
EasyChair Preprint
№ 15755

Comparative Analysis of Configuration
Management Tools: Chef vs. Ansible, SaltStack,
and Puppet

Harsh Katariya, Madhuri Gedam, Roopali Lolage, Shruti Patil
and Ujjval Shrivastav

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 24, 2025

1

Comparative Analysis of Configuration Management Tools:

Chef vs. Ansible, SaltStack, and Puppet
Mr. Harsh Katariya¹, Mrs. Madhuri N. Gedam², Dr. Roopali Lolage³, Mrs. Shruti Patil⁴, Mr. Ujjval Shrivastav⁵

B.E Student, Department of Information Technology, Maharashtra, India¹

Asst. Professor, Dept. of Information Engineering, Shree LR Tiwari College of Engineering, Mumbai, India²

B.E Student, Department Computer Engineering, Maharashtra, India⁵

harsh.katariya@slrtce.in¹, madhuri.gedam@slrtce.in², roopali.lolage@slrtce.in3, shruti.patil@slrtce.in⁴

Abstract: Configuration Management (CM) tools play a

critical role in automating infrastructure and maintaining

consistency in modern IT systems. This paper presents a

comparative analysis of Chef, Ansible, SaltStack, and Puppet,

four prominent tools in the domain of Configuration

Management. Each tool has unique features, strengths, and

challenges that cater to diverse organizational needs. Chef,

known for its flexibility and integration capabilities, offers a

robust solution for managing large-scale environments but

comes with a steep learning curve. Ansible is praised for its

simplicity and agentless architecture, making it beginner-

friendly. SaltStack excels in speed and scalability, while

Puppet’s mature ecosystem provides extensive support for

complex configurations. This study evaluates these tools based

on criteria such as ease of use, scalability, integration, security,

and community support. Through case studies and analysis, we

discuss how these tools are implemented in real-world

scenarios and their effectiveness in addressing key challenges

like configuration drift, dependency management, and security

compliance. The findings aim to provide insights for

organizations and developers in selecting the most suitable

CM tool for their needs. Ultimately, while each tool has its

trade-offs, the choice depends on specific project requirements

and team expertise.

Keywords: Configuration Management, Chef Automation

Tool, Infrastructure as Code (IaC), Continuous Integration

(CI), Dependency Management, Configuration Drift.

I. Introduction

Software Configuration Management (SCM) is a

foundational practice in software engineering, crucial for

ensuring the consistency, reliability, and reproducibility of

software systems. As software projects grow in complexity,

managing configurations manually becomes impractical and

error-prone [1]. This has led to the adoption of automated tools

that can streamline the management of configurations across

diverse environments. Among these tools, Chef has emerged as

a powerful solution for automating infrastructure management

through code, also known as Infrastructure as Code (IaC) [1].

Chef, developed by Opscode (now Chef Software, Inc.), is an

automation platform designed to manage infrastructure on

physical, virtual, and cloud environments. By treating

infrastructure as code, Chef allows developers and system

administrators to define the desired state of their systems using

a simple and declarative language [2]. This approach not only

enhances the reproducibility and reliability of configurations

but also integrates seamlessly into modern development

practices, such as Continuous Integration (CI) and Continuous

Deployment (CD) [4].

Despite its advantages, implementing Chef for SCM

is not without challenges. Organizations often encounter

issues such as managing complex dependencies, ensuring

security compliance, and addressing the steep learning curve

associated with the tool [4]. This paper explores these

challenges in detail and proposes solutions to overcome them.

We will examine the principles of Chef, its role in automating

infrastructure management, and its integration into CI/CD

pipelines [5].

Advantages of Chef Tool

Flexibility and Customization: Chef's use of a Ruby-based

DSL allows for highly customizable and flexible
configurations, enabling the management of complex

scenarios.

Integration Capabilities: Chef integrates seamlessly with

various CI/CD tools, cloud platforms, and container
orchestration systems, facilitating a cohesive automation

environment.

Compliance and Security: Chef Automate includes robust

compliance features, enabling automated security policy
enforcement and regulatory compliance checks.

Scalability: Chef's master-agent architecture efficiently

manages large-scale infrastructures, making it suitable for

enterprises with extensive and complex environments.

II. Chef Architecture

Fig.1. Chef Configuration [6]

mailto:harsh.katariya@slrtce.in
mailto:madhuri.gedam@slrtce.in
mailto:roopali.lolage@slrtce.in3
mailto:shruti.patil@slrtce.in

2

III. Components in Chef Architecture

3.1 Chef Infra:

Chef Infra is the core component of the Chef ecosystem,

designed to automate the management of infrastructure. It uses

a master-agent model where the Chef server acts as the central

hub, managing all the nodes in the system.

Chef Server: Acts as a central repository for storing

configuration data, cookbooks, policies, and other artifacts

required for configuration management.

Chef Client: Installed on each node, the Chef client

periodically polls the Chef server for updates and applies the

necessary configurations to ensure the node’s state matches

the desired state defined in the Chef cookbooks.

3.2 Cookbooks and Recipes:

Cookbooks: Collections of recipes, attributes, files,

templates, libraries, and resources. They define how Chef

manages system configurations.

Recipes: Specific configuration details written in Ruby,

detailing the desired state of a node, such as installing

packages, creating files, and managing services.

IV. Related Work

The most popular SCM tools are Puppet, Chef, Ansible,

and Salt Stack. Their general characteristics are presented in

Table 1. Among them the system development language,

Configuration Description Language (CDL), system

architecture, software distribution license, and supported

platform [5]. Within the execution of distributed application

packages, an important requirement is a support for managing

Windows and Linux OSes families. The paper does not

discuss systems whose development is suspended or

discontinued, as well as proprietary systems [5].

Table 1. General Configuration of SCM Tools [2]

All four systems provide a web-interface for configuration

management. It can be used to create reports and visualize

the infrastructure configuration In addition, all of the

systems have the ability for connecting to an external

monitoring system. SaltStack uses its own implementation

for that [5]. The features of the considered SCM tools are

reflected in the system characteristics, description specifics,

delivery methods, and installation of system configurations.

These System characteristics are shown in Table 2.

Table 2. System characteristics of the SCM tools [6]

On deploying Puppet and Chef, the Puppet DB and

PostgreSQL database systems are used, respectively.

These databases provide centralized configuration storage.

The performance and scalability of each system directly

depend on the database used. In addition, the database

server requires additional maintenance.

Enterprise version of Ansible uses PostgreSQL. In

addition, it is allowing to install Mongo DB (MySQL) to

build fault-tolerant architectures and for storing logs.

V. Chef vs Puppet

Chef and Puppet are leading configuration

management tools, each with distinct approaches and

features [6]. Chef uses a Ruby-based imperative language,

offering flexibility and detailed control over infrastructure

configurations, making it suitable for developers familiar

with Ruby but presenting a steeper learning curve for

others. Puppet, on the other hand, employs a declarative

DSL, focusing on specifying the desired state of the

infrastructure, which can simplify the learning process and

make it more accessible for new users.Both tools utilize a

master-agent architecture, though Chef also offers a

standalone mode with chef solo [6].

3

and Puppet provides Puppet Apply for local execution. In

terms of performance, Puppet is recognized for its

efficiency in managing large environments through its

resource abstraction layer, while Chef's performance

depends on the complexity of its recipes. Community

support is robust for both, with Chef Supermarket and

Puppet Forge offering extensive repositories of pre-written

configurations.

Imperative approach, requiring users to script the specific

steps to achieve a desired state. It operates on a master-

agent architecture, which necessitates setting up a Chef

server and agents on each managed node. This architecture

provides powerful automation capabilities but can

introduce complexity in management and maintenance.

Fig.4. Ansible Architecture

VII. Chef vs Saltstack

Fig.2. Chef vs Puppet [6]

I. Chef vs Ansible

Chef and Ansible are both popular configuration

management tools, but they differ in several key ways. Chef

uses a Ruby-based domain-specific language (DSL) and

follows an imperative approach, defining the specific steps

to achieve the desired state. It operates on a master-agent

architecture, which can introduce complexity in setup and

maintenance. Ansible, on the other hand, uses YAML for its

playbooks and adopts a declarative approach, specifying the

desired end state without detailing the steps to achieve it.

Ansible is agentless, leveraging SSH for communication,

which simplifies setup and reduces overhead.

While both Chef and SaltStack are sophisticated

tools for automation and configuration management, they

serve distinct operational purposes. Chef specifies the

precise actions to do in order to reach the desired system

state using an imperative approach and a Ruby-based DSL.

It uses a master-agent approach, in which agents deployed

on nodes are managed by Chef servers.

This offers strong configuration options, but it also

means extra setup and upkeep is needed. On the other hand,

SaltStack uses an event-driven architecture and a Python-

based language to allow agent-based (master-minion) as

well as agentless (via SSH) operations.

Fig.3. Weakness of Ansible Tool Fig.5. Weakness of Salt Stack Tool

4

SaltStack can be challenging to configure for beginners due

to its steep learning curve and YAML-based syntax, which

can become error-prone in large deployments. While

SaltStack is designed for scalability, its performance can

degrade in very large environments, particularly with high-

frequency state runs.

3. Integration and Automation: Boost Chef's integration

with current CI/CD tools and monitoring systems by

creating unique plugins or extensions. Put in place

automated processes that dynamically modify setups in

response to input and real-time measurements.

VIII. Literature Survey

Table 3. Survey of Various tools [6]

A succinct comparison of the top Software Configuration

Management (SCM) tools—Puppet, Chef, Ansible, and

SaltStack—can be found in the literature table 3. It draws

attention to their salient traits, such as language, strategy,

architecture, features, advantages, and disadvantages. This

comparison makes it easier to comprehend the unique

benefits and constraints of each tool, enabling well-informed

decision-making for the selection of the best SCM tool in

accordance with particular organizational demands and

infrastructure requirements.

IX. Methodology

1. Purpose and Objectives: The main objective is to increase

infrastructure management's consistency, efficiency, and

scalability by utilizing Chef's automated capabilities to
improve Software Configuration Management (SCM). This

entails dealing with typical SCM issues like dependency

management and configuration drift.

2. Innovative Approach: Use a cutting-edge technique that

blends Chef with contemporary DevOps procedures. In order

to automate end-to-end deployment pipelines as well as system

setup.

4. Testing and Validation: Provide sophisticated testing

techniques, such as automated tests linked into the CI/CD

pipeline for configuration consistency and compliance

checks. Predictive analytics may be used to identify and

resolve any configuration problems before they have an

influence on operations.

5. Impact analyses and case studies: Use this innovative

technique to conduct case studies with companies that have

used Chef. Analyze the effects on configuration drift

reduction, scalability, and operational efficiency. Collect

both quantitative and qualitative data in order to evaluate

advancements and pinpoint optimal methodologies.

X. Result

Numerous node kinds, including as servers, network

devices, cloud virtual machines, and containers, may be
managed using Chef. It oversees several systems, including

Windows, Linux, and mainframes. The solution is designed

to facilitate application deployment on IT infrastructure by

allowing developers and IT operations specialists to

collaborate.

X.1 Application of Chef

Fig. 6 . Chef Tool Integration in Real-Time Infrastructure

Management

5

XI. About Application

The central store for all configuration information, policies,
and recipes is the Chef Server.

CI/CD Pipeline: Integrates with Chef to guarantee that

settings are updated when code changes are pushed to the

repository and to automate deployments.

Cloud Provider: Manages the Chef settings for the

provisioning of servers or instances (such as EC2 in AWS).

Monitoring and logging: Gathers metrics and data in real-
time from nodes to make sure settings are followed correctly
and to spot any irregularities.

Provisioning: In a cloud environment, Chef automates the

setup and configuration of servers or instances.

Configuration Drift Management: Takes care of any

deviations from the established policies to guarantee that

every node maintains the appropriate configuration state.

Nodes/Instances: These are the real servers or instances that

Chef manages and configures. Chef applies and maintains

their configuration through the use of recipes.

This Application in Figure 6 shows how Chef Tools

are used in real-time inside a contemporary infrastructure. It

demonstrates how Chef Server interacts with cloud

providers for provisioning, centralizes configuration

management, and interfaces with CI/CD pipelines for

automated deployments. The graphic also shows how

logging and monitoring technologies can control drift and

ensure configuration compliance. Chef configures nodes or

instances to provide automated and standardized

infrastructure management.

XI. Conclusion

This paper underscores the transformative impact of

Chef in Software Configuration Management (SCM),

highlighting its ability to enhance consistency, reliability, and
efficiency in managing complex infrastructures. Chef's

automation capabilities, combined with its integration into

Continuous Integration (CI) and Continuous Deployment

(CD) pipelines, offer significant benefits, including reduced

configuration drift, improved scalability, and enhanced

operational efficiency. Despite challenges such as managing

dependencies, ensuring security, and navigating the learning

curve, the proposed solutions and best practices provide

actionable strategies to address these issues. Case studies

demonstrate successful implementations of Chef,

Reaffirming its value in modern software development
environments. Overall, Chef proves to be a powerful tool for

effective SCM, offering substantial improvements in

software robustness and agility when its challenges are

strategically managed.

XII. References

[1] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira,
Tamar Eilam “Automated Testing of Chef Automation Scripts”
09 December 2013,
https://dl.acm.org/doi/10.1145/2541614.2541632.

[2] Christof Ebert, Gorka Gallardo, Josune Hernantes, and
Nicolas Serrano, “DevOps” , 25 April 2016,
https://ieeexplore.ieee.org/document/7458761.

[3] Stefano Dalla Palmaa, DarioDiNuccia, Fabio Palombab,
Damian Andrew Tamburric, “The Journalof Systems &

Software” 3 April 2020,
https://www.sciencedirect.com/journal/journal-of- systems-and-
software.

[4] Stefan Meyer, Philip Healy, Theo Lynn, John Morrison,

“Quality Assurance for Open Source Software Configuration
Management” 2013,

https://ieeexplore.ieee.org/document/6821183.

[5] AKOND RAHMAN, MD RAYHANUR
RAHMAN, CHRISPARNIN, LAURIEWILLIAMS,
“Security Smells in Ansible and Chef Scripts” January 2021,
https://dl.acm.org/doi/10.1145/3408897.

[6] E. Luchian, C. Filip, A. B. Rus, I. -A. Ivanciu and V. Dobrota,

"Automation of the infrastructure and services for an openstack

deployment using chef tool," 2016 15th RoEduNet Conference:

Networking in Education and Research, Bucharest, Romania.

[7] Arturs Bartusevics, Leonids Novickis, “Models for

Implementation of Software ConfigurationManagement”, 2015,

Sciencedirect, https://www.sciencedirect.com/science/article/pii

/S1877050914015701.

[8] Jacky Estublier, David Leblang, André van der Hoek, Reidar

Conradi, Geoffrey Clemm, Walter Tichy, and Darcy Wiborg-Weber.

2005. “Impact of software engineering research on the practice of

software configuration management”. ACM Trans. Softw. Eng.

Methodol. 14, 4 (October 2005), 383–430.

https://doi.org/10.1145/1101815.1101817.

[9] Roman Kostromin, “Survey of software configuration

management tools of nodes in heterogeneous distributed

computing environment”, 2020, ceur-ws,

DOI:10.47350/ICCS- DE.2020.15.

[10] Hong Mei, Lu Zhang, Fuqing Yang,” A Software

Configuration Management Model for Supporting Component-

Based Software Development”, ACMSIGSOFT, March 2001,

https://dl.acm.org/doi/abs/10.1145/505776.505790.

https://dl.acm.org/doi/10.1145/2541614.2541632
https://dl.acm.org/doi/10.1145/2541614.2541632
https://dl.acm.org/doi/10.1145/2541614.2541632
https://ieeexplore.ieee.org/document/7458761
https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://ieeexplore.ieee.org/document/6821183
https://dl.acm.org/doi/10.1145/3408897
http://www.sciencedirect.com/science/article/pii
https://doi.org/10.1145/1101815.1101817
http://dx.doi.org/10.47350/ICCS-DE.2020.15
http://dx.doi.org/10.47350/ICCS-DE.2020.15
https://dl.acm.org/doi/abs/10.1145/505776.505790

