in “system sponsors and stakeholders… en-
courag[ing] developers to take shortcuts early in the development process in order to get system
capabilities deployed quickly” (Lane, Koolmanojwong & Boehm 2013, p.1386).

If not carefully managed, the decisions made during the planning and execution of iterations can
have far reaching consequences on the future state of the system. The work in each iteration places
design constraints on future iterations (Forsberg & Mooz 1995) which can result in more expensive
changes later in the development cycle (Walden, et al. 2015) or the failure to meet performance
objectives. Projects may start work prior to fully understanding the problem in order to deliver a
working system faster and then rely on user feedback to improve the system to better meet the
users’ needs. However, the initial decisions made to produce early value may result in severe in-
efficiencies in the implemented system, such as lower usability and increased rework later in the
development schedule (Ciolkowski, Lenarduzzi & Martini 2021). This phenomenon is known as
technical debt.

The technical debt metaphor was introduced as a method to communicate the need to refactor
software code to remove short-cuts that were put in place to meet a goal, such as a scheduled
release, before those short-cuts could add up to larger problems within the system (Cunningham
1992). Much like financial debt, technical debt accrues interest, which manifests as increased de-
velopment timelines, increased project cost, and/or rework later in the development cycle. Unman-
aged technical debt may lead to technical bankruptcy – the state where system development cannot
continue without first repaying back the technical debt (Li, Avgeriou & Liang 2015).

Since 2008, published research on technical debt in the field of software engineering has steadily
increased (Besker, Martini & Bosch 2017). Technical debt has been classified into multiple types
(Rosser & Ouzzif 2021, Lenarduzzi, et al. 2021), different causes have been identified (Martini,
Bosch & Chaudron 2014, McConnell 2008), and multiple measurement techniques have been sug-
gested (Brown, et al. 2010, Nord, et al. 2012, Seaman & Guo 2011, Abad & Ruhe 2015). This
research, however, has been primarily constrained to the field of software engineering (Kleinwaks,
Batchelor & Bradley 2023). Despite the fact that systems engineering has borrowed many concepts
from software engineering, including lifecycle models and development approaches (Darrin &
Devereux 2017), there is not a substantial amount of published research on technical debt with
systems engineering (Kleinwaks, Batchelor & Bradley 2023).

The concepts behind technical debt are not new to systems engineering. Terminology such as ‘re-
work’ has been used to define similar problems. Guenov and Barker (2005) applied axiomatic
design theory and design structure matrices to identify design conflicts that result in delays due to
unplanning iterations and rework. Boehm, Valerdi, and Honour (2008) discuss the reduction in
rework that can be achieved by applying systems engineering to software-intensive systems. Bro-
niatowski and Moses (2016) define a “rework potential” to measure the rework associated with
design choices. Raman and D’Souza (2019) developed a decision learning framework that, in part,
addresses the uncertainty of architectural design decisions, including those that may lead to more
effort than an optimal solution. Shallcross et al. (2020) discuss the use of set based design to limit
premature design decisions which may result in expensive rework. Siyam, Wynn, and Clarkson
(2015) identify a need to evaluate how changes in processes affect the value of a system later in
the lifecycle. Bahill (2012) developed a process to deal with unintended consequences. These re-
search papers all define similar problems to technical debt - minimizing the amount of effort re-
quired to correct a technical issue through early detection and mitigation. However, none of the

cited works include the term “technical debt.” Instead, each paper uses their own terminology to
describe the problem.

Recognizing that the lack of a common ontology prevents a common understanding of the problem
(Uschold & Jasper 1999), Kleinwaks, Batchelor & Bradley (2023) conducted a systematic litera-
ture review to determine the prevalence of the technical debt metaphor within published systems
engineering research. They concluded that the technical debt metaphor is not prevalent in pub-
lished papers on systems engineering, that there is not a consensus definition for technical debt
within systems engineering, that there is little empirical evidence on the impact of technical debt
within systems engineering, and that a common ontology for technical debt in systems engineering
has not been established.

Kleinwaks, Batchelor, and Bradley (2023) recommend gathering empirical data to understand the
use of the technical debt metaphor by practicing systems engineers to supplement the research in
the literature review. This paper provides the results of an empirical survey following this recom-
mendation. The survey was constructed to answer the following research questions:

• RQ1: Does technical debt occur within systems engineering, and if so, what is its impact?

• RQ2: What are the causes of technical debt within systems engineering?

• RQ3: How prevalent is the use of the technical debt metaphor among systems engineering
practitioners?

• RQ4: Where does technical debt occur within the systems engineering lifecycle?

The rest of this paper is structured in four sections. First, the research methodology is presented.
Next, the primary findings of the survey are presented. Then, the findings are discussed in the
context of the research questions. Finally, the paper is concluded and concepts for future work are
presented.

Research Methodology
Study Method. This research was conducted using an online survey tool to collect responses to a
series of questions designed to assess the respondents’ familiarity with situations that can be clas-
sified as technical debt, their familiarity with the metaphor of technical debt, and the stages in the
systems engineering lifecycle where technical debt occurs.

Participants in the study were recruited through email solicitations and social media postings sent
to specific groups of systems engineers, including a corporate systems engineering community of
practice, a graduate university systems engineering department, the local INCOSE chapter, and
the authors’ LinkedIn networks. These participant groups were selected based on experience with
systems engineering as well as the ability of the authors to contact the group members.

The survey was conducted anonymously, however, some basic demographic questions, such as
current position and years of experience, were asked in order to inform the data analysis process.
The survey was first released on July 14, 2022 and was closed on August 31, 2022. 50 respondents
replied to at least one question in the survey.

Data Analysis. The collected data reports were generated with an anonymous respondent identi-
fier that was matched to the responses for each question. Respondents were not required to answer
every question and therefore percentages are reported based on the number of respondents who
answered the question and not on the total number of participants in the survey. Several questions
allowed the respondent to select multiple responses; in these cases, the percentages are reported as
the number of respondents who selected that answer and therefore the percentages may add up to
be greater than 100%.

Threats to Validity. The internal validity of a study is the measure of how well the collected data
corresponds to the research questions (Crawford 2019). The internal validity is assessed by exam-
ining the potential biases that may arise within the study formulation, including the development
of the research questions and the survey questions. To limit biases in the development of the re-
search questions, gaps in the current state of academic research on technical debt in systems engi-
neering (Kleinwaks, Batchelor & Bradley 2023) formed the basis of the research questions. Mul-
tiple researchers reviewed and developed the survey questions to confirm that they mapped to the
research questions. Upon completion, a professional systems engineer evaluated the survey ques-
tions and the authors refined the questions based upon the engineer’s feedback. Terminology was
carefully selected in Question Group 2 to avoid the use of the term “technical debt” in the questions
to minimize previous familiarity (or lack thereof) with the term from biasing the answers prior to
the introduction of the technical debt metaphor within the survey. The data was collected using an
online survey tool that allowed for anonymous responses to prevent biases in reviewing and ana-
lyzing the data.

The external validity of the study is the measure of how well the research findings can be extended
from the sample group to the general population of interest (Crawford 2019). In this study, the
sample group was recruited through email and social media postings. The general population of
interest is the set of professional systems engineers, across all disciplines. The majority of respond-
ents indicated background in similar industries, especially the defense industry. This factor has the
potential to bias the results towards the defense industry, and therefore the results of the survey
may be more generalizable to that subset of professional systems engineers. Another concern prior
to the execution of the survey was that a potential bias may arise if software engineers responded
to the survey, due to the familiarity of the technical debt metaphor within systems engineering.
This concern is addressed in later in this paper.

Given the lack of published research on, and common definitions of, technical debt within systems
engineering, it is possible that the respondents do not represent a valid source of knowledge for
providing responses regarding the occurrence of technical debt within the systems engineering
lifecycle. This threat to the study validity is mitigated by providing the survey participants with a
common definition of technical debt prior to asking questions in Question Group 3 and Question
Group 4.

Survey Questions. Table 1 lists the questions included in the survey, along with a mapping to the
research questions. The starred question numbers indicate questions that allowed multiple answers.

Table 1: Survey Questions

Question RQ
1.1 What is your current position? N/A
1.2 How many years of professional experience do you have? N/A
1.3 How many years of experience do you have as a systems engineer? N/A
1.4 What industry do you currently work in? N/A
2.1 Have you ever worked on a system where a less than ideal short-term solution

to a problem created negative long-term impacts on the system? Negative im-
pacts may include issues such as difficulty meeting requirements, decreased ease
of use, and increased system maintenance.

RQ1

2.2* What negative long-term impacts have you experienced from less-than-ideal
short-term solutions? Select all that apply.

RQ1

2.3 Do negative long-term impacts arise primarily from decisions to implement less
than ideal short-term solutions (e.g., as way to reach a project completion mile-
stone) or from the accumulation of unintentional decisions (e.g., as the by-prod-
uct of poor requirements)?

RQ2

2.4 When making the decision to implement the less-than-ideal short-term solution,
were there any considerations of the potential for negative long-term impacts?

RQ2

2.5* Which reasons explain why a systems engineer would implement a less than
ideal solution that has benefits in the short-term but negative long-term impacts?
Select all that apply.

RQ2

2.6 Have you ever had to correct system issues that were due to less-than-ideal
short-term solutions that had negative long-term impacts?

RQ1

2.7 If you have had to correct negative long-term impacts of a decision, how did the
effort to correct the negative long-term impacts compare to the effort that would
have been required to implement the ideal original solution?

RQ1

3.1 Prior to this survey, how familiar were you with the term technical debt? RQ3
3.2 How frequently do you use the term technical debt in your daily work? RQ3
3.3 How familiar are your co-workers with the term technical debt? RQ3
3.4* In what engineering contexts have you used or heard the term technical debt?

Select all that apply.
RQ3

4.1* In which stage(s) of the systems engineering lifecycle is technical debt most
likely to be created (the decision is made to implement then less than ideal so-
lution)? Select all that apply.

RQ4

4.2* In which stage(s) of the systems engineering lifecycle is the impact of the tech-
nical debt (additional work due to the less-than-ideal solution) most likely to be
observed? Select all that apply.

RQ4

4.3* In what stages of the lifecycle is creating technical debt (deciding to implement
the less-than-ideal solution) acceptable? Select all that apply.

RQ4

4.4* In what stages of the lifecycle is creating technical debt (deciding to implement
the less-than-ideal solution) unacceptable? Select all that apply.

RQ4

Question Group 1 (QG1) included basic demographic questions to identify the professional back-
ground and experience of the participants. Question Group 2 (QG2) contained questions that were
designed to identify if survey participants had experience with technical debt without using the

term “technical debt.” Instead, these questions used the terms “less than ideal short-term solution”
and “negative long-term impacts.” This terminology was specifically chosen to convey the con-
cepts behind the technical debt metaphor, without relying on the metaphor to convey the meaning.
In this way, it is possible to assess the participants experience with the conditions that give rise to
technical debt without biasing the answers towards familiarity with the metaphor.

After completing QG2, the respondents were provided with the following definition of technical
debt: “Technical debt is a metaphor reflecting technical compromises that can yield short-term
benefits but may hurt the long-term health of a system” (Kleinwaks, Batchelor & Bradley 2023).
If a respondent indicated that they were not familiar with technical debt, they were provided a
short example.

Question Group 3 (QG3) assessed the respondents’ familiarity with the technical debt metaphor,
introducing the terminology into the questions. These questions were designed to assess the fre-
quency with which the terminology is used in professional situations. Question Group 4 (QG4)
assessed the respondents’ view of the impact of technical debt in the following phases of the sys-
tems engineering lifecycle: needs analysis, requirements definition, preliminary design, critical
design, integration, verification and validation, and operations. These phases were chosen since
they occur in all system development, regardless of the development method used. Agile and iter-
ative development cycles include the same phases; however, the phases are repeated more fre-
quently. The questions in QG4 asked respondents to consider the lifecycle phases where technical
debt is likely to be created and observed, and in which lifecycle phases it is acceptable and unac-
ceptable to create technical debt. These questions were designed to identify the lifecycle stages
where technical debt identification and management is the most important in preventing technical
bankruptcy.

Research Findings
This section presents the main findings of the survey.

Participant Demographics. QG1 asked the respondents to provide information about themselves
and their background as systems engineers. The results are shown in Figure 1. The left chart shows
the breakdown of the participants by their current position. The middle chart shows the breakdown
of the participants by their current industry. The right chart shows the participants’ total profes-
sional experience (Total) and their experience as a systems engineer (SE). The chart is colored
based on the participant’s current position. For example, the chart shows that 10% of the partici-
pants classified themselves as management with 5-10 years of experience as a systems engineer.

Figure 1. Demographics of Survey Respondents

The majority (52%) of the survey respondents listed systems engineer as their current position
(shown in blue in Figure 1). 84% of the respondents reported more than 5 years of experience as a
systems engineer, indicating that the respondents have substantial backgrounds in the field, even
if they are not currently serving as a systems engineer. These results show that the survey reached
the targeted audience of experienced and professional systems engineers. Of note is that only 2%
of the respondents listed themselves as a software engineer. One potential concern with the survey
was familiarity with the technical debt term due to experience with software engineering. While
later results will show that there is likely carryover of terminology from the software engineering
field, the limited number of participants who identified as software engineers reduces the concern
that the results are biased based on a large number of responses from software engineers.

The majority of respondents (68%) work in the Aerospace and Defense industries. The large sec-
tion of respondents with similar backgrounds has the potential to bias the results towards those
industries.

Technical debt is common in systems engineering. Question 2.1 asked if the respondents expe-
rienced the conditions that are defined as technical debt, without using the metaphor. 100% of
participants responded that they had worked on such as system. Question 2.6 asked if participants
had to correct issues associated with technical debt. 86% percent of the respondents stated that
they have had to correct issues caused by less-than-ideal short-term solution.

The answers to question 2.1 and 2.6 clearly indicate that technical debt is a common occurrence
within systems engineering. Every respondent experienced negative long-term effects due to short-
term decisions, and the large majority of the respondents have corrected issues associated with
these decisions. In other words, the respondents have repaid technical debt.

Technical debt accrues interest. Technical debt is typically measured in terms of principal and
interest. The principal represents the amount of effort that would have been required to implement
the ideal solution (Ampatzoglou, et al. 2015) and the interest refers to additional effort to imple-
ment that same solution at a later time, due to the presence of the less-than-ideal solution (Am-
patzoglou, et al. 2020). Question 2.7 addressed the presence of technical debt interest in systems
engineering. If it is more difficult to correct the problems with a less-than-ideal solution than it
would have been to initially implement the ideal solution, then it can be inferred that the technical
debt has accrued interest. 79% of the respondents to question 2.7 stated that it was either more
effort (36%) or significantly more effort (43%) to correct the issues after the less-than-ideal

solution was implemented, as shown in Figure 2. These data indicate that technical debt accrues
interest within systems engineering.

Figure 2. Additional Effort Required to Correct Technical Debt Compared to the Effort to Imple-

ment the Ideal Solution Originally

Six survey respondents answered “no” to question 2.6, indicating that they never had to correct
issues associated with technical debt. Of those six respondents, three answered that question 2.7
was not applicable to them (N/A in Figure 2), two did not answer question 2.7, and one respondent
answered that correcting the issue required less effort. These answers are deemed to have no im-
pact on the overall conclusions from this question, namely that technical debt does accrue interest.

Technical debt has multiple long-term impacts. Question 2.2 asked the participants to specify
what negative long term impacts they had observed from implementing less than ideal short-term
solutions. Participants were able to select more than one answer and the results are shown in Figure
3. “Failure to meet performance objectives” and “Substantial rework of an earlier part of the sys-
tem” were the most common responses. Only 4% of the participants selected “Other”, indicating
that the answer choices well covered the negative impacts due to technical debt.

Figure 3. Negative Long-term Impacts of Technical Debt

These data indicate that there is not a single impact of technical debt on a system but rather that
the impact is felt in multiple areas. The answer choices cover two areas: those that occur during
system development, shown in blue in Figure 3, and those that occur after the system is deployed,
shown in orange in Figure 3. Over 50% of respondents indicated that negative long-term impacts
occur in both of these areas. From these data, it can be concluded that technical debt is something
that will need to be managed throughout the system lifecycle.

Technical debt is driven by schedule and cost pressures and both intentional and uninten-
tional decisions. Questions 2.3, 2.4, and 2.5 addressed the reasons why a project would take on

technical debt. 79% of the respondents indicated that potential long-term consequences were con-
sidered when making short-term decisions. These long-term consequences were determined to
arise from both intentional and unintentional decisions, as shown in the left side of Figure 4. The
right side of Figure 4 shows the reasons for accruing technical debt. Over 80% of the respondents
stated that schedule pressure contributes to the decisions to introduce technical debt into the sys-
tem. Over 60% of the respondents stated that cost pressure contributes to the introduction of tech-
nical debt. Technical compromise was selected by 36% of the respondents. These results indicate
that cost and schedule are the primary factors that drive a system to make technical compromises
and therefore incur technical debt.

Figure 4. Rationale for Accruing Technical Debt

Participants were allowed to select multiple answers for question 2.5, including identifying other
reasons for taking on technical debt. Other responses included acceptance of a prototype, political
pressure from management and other external sources, the lack of consideration of long-term goals
and impacts in the daily decisions, and the inability to react to previous instances of technical debt.
Failure to react to previous instances of technical debt is an indicator that a system may be on a
path to technical bankruptcy.

The technical debt metaphor is not common terminology in systems engineering. QG3 as-
sessed the participants’ familiarity with and usage of the technical debt metaphor after providing
all participants with a common definition of technical debt. The left side of Figure 5 shows the
self-assessed familiarity with the metaphor, broken out by the participant’s years of experience as
a systems engineer. 47% of respondents stated that they were very or extremely familiar with the
metaphor and 30% of respondents stated that were either slightly familiar or not at all familiar with
the metaphor.

Figure 5. Participant Familiarity with the Technical Debt Metaphor

When examined through the lens of years of experience as a systems engineer, some interesting
trends appear. The right side of Figure 5 shows the percentage of respondents who are either mod-
erately familiar, very familiar, or extremely familiar with technical debt based on the respondents’
years of experience as a systems engineer. The percentages are based on the total number of re-
spondents with the stated years of experience. For example, seven respondents had less than five
years of experience as a systems engineer. Of those respondents, six stated that they were at least
moderately familiar with technical debt, resulting in a value of 86%.

While there is not enough data to make conclusive arguments, it can be seen that the less experi-
enced (< 20 years of experience) systems engineers tend to be more familiar with technical debt
than the very experienced systems engineers (> 20 years of experience). This could be a result of
the small sample size (only eight respondents had > 20 years of experience); however, it could also
indicate that the technical debt terminology is better known to less experienced systems engineers
due to the relative newness of the terminology. Technical debt research in software engineering
accelerated around 2008 (Li, Avgeriou & Liang 2015). Systems have become more software in-
tensive (Boehm 2006) and familiarity with software engineering is now part of recommended sys-
tems engineering graduate school curriculum (Pyster, et al. 2012). It is possible that these trends
contribute to a greater familiarity with the metaphor among less experienced systems engineers.

Figure 5 shows that overall, there is familiarity with the technical debt metaphor among systems
engineers. However, familiarity with a term is not enough to establish that the term is a common
part of the lexicon. Therefore, participants were asked to identify how frequently they use the
technical debt metaphor and in which technical contexts it is used. These results are shown in
Figure 6. The left side of Figure 6 shows the usage of the technical debt metaphor. Only 26% of
the participants reported using the technical debt metaphor frequently (gray) or very frequently
(yellow), and 56% of the participants reported not frequently using the metaphor (blue). These
results indicate that the metaphor, while it may be familiar to systems engineers, is not commonly
used.

Figure 6. Usage of and Familiarity with the Technical Debt Metaphor in Various Contexts

The right side of Figure 6 shows the answers to question 3.4, which assessed the contexts in which
participants have used or heard the technical debt metaphor. 35% of the respondents reported that
they have used or heard technical debt in both systems engineering (SE) and software engineering
(SW) context. Only 23% of the respondents said they have only used or heard the term in just the
SE context and 12% of the respondents stated that they have used or heard the term in just the SW
context. A likely interpretation is that the familiarity with the technical debt metaphor from soft-
ware engineering produces carryover usage in the field of systems engineering. Of note is that the
respondents who indicated usage in both the SE and SW context also indicated higher levels of
familiarity with the technical debt metaphor. From these results, it can be concluded that the tech-
nical debt metaphor is present in the systems engineering lexicon, however, it is not a frequently
used component of that lexicon.

Technical debt occurs throughout the system lifecycle. QG4 focused on technical debt in the
system lifecycle. The participants’ responses, shown in Figure 7, demonstrate that technical debt
occurs throughout the system lifecycle, both in terms of its creation and its impact. The left chart
in Figure 7 shows the design phases where technical debt is most likely to be created and most
likely to be observed, according survey responses. These data show that technical debt is more
likely to be created during the design phases of the system and that the impact is more likely to be
observed during the integration, verification and validation, and operations phases. These results
show why technical debt is dangerous to a program – it is created based on decisions made in early
phases, but the impacts are not felt until later phases, when it is more difficult to correct the issues.

Figure 7. Technical Debt in the System Lifecycle

Questions 4.3 and 4.4 asked if there are specific phases within the system engineering lifecycle
where it is more or less acceptable to create technical debt. The right side of Figure 7 shows the
responses to these questions. The results show that participants generally viewed technical debt
created in the early phases of the program to be more acceptable, with technical debt created during
critical design to be the most unacceptable. However, the critical design phase is the phase that
was indicated as the most likely place for technical debt to be created. These data support the
premise that unmanaged technical debt is dangerous to a system. Technical debt is created where
it is deemed unacceptable to do so, since creation in those phases is likely to drive to poor outcomes
for the system. Therefore, it is critical to manage the creation of technical debt to prevent later
impacts.

Technical debt can be beneficial. The phrasing of the technical debt metaphor implies that the
consequences of technical debt are always negative. If true, then it would be expected that the
survey respondents would never have indicated that creating technical debt was acceptable. How-
ever, as shown in the right side of Figure 7, over 30% of respondents identified that technical debt
is acceptable to create in the early stages of the system lifecycle. Why would technical debt crea-
tion be acceptable?

While the survey did not ask this question, a reasonable answer is that technical debt creation is
acceptable if it provides a benefit to the development of as system. The initial technical debt met-
aphor highlighted this aspect of technical debt stating “A little debt speeds development so long
as it is paid back promptly with a rewrite” (Cunningham 1992). Taking on technical debt can
enable a system to achieve critical results, such as delivering on schedule, even if compromises
are made in the design. However, without a plan to repay the debt, it may spiral out of control and
result in technical bankruptcy.

Discussion
This survey provides an empirical basis for understanding the prevalence of the technical debt
metaphor in the field of systems engineering. The results can be used to draw several conclusions
based on the research questions.

RQ1: Impact and occurrence of technical debt in systems engineering. The survey results
clearly indicate that technical debt commonly occurs within systems engineering. The impacts of
technical debt, such as increased effort and increased rework, were clearly identified by survey
participants. Participants identified factors that can lead to technical bankruptcy, such as failure to
meet cost and schedule, as impacts of technical debt. Participants identified that technical debt
creation during early system development phases can be acceptable, indicating that there can be
benefits to taking on technical debt.

The confirmation of technical debt as a contributor to project success and failure means that it
needs to managed within the systems lifecycle. Tools need to be created to identify, manage, and
monitor technical debt to minimize its impact. If a system developer waits until the impact of
technical debt is seen in the system, it may be too late or too expensive to correct the issues. The
survey results show that technical debt is more likely to be observed later in the system lifecycle,
when it is more expensive to correct problems (Walden, et al. 2015). Therefore, technical debt
needs to be monitored from the start of the system and should be repaid soon as possible.

RQ2: Causes of technical debt within systems engineering. Multiple factors contribute to tech-
nical debt; however, schedule pressure was cited as the top cause by the survey respondents.
Schedule pressure is a significant concern in iterative development programs. As systems embrace
Agile development strategies, they are often faced with fixed-duration development periods
(sprints). Each sprint is intended to deliver a potentially releasable product (Cohn 2010). This
combination naturally exerts pressure on the developer to release a working system and can result
in the developer taking shortcuts, intentionally or unintentionally, in order to make the delivery
timeline. Proper planning involves sequencing tasks based on both the functional value delivered
to stakeholders and on the temporal value delivered to the system. Understanding both the func-
tional and temporal dependencies in the system development is critical for avoiding the need to
incur technical debt. Supporting requirements, such as quality requirements (maintainability, reli-
ability, etc.), must be given proper weight such that future iterations can begin with all the required
infrastructure in place, even if they are not perceived as high-value to the stakeholder. Otherwise,
the future iterations are likely to need to take shortcuts, and thereby take on technical debt, to
account for the missing components.

Another major driver of technical debt is cost pressure. The system may reach budget limits that
require compromise in one area or another. For example, insufficient funding for testing may result
in insufficient tests being performed on the system. The lack of testing may then result in an un-
derperforming system. Budget allocations must be sufficient to enable proper system development,
or else the system risks accruing technical debt.

While technical compromise was not cited by as many respondents as cost and schedule pressure,
it was still cited as a cause of technical debt by over 30% of the respondents. Technical compro-
mise means that the system developer makes technical concessions in one area to enable satisfac-
tion of technical goals in another area, such as reducing the size of a satellite antenna to satisfy the
mass constraints. If the full impacts are not assessed, the technical concessions can result in a
system that cannot meet its overall performance goals.

RQ3: Use of the technical debt metaphor among systems engineering practitioners. The re-
spondents to the survey stated that they had a broad range of familiarity with the metaphor of
technical debt and that they were more familiar with it than their coworkers. However, they also

responded that they do not frequently use the metaphor. These results indicate that the metaphor
is not prevalent among systems engineering practitioners. Yet, the responses to QG2 indicate that
the impacts of technical debt were observed by all survey respondents. This apparent disconnect
highlights that the impacts associated with technical debt are real, but that it is not part of the
lexicon of systems engineering. Instead, systems engineers use terms such as rework (Bro-
niatowski & Moses 2016) and unintended consequences (Bahill 2012), however a detailed exam-
ination of the terminology in current use was outside the scope of this survey.

The survey results show that systems engineers understand some aspects of technical debt, such
as the implications of short-term decisions on the long-term health of the system. However, the
lack of general usage of the metaphor implies that the full richness of the technical debt metaphor
is not used or understood. Simply delaying work does not result in technical debt and identifying
the potential for rework does not quantify the impact on the future state of the system.

The use of inconsistent vocabulary creates barriers to effective communications even amongst
practitioners in the same field (Uschold & Jasper 1999). The technical debt metaphor, through its
use of concept such as principal, interest amount, and interest probability, can create a consistent
vocabulary to allow systems engineers to quantify the impact of decisions. The quantified impact
can then be used to support the decision-making processes during system development. Technical
debt ontologies have been proposed within software engineering (Alves, et al. 2014); however,
even the definition of technical debt is not agreed upon within systems engineering (Rosser &
Norton 2021). The results of this survey indicate that the technical debt terminology is not wide-
spread within the systems engineering field, and this may be due, in part, to the lack of a consistent
ontology. Development of such a ontology, specific to systems engineering applications, will aid
in furthering the understanding of the impacts of technical debt and developing strategies for man-
aging technical debt when it occurs.

RQ4: Occurrence of technical debt within the systems engineering lifecycle. The survey re-
sults show that technical debt is more likely to be created early in the systems engineering lifecycle
and also more likely to be observed late in the systems engineering lifecycle. This combination
results in an accumulation of interest on the technical debt and is what makes technical debt ex-
pensive to the systems developer.

Of particular interest is the combination of the most respondents stating that technical debt is likely
created during critical design and the most respondents stating that it was unacceptable to create
technical debt during critical design. These data indicate that systems engineers may “know what
they are doing is wrong” during the critical design phase, and yet they do it anyway – intentionally
creating technical debt to get the design completed. If there is no plan to manage and pay back this
technical debt, then it can be harmful to the system. This technical debt will then likely appear in
the integration and/or operations phases. These results also indicate how technical debt can arise
– schedule pressures and other outside influences can force the system developer to take those
short cuts to complete the design by a set time. These data reinforce the need to manage and mon-
itor technical debt. It is when the most critical elements of the development occur that taking on
technical debt is most likely, and also the most unacceptable.

Conclusion and Future Work
Kleinwaks, Batchelor, and Bradley (2023) proposed a research agenda to develop a systems engi-
neering-centric view of technical debt. This agenda includes:

• Gathering empirical data to baseline the usage of the technical debt metaphor and the im-
pacts of technical debt within systems engineering applications;

• Developing an ontology of technical debt for the field of systems engineering, developing
methods and techniques to identify causes and occurrences of technical debt within systems
development, developing processes and methods to measure technical debt; and,

• Verifying and validating the processes developed through application to systems engineer-
ing problems.

This survey represents the first step in the above research agenda and its results form the basis
from which the above research agenda can be continued. The survey provides an empirical basis
for the usage of technical debt within the systems engineering field and future work will continue
to develop this usage. The survey results will guide the development of the ontology of technical
debt by providing area of emphasis where common language is required. For example, the preva-
lence of the impact of technical debt is clear from the survey results, but respondents do not use
the same terminology. Additional surveys can be conducted to determine the terminology that is
used in practice, which will further inform the development of the ontology.

This survey has provided a substantial amount of empirical evidence leading to the following key
conclusions:

• Technical debt is common in systems engineering applications, but the associated termi-
nology is not frequently used.

• Technical debt results in problems with system performance, cost, and schedule and bears
interest – it requires more effort to correct the problem then it would have taken to do it
correctly in the first place

• Cost and schedule pressure are the primary drivers of technical debt

• Technical debt is created early in the system lifecycle and observed late in the system
lifecycle

The impacts of technical debt on a system are real and substantial. By enriching the usage of the
technical debt metaphor within systems engineering, a common language can be used to manage
and reduce those impacts. This research will continue to fulfill the above research agenda to pro-
vide a mechanism for managing technical debt to reduce the risk of technical bankruptcy.

References
Abad, ZSH and G Ruhe 2015, ‘Using Real Options to Manage Technical Debt in Requirements

Engineering’, 2015 IEEE 23rd International Requirements Engineering Conference (RE),
IEEE, pp. 230-235.

Alves, NSR, LF Ribeiro, V Caires, TS Mendes, and RO Spinola 2014, ‘Towards an Ontology of
Terms on Technical Debt’, 2014 Sixth International Workshop on Managing Technical
Debt, IEEE, pp. 1-7.

Ampatzoglou, A, A Ampatzoglou, A Chatzigeorgiou, and P Avgeriou 2015, ‘The Financial Aspect
of Managing Technical Debt: A Systematic Literature Review’, Information and Software
Technology, vol. 64, pp. 52-73.

Ampatzoglou, A, N Mittas, AA Tsintzira, A Ampatzoglou, EM Arvanitou, A Chatzigeorgiou, P
Avgeriou, and L Angelis 2020, ‘Exploring the Relation between Technical Debt Principal
and Interest: An Empirical Approach’ Information and Software Technology, vol. 128.

Bahill, AT 2012, ‘Diogenes, a Process for Identifying Unintended Consequences’, Systems
Engineering, vol. 15, no. 3, pp. 287-306.

Besker, T, A Martini, and J Bosch 2017, ‘Managing Architectural Technical Debt: A Unified
Model and Systematic Literature Review’, The Journal of Systems and Software, vol. 135,
pp. 1-16.

Boehm, BW 2006, ‘Some Future Trends and Implications for Systems and Software Engineering
Processes’, Systems Engineering, vol. 9., no. 1, pp. 1-19.

Boehm, BW, R Valerdi, and E Honour 2008, ‘The ROI of Systems Engineering: Some
Quantitative Results for Software-intensive Systems’, Systems Engineering, vol. 11, no. 3,
pp. 221-234.

Broniatowski, DA, and J Moses 2016, ‘Measuring Flexibility, Descriptive Complexity, and
Rework Potential in Generic System Architectures’ Systems Engineering, vol. 19, no 3, pp.
207-221.

Brown, N, Y Cai, Y Guo, R Kazman, M Kim, P Kruchten, E Lim, et al. 2010, ‘Managing Technical
Debt in Software-Reliant Systems’, Proceedings of the FSE/SDP workshop on Future of
software engineering research, pp. 47-52.

Ciolkowski, M, V Lenarduzzi, and A Martini 2021, ‘10 Years of Technical Debt Research and
Practice: Past, Present, and Future’, IEEE Software, vol. 38, no. 6, pp. 24-29.

Cohn, M 2010, Succeeding with Agile: Software Development Using Scrum, Addison-Wesley,
Upper Saddle River, NJ (US).

Crawford, LM 2019, ‘Qualitative Research Designs’, in GJ Burkholder, KA Cox, LM Crawford,
and JH Hitchcock (eds) Research Design and Methods: An Applied Guide for the Scholar-
Practitioner, SAGE Publications, United States, pp. 81-98.

Cunningham, W 1992, ‘The WyCash Portfolio Management System’, 26 March 1992, viewed 29
January 2022, <http://c2.com/doc/oopsla92.html>.

Darrin, MAG and WS Devereux 2017, ‘The Agile Manifesto, Design Thinking, and Systems
Engineering’, 2017 Annual IEEE International Systems Conference (SysCon), pp. 1-5.

Douglass, BP 2016, Agile Systems Engineering, Morgan Kaufmann, Waltham (US).

Dunlap, H and D Chesebrough 2021, ‘Transforming Our Systems Engineering Approach Using
Digital Technology’, National Defense Industrial Association, viewed 10 April 2022,
<https://www.nationaldefensemagazine.org/articles/2021/10/4/transforming-our-systems-
engineering-approach-using-digital-technology>.

Forsberg, K and H Mooz 1995, ‘Application of the 'Vee' to Incremental and Evolutionary
Development’, INCOSE International Symposium, vol. 5, no. 1, pp. 848-855.

Guenov, MD and SG Barker 2005, ‘Application of Axiomatic Design and Design Structure Matrix
to the Decomposition of Engineering Systems’, Systems Engineering, vol. 8, no. 1, pp. 29-
40.

Kleinwaks, H, A Batchelor, and TH Bradley 2023, ‘Technical Debt in Systems Engineering’,
Systems Engineering, 10 April 2023, pp 1-13.

Lane, JA, S Koolmanojwong, and BW Boehm 2013, ‘4.6.3 Affordable Systems: Balancing the
Capability, Schedule, Flexibility, and Technical Debt Tradespace’ INCOSE International
Symposium, vol. 23, pp. 1385-1399.

Lenarduzzi, V, T Besker, D Taibi, and A Martini 2021, ‘A Systematic Literature Review on
Technical Debt Prioritization: Strategies, Processes, Factors, and Tools’, The Journal of
Systems and Software, vol. 171.

Li, Z, P Avgeriou, and P Liang 2015, ‘A Systematic Mapping Study on Technical Debt and its
Management’ The Journal of Systems and Software, vol. 101, pp. 193-220.

Martini, A, J Bosch, and M Chaudron 2014, ‘Architecture Technical Debt: Understanding Causes
and a Qualitative Model’, 2014 40th EUROMICRO Conference on Software Engineering
and Advanced Applications, pp. 85-92.

McConnell, S 2008, ‘Managing Technical Debt’, Construx Software Builders, <
http://www.construx.com/uploadedfiles/resources/whitepapers/Managing%20Technical%
20Debt.pdf>

Mooz, H and K Forsberg 2004, ‘Clearing the Confusion About Spiral/Evolutionary Development’,
INCOSE International Symposium, vol. 14, no. 1, pp. 1675-1688.

Nord, RL, I Ozkaya, P Kruchten, and M Gonzalez-Rojas 2012, ‘In Search of a Metric for
Managing Architectural Technical Debt’, 2012 Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on Software Architecture, pp. 91-100

Pyster, A, DH Olwell, TLJ Ferris, N Hutchison, S Enck, JF Anthony, D Henry, and A Squires
(eds) 2012, ‘Graduate Reference Curriculum for Systems Engineering (GRCSE™) V1.0’,
The Trustees of Stevens Institute of Technology.

Raman, R and M D'Souza 2019, ‘Decision Learning Framework for Architecture Design Decisions
of Complex Systems and System-of-Systems’, Systems Engineering, vol. 22, no. 6, pp.
538-560.

Rosser, LA and JH Norton 2021, ‘A Systems Perspective on Technical Debt’, 2021 IEEE
Aerospace Conference (50100), IEEE, pp. 1-10.

Rosser, LA and Z Ouzzif 2021, ‘Technical Debt in Hardware Systems and Elements’, 2021 IEEE
Aerospace Conference (50100). IEEE, pp. 1-10.

Schmidt, TS, S Weiss, and K Paetzold 2018, ‘Expected vs. Real Effects of Agile Development of
Physical Products: Apportioning the Hype’, DS 92: Proceedings of the DESIGN 2018 15th
International Design Conference, pp. 2121-2132

Seaman, C and Y Guo 2011, ‘Measuring and Monitoring Technical Debt’, Advances in Computers,
vol. 82, pp. 25-46.

Shallcross, N, GS Parnell, E Pohl, and E Specking 2020, ‘Set-based Design: The State-of-Practice
and Research Opportunities’, Systems Engineering, vol. 23, no. 5, pp. 557-578.

Siyam, GI, DC Wynn, and PJ Clarkson 2015, ‘Review of Value and Lean in Complex Product
Development’, Systems Engineering, vol. 18, no. 2, pp. 192-207.

Uschold, M and R Jasper 1999, ‘A Framework for Understanding and Classifying Ontology
Applications’, Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving
Methods (KRR5).

Walden, DD, GJ Roedler, KJ Forsberg, RD Hamelin, and TM Shortell 2015, Systems Engineering
Handbook. 4th Edition, John Wiley and Sons, Hoboken (US).

Biography

Howard Kleinwaks is currently a candidate for the degree of Doctor of En-
gineering in Systems Engineering at Colorado State University in Fort Col-
lins, CO. He is researching the management of technical debt in iterative sys-
tems development. He received both a Bachelor of Science and a Master of
Science in Aerospace Engineering from MIT. He is the Chief Engineer of the
Strategic Space Business Unit at Modern Technology Solutions, Inc. (MTSI)
and has over 15 years of experience in the aerospace and systems engineering
fields. He is a Project Management Professional (PMP), Associate Systems
Engineer (ASEP), and Professional Scrum Master.

Ann Batchelor is a professor of Systems Engineering at Colorado State Uni-
versity, teaching Engineering Project and Program Management, Systems
Requirements Engineering, and Engineering Risk Assessment. She has 20+
years of industrial experience in technical management, systems engineering,
production, manufacturing, lean engineering, life cycle management, test and
analysis, proposal and project management and technical writing. She has
held roles including chief scientist, systems engineer, Director of Engineer-
ing, and Director of Program Management. She is a past certified program
management professional (PMP), a Military Sensing Fellow (DOD Informa-
tional and Analysis Center for Military Sensing), and former President-elect
of the INCOSE Atlanta Chapter.

Dr. Thomas H. Bradley, Ph.D. serves as the Woodward Foundation Profes-
sor and Department Head for the Department of Systems Engineering at Col-
orado State University. He conducts research and teaches a variety of courses
in system engineering, multidisciplinary optimization, and design. Dr. Brad-
ley’s research interests are focused on applications in Automotive and Aero-
space System Design, Energy System Management, and Lifecycle Assess-
ment. Bradley earned the BS and BS in Mechanical Engineering at the Uni-
versity of California - Davis, and the PhD in Mechanical Engineering at
Georgia Institute of Technology. He is a member of INCOSE, SAE, ASME,
IEEE, and AIAA.

	Introduction and Background
	Research Methodology
	Research Findings
	Figure 1. Demographics of Survey Respondents
	Figure 2. Additional Effort Required to Correct Technical Debt Compared to the Effort to Implement the Ideal Solution Originally
	Figure 3. Negative Long-term Impacts of Technical Debt
	Figure 4. Rationale for Accruing Technical Debt
	Figure 5. Participant Familiarity with the Technical Debt Metaphor
	Figure 7. Technical Debt in the System Lifecycle

	Discussion
	Conclusion and Future Work
	References
	Biography

