
EasyChair Preprint
№ 5390

Designing and Verifying Microservices Using
CSP

Jeremy Martin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 25, 2021

2021 IEEE Concurrent Processes Architectures and Embedded Systems Virtual Conference ©2021 IEEE

Designing and Verifying Microservices Using CSP

Jeremy M. R. Martin
School of Computing

University of Buckingham
MK18 1EG

United Kingdom
computing@buckingham.ac.uk

Abstract— Microservices Architecture is a popular pattern
used for building complex IT systems in an incremental,
sustainable, and scalable fashion. However, compared with
traditional monolithic solution architectures, it introduces a
higher degree of concurrency which might result in subtle bugs
arising, such as race conditions, deadlocks, and lack of data
consistency. I shall illustrate this using a worked example of an
automated insurance claims payment service which exhibits a
bug whereby a particular claim might be settled twice. I shall
use the CSP formal modelling language and the FDR refinement
checker to prove some results about this bug and how to fix it.

Keywords— Microservices, Concurrency, Race Conditions,
Model Checking, CSP.

I. INTRODUCTION

Microservices architecture [1] is a modern flavour of
Communicating Sequential Processes [2, 3], based on fine-
grained web services and lightweight communication
protocols. It represents a fundamental shift in solution delivery
practice away from building complex, multi-tiered monoliths.
Its main principles are as follows:

1. An IT system is delivered as a set of loosely coupled
web services.

2. Each service implements a specific business
capability.

3. Services can be developed independently from each
other, potentially by different teams using different
programming languages.

4. Communication between services uses technology
agnostic protocols [3].

5. Microservices are small, so that they are suitable for
a ‘continuous delivery’ engineering approach.

New business requirements can be addressed by making
localised changes to individual self-contained microservices,
offering cost-effectiveness and agility.

However, since this approach typically produces a highly
concurrent system, dangers lurk such as deadlocks and race-
conditions.

I shall illustrate this with a worked example of an
automated insurance claims payment system which may
exhibit a bug where a claim can potentially be paid out
twice. I shall use the CSP (Communicating Sequential
Processes) formal modelling language to prove some results
about this bug and how to fix it.

II. CASE STUDY: AUTOMATED INSURANCE CLAIMS PAYMENT

SYSTEM

Let us now consider a microservices implementation of an
automated insurance claims payment system. This is based on
a real prototype system that I recently helped to develop for
the London Insurance Market.

The system incorporates an element of artificial
intelligence which could result in a claim being paid before
the policy owner has even become aware of having suffered a
loss. For example, consider a wildfire being reported in a
region of California where an insurance company provides
property cover. The payment system would be alerted of the
nature and location of the event. It would then automatically
check for any properties in the vicinity for which it provides
insurance cover. For each such property it would then request
an intelligence service to estimate the level of loss
automatically, by analysing satellite or drone images. Finally,
the payment engine could decide to pay out on certain losses,
even in the absence of any claim, to reduce potential legal or
administrative costs.

The claims system comprises four microservices: an
‘alerting’ service, a ‘policy’ service, an ‘intelligence’ service
and a ‘payment’ service. Figure 1 illustrates the
communication architecture: showing how the services invoke
each other’s interface functions.

III. CSP ANALYSIS

In this section I shall be using the CSPM language to
provide a formal definition of this microservices design and
the FDR model-checking tool to establish whether it satisfies
the following requirement: that the system can never pay out
twice on the same claim.

CSPM is a lazy functional language with built-in support
for defining CSP processes. It also allows assertions to be
made about the resulting CSP processes. FDR (Failures

Figure 1. Communication Diagram for Claims
Payment System

Divergences Refinement) is an automated checker which
validates assertions about processes, defined using CSPM.
Rather than providing a general tutorial for CSPM, I shall
explain the various constructs as they are introduced in the
process definitions below.

A CSPM program defines a collection of stateless
processes which communicate messages with each other over
shared channels. Let us start by defining some data types and
channels for the messages that are transmitted in our
insurance claims payment system when one of the
microservices makes a call to a function of another
microservice.

datatype policy = Pol1 | Pol2
datatype damage = Unknown | None | Partial | Total
datatype stat = Paid | Unpaid

The datatypes are deliberately defined in an abstract way,
with just enough values to enable us to prove something
useful about the system in question. (See reference [3]
Section 15.2 for further details.) So, for instance, we define
the ‘policy’ datatype to have only two allowed values. The
main reason for doing this is because the FDR tool works by
performing an exhaustive search of all possible states of the
system being checked, so it is desirable to keep the size of the
search space as small as possible so that checks can be
performed in a reasonable amount of time.

channel payout, requestIntelligence, setPaid: policy
channel provideIntelligence: policy.damage
channel getPolicyStatus: policy.stat
channel alert

Some of the channels have an aggregate datatype, e.g.
channel ‘getPolicyStatus’ has type ‘policy.damage’. A single
communication event on that channel contains both a policy
value and a damage status.

The prototype system that I recently worked on was
found, during testing, to exhibit a bug where a claim might be
paid twice if a message became stuck in a particular channel.
I shall now present a series of potential designs and use the
FDR tool to determine whether they are susceptible to this
problem. I aim to show how useful the CSP approach can be
for diagnosing and fixing problems like this at design time,
avoiding complex remediation issues post-implementation.

A. Initial Design

Let us start with an obviously bad design which is
guaranteed to fail. This very unrealistic example is included
only for the purpose of illustrating how the overall approach
works – of course we would never design a real system this
way.

IMPLEMENTATION1 = payout.Pol1  payout.Pol1  STOP

Every process in CSPM is defined using an algebraic

expression since the CSP language obeys mathematical laws.
Here we are introducing a special predefined process, called
‘STOP’, which represents a blocked process unable to do
anything. And we are also using the prefix operator  which

connects an event to a process. This means that
IMPLEMENTATION1 is a process which transmits a message
Pol1 twice on channel payout and then stops and does nothing
else. In other words, it pays out twice on policy 1 for no
reason at all!

Now we will introduce a specification process that
expresses the desirable behaviour that the payment system
will pay out on policy 1 either once or not at all before it stops.

SPEC = STOP  payout.Pol1  STOP

A CSP operator which represents an internal choice
between two different processes, written , has now been
introduced. Here the specification means that the payment
system makes some internal decision as to whether to pay the
claim exactly once or not at all.

To check whether our bad implementation meets this
specification we ask FDR to check a refinement assertion as
follows.

assert SPEC FD IMPLEMENTATION1

FDR proceeds to check all the behaviours of both systems
to see whether the implementation exhibits any behaviour
that is not possible for the specification, and it rapidly finds a
counter example, as we would expect.

B. A More Realistic Design.

Now we shall create a more realistic design, yet still
somewhat abstracted. This will be as a collection of
communicating microprocesses, intelligently processing the
claim, corresponding to the system described in section II.

We first model the alerting process as sending out a
sequence of four alert signals and then stopping.

ALERTER = alert  alert  alert  alert  STOP

Next we model the intelligence service as waiting to
receive a request for information about a potential claim
related to policy, making an internal decision, and then
replying with an assessment of the loss: none, partial, total or
unknown. After which it returns to its initial state, as
indicated by the recursive syntax.

INTELLIGENCESYSTEM = requestIntelligence?x  (
 provideIntelligence.x.UnknownINTELLIGENCESYSTEM
  provideIntelligence.x.None INTELLIGENCESYSTEM
  provideIntelligence.x.Partial  INTELLIGENCESYSTEM
  provideIntelligence.x.TotalINTELLIGENCESYSTEM
)

Figure 2. Counter example found for the initial design.

Note that we have introduced some extra syntax here to
represent message input. A process chan?xP(x) waits to
receive a message x from another process along channel chan
and then proceeds to execute process P(x).

The payment system waits to be triggered by a message

from the alerting service, and then checks each policy in turn
using a subprocess which requests information from the
intelligence service and pays the claim only if two conditions
hold: that the claim has not already been paid and that the loss
has been estimated as total by the intelligence service.

PAYMENTSYSTEM =
alert  CHECK(Pol1); CHECK(Pol2); PAYMENTSYSTEM

CHECK(pol) =
requestIntelligence.pol  provideIntelligence!pol?r 
getPolicyStatus.pol?s 
if r == Total and s == Unpaid then
 payout.pol  setPaid.pol  SKIP
else
 SKIP

We have now introduced another CSP operation for the
sequential composition of two processes, written ‘;’. We
have also used the ‘if… then… else’ clause to specify
conditional behaviour depending on the values of the process
parameters.

‘SKIP’ is another special process representing clean
termination. ‘SKIP’ is subtly different from ‘STOP’ because it
may be extended by sequential composition with another
process, whereas ‘STOP’ is permanently blocked [7].

The policy service is implemented by simple ‘getter’ and
‘setter’ functions provided for each policy, making use of the
external choice operation, written , which allows an outside
process to control which option is selected.

POLICY(x, y) =
(getPolicyStatus.x.y POLICY(x, y)) 
(setPaid.x  POLICY(x, Paid))

We need to bring these processes together using parallel
operators, which combine two process to create a new one.

IMPLEMENTATION2 =
(POLICY(Pol1, Unpaid) ||| POLICY(Pol2, Unpaid) |||
INTELLIGENCESYSTEM ||| ALERTER)
[| {|requestIntelligence, alert, getPolicyStatus,
 provideIntelligence, setPaid|} |]
PAYMENTSYSTEM

We are using two different types of parallel operator here.
The first type is called ‘interleaving’ and is written ‘|||’.
This means parallel composition with no communication –
each constituent process is free to proceed without hindrance
from the other. We use interleaving to combine all the
independent satellite processes of the payment system, as
shown in the communication diagram of figure 1. (Note that

two copies of the policy process are included – one for each
policy in our highly abstracted representation.)

The second parallel operator is called ‘generalised
parallel’ and is written ‘[| {|channel1, channel2, …|} |]’. It
specifies a list of channels on which both processes must
synchronise to form the new process. We use generalised
parallel to combine the payment process with the subnetwork
of satellite processes described above.

Henceforth, when framing assertions, we shall apply the
‘hiding’ operator, written ‘\ {|channel1, channel2, …|}’, to
the implementation process in order to conceal every event
except payout.Pol1. This is so that we can examine its
behavior regarding paying out claims against a specific policy
and check whether it could ever pay the claim twice.

assert SPEC FD

IMPLEMENTATION2 \
{|requestIntelligence, alert, getPolicyStatus,
 provideIntelligence, setPaid, payout.Pol2|}

On this occasion FDR reveals that the assertion has
passed, and a claim will not be paid twice.

C. Introducing a Message Bus

In fact, the system that I implemented for the London
Insurance Market had another component – a message bus.
Whenever a claim was paid the policy status was updated
asynchronously using the bus, with the aim of helping to
improve claims processing efficiency.

Let us now refine the abstract CSP design to incorporate

the message bus. The new process definitions are as follows.

CHECK'(pol) =
requestIntelligence.polprovideIntelligence!pol?r
getPolicyStatus.pol?s 
if r == Total and s == Unpaid then
 payout.pol  SKIP
else
 SKIP

MESSAGEBUS = payout?pol  setPaid.pol  MESSAGEBUS

PAYMENTSYSTEM' =
alert  CHECK'(Pol1); CHECK'(Pol2); PAYMENTSYSTEM'

IMPLEMENTATION3 =
(POLICY(Pol1, Unpaid) ||| POLICY(Pol2, Unpaid) |||
INTELLIGENCESYSTEM ||| ALERTER)
[|{|requestIntelligence, alert, getPolicyStatus,
 provideIntelligence, setPaid|}|]
(PAYMENTSYSTEM' [| {|payout|} |] MESSAGEBUS)

Figure 3. Second design meets specification

assert SPEC FD
IMPLEMENTATION3 \
{|requestIntelligence, alert, getPolicyStatus,
 provideIntelligence, setPaid, payout.Pol2|}

Following this modification, FDR now reports that the

specification fails. It provides evidence for this in the form of

the shortest sequence of events that the system can perform
which would trigger this problem. Introducing the message
bus has resulted in a bug where a claim might be paid out
twice if a message gets stuck on the bus and, in the meantime,
the alerting service sends out a second alert.

I observed this bug in the prototype system that I worked

on, which was the trigger for commencing this analysis. It
was very useful to determine how a well-meaning attempt to
improve efficiency using a seemingly small modification to a
microservices application could introduce such a serious
defect. Taking out the message bus resolved the bug.

IV. CONCLUSIONS

For all its benefits, a significant complication of the
microservices architecture is that it introduces additional
concurrency into IT systems which could lead to unexpected
problems if not sufficiently well understood.

By using a formal modelling language and proof tool, we
can detect such problems at the design stage and avoid having
to fix expensive mistakes later.

I have shown how the CSP language and associated
refinement tool, FDR, may be used in this way, by working
through the specific example of an automated insurance
claims payment system.

The model-checking approach necessitated creating
simplified abstract datatypes and processes compared with the
actual system being designed, in order to keep the size of the
state space being checked manageable. Using this approach
effectively requires being able to judge how far one might go
with abstraction: having just enough data values and process
instances to enable us to prove something useful about the
system in question.

REFERENCES

[1] Sam Newman, “Building Microservices: Designing Fine-Grained
Systems,” O’Reilly, ISBN: 978149195 0357, 2014.

[2] C.A.R. Hoare, “Communicating Sequential Processes,” Prentice-
Hall, 1985.

[3] A.W. Roscoe, “The Theory and Practice of Concurrency,”
Prentice-Hall, 1998.

[4] Leonard Richardson and Sam Ruby, “RESTful Web Services,”
O’Reilly, 2007.

[5] T. Gibson-Robinson, P. Armstrong, A, Boulgakov and A. W.
Roscoe. “FDR3: a parallel refinement checker for CSP,” Int J Softw
Tools Technol Transfer 18, 149–167 2016.

[6] J.B. Scattergood, “Tools for CSP and Timed CSP,” Oxford
University D.Phil thesis, 1998.

[7] Thomas Gibson-Robinson and Michael Goldsmith, “The
Meaning and Implementation of SKIP in CSP”, Proceedings of
Communicating Process Architectures 2013, ISBN 978-0-9565409-7-
3. 2013.

Figure 4. Introducing message bus introduces bug

