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Abstract

Bounded model checking (BMC) is an efficient formal verification technique which al-
lows for desired properties of a software system to be checked on bounded runs of an
abstract model of the system. The properties are frequently described in some temporal
logic and the system is modeled as a state transition system. In this work we propose
a novel counting logic, LC , to describe the temporal properties of client-server systems
with an unbounded number of clients. We also propose two dimensional bounded model
checking (2D-BMC) strategy that uses two distinguishable parameters, one for execution
steps and another for the number of tokens in the net representing a client-server system,
and these two evolve separately, which is different from the standard BMC techniques in
the Petri Nets formalism. This 2D-BMC strategy is implemented in a tool called DC-
ModelChecker which leverages the 2D-BMC technique with a state-of-the-art satisfiability
modulo theories (SMT) solver Z3. The system is given as a Petri Net and properties spec-
ified using LC are encoded into formulas that are checked by the solver. Our tool can also
work on industrial benchmarks from the Model Checking Contest (MCC). We report on
these experiments to illustrate the applicability of the 2D-BMC strategy.

Keywords: Bounded Model Checking, SAT solvers, Petri Nets, Counting Logics, Tem-
poral Logics

Introduction: Model checking [1] is a formal verification technique that allows for desired
behavioral properties of a given system to be verified based on a suitable model of the system
through systematic inspection of all states of the model. The major challenge of model checking
is that the state space of systems might be infinite. In BMC [3, 4, 2] this challenge is overcome
by assuming a predetermined bound on the runs, and all possible paths are explored. BMC has
been successfully used in the industry by restricting the model checking problem to a bounded
problem and verifying properties on bounded runs of the system. This technique uses a single
parameter for execution steps, to unfold the system behaviour. Primarily, BMC is used as a
bug finding approach in large systems. In this work, we examine BMC of client-server systems
with an unbounded number of clients which we represent as Petri Nets. Our key contribution
is the extension to standard BMC technique, the two dimensional bounded model checking
(2D-BMC) strategy [6], where the system is unfolded along two distinguishable parameters,
one for execution steps of the net called λ and another for the number of tokens in the net
called κ and these two evolve separately.
A Case Study: The Autonomous Parking System (APS) is the running example to demon-
strate the 2D-BMC strategy. We can model the interactions between the parking system and
the vehicle requesting parking space by state-transition systems as shown in Fig. 1 and Fig. 2.
Consequently, this can be composed into a Petri Net as in Fig. 3. In order to express tempo-
ral and counting properties, we require a logic that is more expressible than Linear Temporal
Logic (LTL), the Model Checking Contest (MCC) [5] uses LTL with counting. For our case
study, we use the counting temporal logic LC which is LTL with counting for client-server
systems. Consider a system M represented as a Petri Net in Fig. 3 for which we want to
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verify the following LC property φ which states that there is always at least one token in ei-
ther place p1 or p7 or p8. Based on the structure of the net we expect φ to hold in Fig. 3.
φ = G((#x > 0)p1(x)|(#x > 0)p7(x)|(#x > 0)p8(x)).
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Figure 1: State diagram of
APS(server)
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Figure 2: State diagram of
vehicle (client)
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Figure 3: Petri Net
for APS

Assume the input bound 100. As shown in Fig. 4 the parameters λ and κ denote the execution
steps and the number of tokens in the net respectively.

λ

κ

[M, ψ](0,0)

[M, ψ](1,0)

[M, ψ](2,0)

··
·

[M, ψ](0,1)

[M, ψ](1,1)

··
·

[M, ψ](0,2)

· · ·

· · ·

Figure 4: Unfolding of the encoded for-
mula [M, ψ](λ,κ) with respect to λ (exe-
cution steps) and κ (number of tokens)

Our tool negates the property ψ = ¬φ and encodes
the system M against the property ψ for the param-
eters k = 0, λ = 0, κ = 0, given by the formula
[M, ψ](0,0). Next, it checks whether this formula is
satisfiable by feeding it to the solver. If the above for-
mula is satisfiable at k = 0, the property φ is violated
and we can stop our search since we have obtained
a counterexample. However, if it is not satisfiable
we increment k and consider the next micro-step.
For a given k each combination of λ and κ such that
k = λ + κ constitutes a micro-step. For k = 1, there
are two micro steps: λ = 0, κ = 1 where the formula
is encoded as [M, ψ](0,1) and λ = 1, κ = 0 where the
formula is encoded as [M, ψ](1,0). The order in which
the micro-steps are considered is shown in Fig. 4. In
practice, for the property φ, we search until the given
input bound. As expected, for the given model and
bound 100 (i.e, when parameter k reaches 100) it is
observed that a counterexample is not found, hence
we terminate. This means that the property holds for all traces of the model up to the length
100.
Table 5 shows results of testing using a model from MCC with the number of sat and unsat prop-
erties and execution time (in seconds) for DCModelChecker as well as the state-of-the-art model
checking tool ITS-Tools [7]. Our tool was executed with the bound 1 whereas, ITS-Tools was ex-
ecuted with a timeout of 600 seconds.

Model Name Property Category
DCModelChecker ITS-Tools

sat unsat time(s) sat unsat time(s)

Dekker-PT-010

LTL Cardinality 3 13 11.219 4 12 15.7
LTL Fireability 2 14 10.353 2 14 18.372

Reachability Cardinality 0 16 10.497 5 11 3.45
Reachability Fireability 0 16 11.628 4 12 6.061

Figure 5: Results of comparative testing

For LTL Fireability and
LTL Cardinality, DCMod-
elChecker takes compara-
tively less execution time.
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