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Abstract: Let Ψ(n) = n · ∏q|n
(

1 + 1
q

)
denote the Dedekind Ψ function where q | n means the prime

q divides n. Define, for n ≥ 3; the ratio R(n) = Ψ(n)
n·log log n where log is the natural logarithm. Let

Nn = 2 · . . . · qn be the primorial of order n. A trustworthy proof for the Riemann hypothesis has
been considered as the Holy Grail of Mathematics by several authors. The Riemann hypothesis is a
conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex
numbers with real part 1

2 . There are several statements equivalent to the famous Riemann hypothesis.
We show if the inequality R(Nn+1) < R(Nn) holds for n big enough, then the Riemann hypothesis is
true. In this note, we prove that R(Nn+1) < R(Nn) always holds for n big enough.
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1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part 1

2 . It is considered by many
to be the most important unsolved problem in pure mathematics. The hypothesis was
proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to Hilbert’s eighth
problem on David Hilbert’s list of twenty-three unsolved problems. This is one of the
Clay Mathematics Institute’s Millennium Prize Problems. In recent years, there have been
several developments that have brought us closer to a proof of the Riemann hypothesis.
There are many approaches to the Riemann hypothesis based on analytic number theory,
algebraic geometry, non-commutative geometry, etc [1].

The Riemann zeta function ζ(s) is a function under the domain of complex numbers. It
has zeros at the negative even integers: These are called the trivial zeros. The zeta function
is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis
is concerned with the locations of these nontrivial zeros. Bernhard Riemann conjectured
that the real part of every nontrivial zero of the Riemann zeta function is 1

2 .
The Riemann hypothesis’s importance remains from its deep connection to the dis-

tribution of prime numbers, which are essential in many computational and theoretical
aspects of mathematics. Understanding the distribution of prime numbers is crucial for
developing efficient algorithms and improving our understanding of the fundamental
structure of numbers. Besides, the Riemann hypothesis stands as a testament to the power
and allure of mathematical inquiry. It challenges our understanding of the fundamental
structure of numbers, inspiring mathematicians to push the boundaries of their field and
seek ever deeper insights into the universe of mathematics.

2. Materials and methods

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = ∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal to x, where log
is the natural logarithm. We know the following inequalities:
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Proposition 1. For r ≥ 0 and −1 ≤ x < 1
r [2, pp. 1]:

(1 + x)r ≤ 1
1 − r · x

.

Proposition 2. For x > −1 [2, pp. 1]:

x
1 + x

≤ log(1 + x) ≤ x.

Leonhard Euler studied the following value of the Riemann zeta function (1734) [3].

Proposition 3. We define [3, (1) pp. 1070]:

ζ(2) =
∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where qk is the kth prime number (Mathematicians also use the notation qn to represent the nth

prime number). By definition, we have

ζ(2) =
∞

∑
n=1

1
n2 ,

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞

∑
n=1

1
n2 =

∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where π ≈ 3.14159 is a well-known constant linked to several areas in mathematics such as number
theory, geometry, etc.

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim
n→∞

(
− log n +

n

∑
k=1

1
k

)

=
∫ ∞

1

(
− 1

x
+

1
⌊x⌋

)
dx.

Here, ⌊. . .⌋ represents the floor function. In number theory, Ψ(n) = n · ∏q|n

(
1 + 1

q

)
is

called the Dedekind Ψ function, where q | n means the prime q divides n.

Definition 1. We say that Dedekind(qn) holds provided that

∏
q≤qn

(
1 +

1
q

)
≥ eγ

ζ(2)
· log θ(qn).

A natural number Nn is called a primorial number of order n precisely when,

Nn =
n

∏
k=1

qk.

We define R(n) = Ψ(n)
n·log log n for n ≥ 3. Dedekind(qn) holds if and only if R(Nn) ≥ eγ

ζ(2) is
satisfied.
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Proposition 4. Unconditionally on Riemann hypothesis, we know that [4, Proposition 3 pp. 3]:

lim
n→∞

R(Nn) =
eγ

ζ(2)
.

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy
and John Edensor Littlewood [5]. In 1916, they also introduced the two symbols ΩR and
ΩL defined as [6]:

f (x) = ΩR(g(x)) as x → ∞ if lim sup
x→∞

f (x)
g(x)

> 0;

f (x) = ΩL(g(x)) as x → ∞ if lim inf
x→∞

f (x)
g(x)

< 0.

After that, many mathematicians started using these notations in their works. From the last
century, these notations ΩR and ΩL changed as Ω+ and Ω−, respectively. There is another
notation: f (x) = Ω±(g(x)) (meaning that f (x) = Ω+(g(x)) and f (x) = Ω−(g(x)) are
both satisfied). Nowadays, the notation f (x) = Ω+(g(x)) has survived and it is still used
in analytic number theory as:

f (x) = Ω+(g(x)) if ∃k > 0 ∀x0 ∃x > x0 : f (x) ≥ k · g(x)

which has the same meaning to the Hardy and Littlewood older notation. For x ≥ 2, the
function f was introduced by Nicolas in his seminal paper as [7, Theorem 3 pp. 376], [8,
(5.5) pp. 111]:

f (x) = eγ · log θ(x) · ∏
q≤x

(
1 − 1

q

)
.

Finally, we have Nicolas’ Theorem:

Proposition 5. If the Riemann hypothesis is false then there exists a real b with 0 < b < 1
2 such

that, as x → ∞ [7, Theorem 3 (c) pp. 376], [8, Theorem 5.29 pp. 131]:

log f (x) = Ω±(x−b).

Putting all together yields a proof for the Riemann hypothesis.

3. Results

The following inequality is a trivial result:

Lemma 1. Let ϵ1 be a positive integer between 0 and e − 1 (i.e. 0 < ϵ1 < e − 1). Then,

log
(

1 − e−1 · (ϵ1 + 1)
)
≥ − e−1 · (ϵ1 + 1)

1 − e−1 · (ϵ1 + 1)
.

Proof. We can apply the Proposition 2 since −e−1 · (ϵ1 + 1) > −1. Therefore, we only need
to replace x by −e−1 · (ϵ1 + 1) in the following expression

x
1 + x

≤ log(1 + x).

Several analogues of the Riemann hypothesis have already been proved. Many authors
expect (or at least hope) that it is true. Nevertheless, there exist some implications in case
the Riemann hypothesis could be false. The following is a key Lemma.



4 of 9

Lemma 2. If the Riemann hypothesis is false, then there exist infinitely many prime numbers qn
such that Dedekind(qn) fails (i.e. Dedekind(qn) does not hold).

Proof. Let’s define a function called g(x):

g(x) =
eγ

ζ(2)
· log θ(x) · ∏

q≤x

(
1 +

1
q

)−1
.

This function is based on some previously proven results (reference: [4, Theorem 4.2 pp. 5]).
It involves several things: the constants γ and ζ(2), the Chebyshev function θ(x), and a
product considering all prime numbers less than or equal to x.

We’re interested in a specific condition, called Dedekind(qn) (see Definition 1). This
proof argues that Dedekind(qn) could fail under the possibility that the Riemann hypothesis
is false. That circumstance involves an infinitely many real numbers x0 greater than or
equal to 5. We claim that Dedekind(qn) fails for infinitely many prime numbers qn such that
qn refers to the largest prime number less than or equal to x0. For this x0, the value of g(x0)
must be greater than 1 (or equivalently, log g(x0) > 0).

There’s a previously established relationship between g(x) and f (x) [4, Theorem 4.2 pp. 5]:

log g(x) ≥ log f (x)− 2
x

.

If the Riemann hypothesis (RH) is false, then there must be infinitely many numbers x for
which log f (x) = Ω+(x−b) by Proposition 5. This result depends on another number b
between 0 and 1

2 (i.e. 0 < b < 1
2 ). Nicolas proved the general case log f (x) = Ω±(x−b), but

we only need to use the notation Ω+ under the domain of the real numbers. According to
the Hardy and Littlewood definition, this would mean

∃k > 0, ∀y0 ∈ R, ∃y ∈ R (y > y0) : log f (y) ≥ k · y−b.

The previous inequality is log f (y) ≥
(

k · y−b · √y
)
· 1√

y , where we notice that

lim
y→∞

(
k · y−b · √y

)
= ∞

for k > 0 and 0 < b < 1
2 . Now, this implies

∀y0 ∈ R, ∃y ∈ R (y > y0) : log f (y) ≥ 1
√

y
.

This inequality would mean that under a false RH, there are infinitely many widely
spaced real numbers x where log f (x) ≥ 1√

x . Here’s how this connects back to our original

function g(x). Because of 1√
x0

> 2
x0

for x0 ≥ 5, hence if the false RH scenario holds, then
there must be infinitely many such x0 where log g(x0) > 0.

Finally, the proof establishes a link between these positive log g(x0) values and the
prime numbers. It shows that if the logarithm of g(x0) is positive for a specific x0 ≥ 5,
then it must also be positive for the largest prime number qn less than or equal to x0. This
connection arises from the properties of the terms used in the definition of g(x) and the
Chebyshev function.

This is a new Criterion for the Riemann hypothesis.

Lemma 3. If R(Nn) is strictly decreasing (i.e. R(Nn) > R(Nn+1)) for n big enough then
Dedekind(qn) holds for n big enough.
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Proof. Assume R(Nn) > R(Nn+1) for n > n0 and that Dedekind(qn) fails for N > n0 that is

R(Nn) <
eγ

ζ(2)
,

then for n ≥ N + 1 we have R(Nn+1) < R(Nn) <
eγ

ζ(2) . This implies

lim sup
n→∞

R(Nn) <
eγ

ζ(2)

contradicting Proposition 4.

This is the main insight.

Theorem 1. The inequality R(Nn) > R(Nn+1) holds for n big enough.

Proof. By Lemma 3, Dedekind(qn) holds for n big enough if the following inequality is
satisfied for a sufficiently large value of n:

R(Nn+1) < R(Nn).

This translates to:
∏q≤qn+1

(
1 + 1

q

)
log θ(qn+1)

<
∏q≤qn

(
1 + 1

q

)
log θ(qn)

.

Applying logarithms to both sides and expanding the terms, we get:

log log θ(qn+1) > log log θ(qn) + ∑
qn<q≤qn+1

log
(

1 +
1
q

)
.

Dividing both sides by log log θ(qn+1) (since qn+1 is large enough to ensure log log θ(qn+1) >
0), we have:

1 >
log log θ(qn)

log log θ(qn+1)
+

∑qn<q≤qn+1
log
(

1 + 1
q

)
log log θ(qn+1)

.

Taking exponentials of both sides yields:

e > exp
(

log log θ(qn)

log log θ(qn+1)

)
·
(

∏
qn<q≤qn+1

(
1 +

1
q

)) 1
log log θ(qn+1)

.

For a sufficiently large prime qn+1, we can leverage the property e = x
1

log x for x > 0 to
obtain:

e = (log θ(qn+1))
1

log log θ(qn+1) .

Therefore, it suffices to show that:

log θ(qn+1) > ∏
qn<q≤qn+1

(
1 +

1
q

)
.

This simplifies to:

log θ(qn+1) > 1 +
1

qn+1
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which is trivially true for n big enough. That would mean

e · (1 − ϵ2) =

(
∏

qn<q≤qn+1

(
1 +

1
q

)) 1
log log θ(qn+1)

for some positive integer ϵ2 between 0 and 1 (i.e. 0 < ϵ2 < 1). Besides, we have:

1 + ϵ1 = exp
(

log log θ(qn)

log log θ(qn+1)

)
where ϵ1 is a positive integer between 0 and e − 1 (i.e. 0 < ϵ1 < e − 1). Our goal is to prove:

e > (1 + ϵ1) · e · (1 − ϵ2),

which simplifies to:

ϵ2 >
ϵ1

ϵ1 + 1
.

We can also see that:

1 − e−1 ·
(

∏
qn<q≤qn+1

(
1 +

1
q

)) 1
log log θ(qn+1)

= ϵ2.

Using Proposition 1 and the fact that −1 ≤
(

∏qn<q≤qn+1

(
1 + 1

q

)
− 1
)
< log log θ(qn+1)

(due to a sufficiently large qn+1), we obtain

(
∏

qn<q≤qn+1

(
1 +

1
q

)) 1
log log θ(qn+1)

=

(
1 + ∏

qn<q≤qn+1

(
1 +

1
q

)
− 1

) 1
log log θ(qn+1)

≤ 1

1 −
(

∏qn<q≤qn+1

(
1+ 1

q

)
−1
)

log log θ(qn+1)

=
log log θ(qn+1)

log log θ(qn+1) + 1 − ∏qn<q≤qn+1

(
1 + 1

q

)
=

log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

.

So, we arrive at:

1 − e−1 · log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

≤ ϵ2.

Combining steps, this follow as

1 − e−1 · log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

>
ϵ1

ϵ1 + 1
.

After simple distribution, we make

ϵ1 + 1
ϵ1

−
e−1 · ϵ1+1

ϵ1
· log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

> 1

and

1 >
e−1 · (ϵ1 + 1) · log log θ(qn+1)

log log θ(qn+1)− 1
qn+1
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where
log log θ(qn+1)−

1
qn+1

> e−1 · (ϵ1 + 1) · log log θ(qn+1).

Using further manipulations, we arrive at:

− 1
qn+1

>
(

e−1 · (ϵ1 + 1)− 1
)
· log log θ(qn+1).

and
1 < qn+1 ·

(
1 − e−1 · (ϵ1 + 1)

)
· log log θ(qn+1)

which is
0 < log qn+1 + log

(
1 − e−1 · (ϵ1 + 1)

)
+ log log log θ(qn+1)

after of applying the logarithm to both sides. That could be rewritten as

0 < − e−1 · (ϵ1 + 1)
1 − e−1 · (ϵ1 + 1)

+ log qn+1 + log log log θ(qn+1)

by Lemma 1. That is equivalent to

1
e · (ϵ1 + 1)−1 − 1

< log qn+1 + log log log θ(qn+1)

since
e−1 · (ϵ1 + 1)

1 − e−1 · (ϵ1 + 1)
=

1
e · (ϵ1 + 1)−1 − 1

after multiplying the fraction (so above as below) by e · (ϵ1 + 1)−1. The inequality

1
e · (ϵ1 + 1)−1 − 1

< log qn+1 + log log log θ(qn+1)

is the same as

1

exp
(

1 − log log θ(qn)
log log θ(qn+1)

)
− 1

< log qn+1 + log log log θ(qn+1)

because of

ϵ1 = exp
(

log log θ(qn)

log log θ(qn+1)

)
− 1.

We can further deduce that

1

exp
(

1 − log log θ(qn)
log log θ(qn+1)

)
− 1

< log qn+1 + log log log θ(qn+1)

holds whenever

log qn+1 + log log log θ(qn+1) < exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
· (log qn+1 + log log log θ(qn+1))

also holds. Finally, we can infer that

log qn+1 + log log log θ(qn+1) < exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
· (log qn+1 + log log log θ(qn+1))
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trivially holds by the fact that

exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
> 1

under the supposition that n is big enough.

This is the main theorem.

Theorem 2. The Riemann hypothesis is true.

Proof. In virtue of Lemmas 2 and 3, the Riemann hypothesis is true if the inequality

R(Nn+1) < R(Nn)

holds for n big enough. Consequently, the Riemann hypothesis is true by Theorem 1.

4. Discussion

In number theory, the difference between consecutive prime numbers is called a prime
gap. The nth prime gap refers specifically to the difference between the prime numbers at
positions n and (n + 1) in the sequence of primes.

In 1936, Harald Cramér, a Swedish mathematician, proposed a conjecture about the
size of prime gaps. Cramér conjecture states that the difference between consecutive
prime gaps grows no faster than the square of the logarithm of the larger prime gap (i.e.
qn+1 − qn = O((log qn)2)). Here, the big O notation represents an upper bound on the
order of magnitude of a function.

However, there’s growing evidence that Cramér conjecture might be incorrect [9].
Recent research suggests the conjecture may be violated for infinitely many prime gaps [9].
This conclusion is based on results from a yet-to-be-peer-reviewed paper [10] ([10, Proposi-
tion 4 pp. 5] and [10, Proposition 7 pp. 7]). While Theorem 1 in this work seems to disprove
the conjecture, its validity depends on the full publication of [10] through peer review.

5. Conclusion

The Riemann hypothesis holds immense significance not only for number theory, but
also for fields as diverse as cryptography and particle physics. A proof wouldn’t just offer
deep insights into the nature and distribution of prime numbers, the fundamental building
blocks of integers. It would fundamentally reshape various mathematical landscapes,
sparking entirely new lines of inquiry. For example, a proven Riemann hypothesis could
lead to more efficient methods of prime number generation, which are crucial for securing
online communication in cryptography. Furthermore, its implications might extend beyond
pure mathematics, potentially influencing our understanding of the distribution of energy
levels in complex systems studied in particle physics. In essence, a resolution to the
Riemann hypothesis could be a catalyst for groundbreaking discoveries across a wide range
of scientific disciplines.
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