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Abstract— Microservices Architecture is a popular pattern 
used for building complex IT systems in an incremental, 
sustainable, and scalable fashion. However, compared with 
traditional monolithic solution architectures, it introduces a 
higher degree of concurrency which might result in subtle bugs 
arising, such as race conditions, deadlocks, and lack of data 
consistency. I shall illustrate this using a worked example of an 
automated insurance claims payment service which exhibits a 
bug whereby a particular claim might be settled twice. I shall 
use the CSP formal modelling language and the FDR refinement 
checker to prove some results about this bug and how to fix it. 
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I. INTRODUCTION 

Microservices architecture [1] is a modern flavour of 
Communicating Sequential Processes [2, 3], based on fine-
grained web services and lightweight communication 
protocols. It represents a fundamental shift in solution delivery 
practice away from building complex, multi-tiered monoliths. 
Its main principles are as follows: 

1. An IT system is delivered as a set of loosely coupled 
web services. 

2. Each service implements a specific business 
capability. 

3. Services can be developed independently from each 
other, potentially by different teams using different 
programming languages. 

4. Communication between services uses technology 
agnostic protocols [3]. 

5. Microservices are small, so that they are suitable for 
a ‘continuous delivery’ engineering approach. 

New business requirements can be addressed by making 
localised changes to individual self-contained microservices, 
offering cost-effectiveness and agility.  

However, since this approach typically produces a highly 
concurrent system, dangers lurk such as deadlocks and race-
conditions. 

I shall illustrate this with a worked example of an 
automated insurance claims payment system which may 
exhibit a bug where a claim can potentially be paid out 
twice.  I shall use the CSP (Communicating Sequential 
Processes) formal modelling language to prove some results 
about this bug and how to fix it.  

II. CASE STUDY: AUTOMATED INSURANCE CLAIMS PAYMENT 

SYSTEM 

Let us now consider a microservices implementation of an 
automated insurance claims payment system.  This is based on 
a real prototype system that I recently helped to develop for 
the London Insurance Market. 

The system incorporates an element of artificial 
intelligence which could result in a claim being paid before 
the policy owner has even become aware of having suffered a 
loss. For example, consider a wildfire being reported in a 
region of California where an insurance company provides 
property cover.  The payment system would be alerted of the 
nature and location of the event. It would then automatically 
check for any properties in the vicinity for which it provides 
insurance cover.  For each such property it would then request 
an intelligence service to estimate the level of loss 
automatically, by analysing satellite or drone images. Finally, 
the payment engine could decide to pay out on certain losses, 
even in the absence of any claim, to reduce potential legal or 
administrative costs.   

The claims system comprises four microservices: an 
‘alerting’ service, a ‘policy’ service, an ‘intelligence’ service 
and a ‘payment’ service.  Figure 1 illustrates the 
communication architecture: showing how the services invoke 
each other’s interface functions.  

 

III. CSP ANALYSIS 

In this section I shall be using the CSPM language to 
provide a formal definition of this microservices design and 
the FDR model-checking tool to establish whether it satisfies 
the following requirement: that the system can never pay out 
twice on the same claim. 

CSPM is a lazy functional language with built-in support 
for defining CSP processes. It also allows assertions to be 
made about the resulting CSP processes. FDR (Failures 

 

Figure 1.  Communication Diagram for Claims 
Payment System 



 

 

Divergences Refinement) is an automated checker which 
validates assertions about processes, defined using CSPM.  
Rather than providing a general tutorial for CSPM, I shall 
explain the various constructs as they are introduced in the 
process definitions below. 

A CSPM program defines a collection of stateless 
processes which communicate messages with each other over 
shared channels.  Let us start by defining some data types and 
channels for the messages that are transmitted in our 
insurance claims payment system when one of the 
microservices makes a call to a function of another 
microservice.  

 
datatype policy = Pol1 | Pol2 
datatype damage = Unknown | None | Partial | Total 
datatype stat = Paid | Unpaid 
 

The datatypes are deliberately defined in an abstract way, 
with just enough values to enable us to prove something 
useful about the system in question. (See reference [3] 
Section 15.2 for further details.)  So, for instance, we define 
the ‘policy’ datatype to have only two allowed values.  The 
main reason for doing this is because the FDR tool works by 
performing an exhaustive search of all possible states of the 
system being checked, so it is desirable to keep the size of the 
search space as small as possible so that checks can be 
performed in a reasonable amount of time.   
 
channel payout, requestIntelligence, setPaid: policy 
channel provideIntelligence: policy.damage 
channel getPolicyStatus: policy.stat 
channel alert 
 

Some of the channels have an aggregate datatype, e.g. 
channel ‘getPolicyStatus’ has type ‘policy.damage’. A single 
communication event on that channel contains both a policy 
value and a damage status.   

The prototype system that I recently worked on was 
found, during testing, to exhibit a bug where a claim might be 
paid twice if a message became stuck in a particular channel. 
I shall now present a series of potential designs and use the 
FDR tool to determine whether they are susceptible to this 
problem.  I aim to show how useful the CSP approach can be 
for diagnosing and fixing problems like this at design time, 
avoiding complex remediation issues post-implementation. 

A. Initial Design 

Let us start with an obviously bad design which is 
guaranteed to fail.   This very unrealistic example is included 
only for the purpose of illustrating how the overall approach 
works – of course we would never design a real system this 
way. 
 
IMPLEMENTATION1 = payout.Pol1  payout.Pol1  STOP 

 
Every process in CSPM is defined using an algebraic 

expression since the CSP language obeys mathematical laws. 
Here we are introducing a special predefined process, called 
‘STOP’, which represents a blocked process unable to do 
anything.  And we are also using the prefix operator  which 

connects an event to a process. This means that 
IMPLEMENTATION1 is a process which transmits a message 
Pol1 twice on channel payout and then stops and does nothing 
else.  In other words, it pays out twice on policy 1 for no 
reason at all! 

Now we will introduce a specification process that 
expresses the desirable behaviour that the payment system 
will pay out on policy 1 either once or not at all before it stops. 

SPEC = STOP    payout.Pol1  STOP 

A CSP operator which represents an internal choice 
between two different processes, written , has now been 
introduced. Here the specification means that the payment 
system makes some internal decision as to whether to pay the 
claim exactly once or not at all.  

To check whether our bad implementation meets this 
specification we ask FDR to check a refinement assertion as 
follows.   

assert SPEC FD IMPLEMENTATION1 

FDR proceeds to check all the behaviours of both systems 
to see whether the implementation exhibits any behaviour 
that is not possible for the specification, and it rapidly finds a 
counter example, as we would expect. 

B. A More Realistic Design. 

Now we shall create a more realistic design, yet still 
somewhat abstracted. This will be as a collection of 
communicating microprocesses, intelligently processing the 
claim, corresponding to the system described in section II. 

We first model the alerting process as sending out a 
sequence of four alert signals and then stopping. 

ALERTER = alert  alert  alert  alert  STOP 
 

Next we model the intelligence service as waiting to 
receive a request for information about a potential claim 
related to policy, making an internal decision, and then 
replying with an assessment of the loss: none, partial, total or 
unknown.  After which it returns to its initial state, as 
indicated by the recursive syntax. 
 
INTELLIGENCESYSTEM = requestIntelligence?x  (   
       provideIntelligence.x.UnknownINTELLIGENCESYSTEM   
    provideIntelligence.x.None INTELLIGENCESYSTEM   
    provideIntelligence.x.Partial  INTELLIGENCESYSTEM  
    provideIntelligence.x.TotalINTELLIGENCESYSTEM 
) 

 

Figure 2. Counter example found for the initial design. 



 

 

Note that we have introduced some extra syntax here to 
represent message input.  A process chan?xP(x) waits to 
receive a message x from another process along channel chan 
and then proceeds to execute process P(x). 

 
The payment system waits to be triggered by a message 

from the alerting service, and then checks each policy in turn 
using a subprocess which requests information from the 
intelligence service and pays the claim only if two conditions 
hold: that the claim has not already been paid and that the loss 
has been estimated as total by the intelligence service. 
 
PAYMENTSYSTEM =  
alert  CHECK(Pol1); CHECK(Pol2); PAYMENTSYSTEM 
 
CHECK(pol) =  
requestIntelligence.pol  provideIntelligence!pol?r  
getPolicyStatus.pol?s   
if r == Total and s == Unpaid then  
    payout.pol  setPaid.pol  SKIP 
else  
   SKIP 
 

We have now introduced another CSP operation for the 
sequential composition of two processes, written ‘;’.  We 
have also used the ‘if… then… else’ clause to specify 
conditional behaviour depending on the values of the process 
parameters.  

‘SKIP’ is another special process representing clean 
termination. ‘SKIP’ is subtly different from ‘STOP’ because it 
may be extended by sequential composition with another 
process, whereas ‘STOP’ is permanently blocked [7]. 

The policy service is implemented by simple ‘getter’ and 
‘setter’ functions provided for each policy, making use of the 
external choice operation, written , which allows an outside 
process to control which option is selected.   

POLICY(x, y) =  
(getPolicyStatus.x.y POLICY(x, y))   
(setPaid.x  POLICY(x, Paid)) 
 

We need to bring these processes together using parallel 
operators, which combine two process to create a new one.  
 
IMPLEMENTATION2 =   
(POLICY(Pol1, Unpaid)  |||  POLICY(Pol2, Unpaid) |||   
INTELLIGENCESYSTEM  |||   ALERTER)  
[| {|requestIntelligence, alert, getPolicyStatus,  
       provideIntelligence, setPaid|} |]  
PAYMENTSYSTEM  
 

We are using two different types of parallel operator here. 
The first type is called ‘interleaving’ and is written ‘|||’.  
This means parallel composition with no communication – 
each constituent process is free to proceed without hindrance 
from the other.  We use interleaving to combine all the 
independent satellite processes of the payment system, as 
shown in the communication diagram of figure 1. (Note that 

two copies of the policy process are included – one for each 
policy in our highly abstracted representation.) 

The second parallel operator is called ‘generalised 
parallel’ and is written ‘[| {|channel1, channel2, …|} |]’.  It 
specifies a list of channels on which both processes must 
synchronise to form the new process. We use generalised 
parallel to combine the payment process with the subnetwork 
of satellite processes described above.    

Henceforth, when framing assertions, we shall apply the 
‘hiding’ operator, written ‘\ {|channel1, channel2, …|}’, to 
the implementation process in order to conceal every event 
except payout.Pol1. This is so that we can examine its 
behavior regarding paying out claims against a specific policy 
and check whether it could ever pay the claim twice. 

 
assert SPEC FD 

IMPLEMENTATION2 \   
{|requestIntelligence, alert, getPolicyStatus,  
   provideIntelligence, setPaid, payout.Pol2|} 

On this occasion FDR reveals that the assertion has 
passed, and a claim will not be paid twice. 

C. Introducing a Message Bus 

In fact, the system that I implemented for the London 
Insurance Market had another component – a message bus. 
Whenever a claim was paid the policy status was updated 
asynchronously using the bus, with the aim of helping to 
improve claims processing efficiency.    

 
Let us now refine the abstract CSP design to incorporate 

the message bus. The new process definitions are as follows. 
  
CHECK'(pol) = 
requestIntelligence.polprovideIntelligence!pol?r 
getPolicyStatus.pol?s   
if r == Total and s == Unpaid then  
   payout.pol  SKIP  
else  
   SKIP  
 
MESSAGEBUS = payout?pol  setPaid.pol  MESSAGEBUS 
        
PAYMENTSYSTEM' =  
alert  CHECK'(Pol1); CHECK'(Pol2); PAYMENTSYSTEM' 
 
IMPLEMENTATION3 =  
(POLICY(Pol1, Unpaid) |||  POLICY(Pol2, Unpaid)  |||  
INTELLIGENCESYSTEM  |||   ALERTER)  
[|{|requestIntelligence, alert, getPolicyStatus,  
       provideIntelligence, setPaid|}|] 
(PAYMENTSYSTEM' [| {|payout|} |] MESSAGEBUS)  
            

 

Figure 3. Second design meets specification 



 

 

assert SPEC FD 
IMPLEMENTATION3 \   
{|requestIntelligence, alert, getPolicyStatus,  
   provideIntelligence, setPaid, payout.Pol2|} 

 
Following this modification,  FDR now reports that the 

specification fails. It provides evidence for this in the form of 

the shortest sequence of events that the system can perform 
which would trigger this problem. Introducing the message 
bus has resulted in a bug where a claim might be paid out 
twice if a message gets stuck on the bus and, in the meantime, 
the alerting service sends out a second alert. 

 
I observed this bug in the prototype system that I worked 

on, which was the trigger for commencing this analysis. It 
was very useful to determine how a well-meaning attempt to 
improve efficiency using a seemingly small modification to a 
microservices application could introduce such a serious 
defect.  Taking out the message bus resolved the bug. 

IV. CONCLUSIONS 

For all its benefits, a significant complication of the 
microservices architecture is that it introduces additional 
concurrency into IT systems which could lead to unexpected 
problems if not sufficiently well understood. 

By using a formal modelling language and proof tool, we 
can detect such problems at the design stage and avoid having 
to fix expensive mistakes later. 

I have shown how the CSP language and associated 
refinement tool, FDR, may be used in this way, by working 
through the specific example of an automated insurance 
claims payment system.   

The model-checking approach necessitated creating 
simplified abstract datatypes and processes compared with the 
actual system being designed, in order to keep the size of the 
state space being checked manageable.  Using this approach 
effectively requires being able to judge how far one might go 
with abstraction: having just enough data values and process 
instances to enable us to prove something useful about the 
system in question.   
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Figure 4.  Introducing message bus introduces bug 


