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Abstract—Fractal behavior and long-range dependence are widely observed in measurements and characterization of traffic 
flow in high-speed computer networks of different technologies and coverage levels. This paper presents the results obtained 
when applying fractal analysis techniques on a time series obtained from traffic captures coming from an application server 
connected to the Internet through a high-speed link. The results obtained show that traffic flow in the dedicated high-speed 
network link have fractal behavior when the Hurst exponent is in the range of 0.5, 1, the fractal dimension between 1, 1.5, and 
the correlation coefficient between –0.5, 0. Based on these results, it is ideal to characterize both the singularities of the traffic 
and its impulsiveness during a fractal analysis of temporal scales. Finally, based on the results of the time series analyses, the 
fact that the traffic flows of current computer networks exhibit fractal behavior with a long-range dependency is reaffirmed. 

Index Terms—Fractal dimension (D), High-speed computer networks, Hurst exponent (H), Long-range dependence (LRD). 

——————————      —————————— 

1 INTRODUCTION
RAFFIC flow are useful for having a under-standing 
of traffic on a computer network, providing a meas-

urement of traffic and to know what hosts are talking on 
the network, with details of addresses, volumes and types 
of traffics and protocols. This knowledge can be useful for 
troubleshooting, detecting security incidents, and plan-
ning and network design [1]. 

Performance traffic models require to be accurate and 
to have the ability to capture the statistical characteristics 
of the actual traffic on the network. Many traffic models 
have been developed based on traffic measurement data. 

It is necessary to analyse network traffic the commu-
nications on computer network to find evidence of securi-
ty threat invasion; to decide the Quality of Service level; 
and others issues such as data transmitted through out-
dated switches, routers, servers, and Internet exchanges 
that can cause bottlenecks. The result is network conges-
tion. If it is detected suspicious traffic, the team is alerted 
to the issue in real-time. 

High-speed computer networks provide high-speed 
links iff economy of scale; bursty, short holding time traf-
fic; shared-switch distributed-media, no shared-media 
access; speed-distance-transmission size tradeoff. 

In computer networking, the term link aggrega-tion re-
fers to various methods of combining multi-ple network 
connections in parallel in order to increase throughput 
beyond what a single connection could sustain, and to 
provide redundancy in case one of the links should fail. 

Time-series analysis is employed in a network perfor-
mance monitoring architecture, to provide services for 
event triggering, alarming, and statistical auditing. One 
such application is anomaly detection, which can be uti-
lized for performance and security management. Fore-
casting is also a relevant exercise, where the history of the 

network behavior and usage is exploited to predict future 
performance [2]. 

Fractal behavior and Long-range dependence (LRD) 
are observed in many phenomena, such as in nature [3]–
[8], in financial time series [9], in communication system 
traffic [10]–[14], and in heart rate time series [15], [16]. 
This article characterizes the time-series dynamics of 
traffic flows captured from a high-speed dedicated link 
connecting an application server and the Internet, by 
applying fractal analysis considering the following test: 
Detrended Fluctuation Analysis (DFA), Power Spectral 
Analysis (PSA), and Time-Scale Analysis (TSA). 

There are two modeling streams: a conventional one, 
which bases its assumptions on generally Markov pro-
cesses, and another self-similar one, which accepts the 
LRD as an inherent singularity of data traffic flows. 

The research related to traffic self-similarity can be 
classified into four categories: measurement-based traffic 
modelling, physical modelling, queuing analysis and 
traffic control as well as resource provisioning [17]. 

In [18] reports the results from the analysis of the com-
puter network traffic using the statistical self-similarity 
factor. The analyzed traffic has a self-similar nature to the 
degree of self-similarity in the range of 0.5 to 1. 

Fractal behavior and long-term dependence are widely 
observed in the measurements and characterization of 
traffic flow in high-speed computer networks of different 
technologies and coverage levels [1]. It is proposes to 
obtain the fractal behavior of network traffic data based 
on topology, to reduce the complexity in the network [19]. 

Several approaches have explored to calculate the frac-
tal dimension of a subset with respect to a fractal struc-
ture. A discrete models of fractal dimension to explore the 
complexity of discrete dynamical systems [20]. 

A simple and fast technique of multifractal traffic 
modeling has been proposed and a method of fitting 
model to a given traffic trace. A comparison of simulation 
results obtained for an exemplary trace, multifractal 
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model and Markov Modulated Poisson Process (MMPP) 
models has been performed [15], [21]. 

In the paper presents the results obtained when apply-
ing fractal analysis techniques on a time series found 
from traffic captures coming from an application server 
connected to the Internet through a high-speed link. 

The data analyzed correspond to the size of traffic 
frames of the central online applications server at Univer-
sidad de Santiago de Chile, which serves 20000 users 
connected online through the internet. This article ana-
lyzes two different types of traffic flows, SERV-1 and 
SERV-2. SERV-1 is the temporary series of frame sizes 
that are transferred to the server from the Internet and 
SERV-2 is the temporary series of frame sizes that are 
transferred from the server to the Internet. These traffic 
flows play an important role in determining the degree of 
smooth access to the corresponding application server 
and therefore the Quality of Service provided to users 
and the Quality of Experience that users perceive [22], 
[23]. 

The traffic bursts over extensive periods reveal that the 
traffic flows under study are identified with a completely 
different nature from those predicted by a classic Poisson 
model related to the traffic flows of the old telephone 
system. For this reason, this research focuses on applying 
a broad battery of fractal analysis that reaffirms that traf-
fic flows in current high-speed computer networks are 
fractal with LRD, regardless of their sources such as de-
vice requesting services [24]. This research is about a 
high-speed dedicated link and an on-line application 
server. It should be noted that the time series come from 
the capture of packets on said link and therefore can be 
generalized in terms of the presence of traffic from both 
the Internet and from within the corporate network of the 
Universidad de Santiago de Chile. 

This paper presents the results obtained when apply-
ing fractal analysis techniques on a time series obtained 
from traffic captures coming from an application server 
connected to the Internet through a high-speed link. The 
results obtained show that traffic flow in the dedicated 
high-speed network link have fractal behavior. Based on 
these results, it is ideal to characterize both the singulari-
ties of the traffic and its impulsiveness during a fractal 
analysis of temporal scales. Based on the results of the 
time series analyses, the traffic flows exhibit fractal be-
havior with a long-range dependency. 

The article is structured as follows. First, we present 
the general aspects of Fractal Processes (FP), followed by 
the key aspects of DFA, PSA, and TSA. Then, the main 
results obtained are presented and their validity is dis-
cussed. Finally, the main aspects of the research and the 
conclusions are presented. 

2 THEORETICAL FOUNDATION 
2.1 Fractal Processes 
A Fractal Processes (FP) is characterized by having a non-
integrer dimension, D. Also, a FP has two characteristics 
inherent to its phenomemology 1) a FP is like itself even 

at different observation scales. This property is known as 
invariance at the scale. The Self-similarity exists when the 
process exhibits a similar behavior under isotropic scaling 
and 2) a FP consists of a complex internal structure and 
shows the same behavior even at different magnification 
scales, i.e. FP has a self-similar hierarchical structure [25]. 

Due to the scale invariance, there is a power-law be-
havior between two parameters in a FP that is governed 
by the relationship f (x)  xc, where f (x) is a function of a 
study object and c is a constant. 

In [20] they estimate D based on the power-law behav-
ior expressed by the above expression. Moreover from the 
definition of fractional Brownian motion (fBm), these fBm 
processes must be governed by [26] 
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where 0< H < 1 is the Hurst exponent of the fBm process. 

Additionally, BH(t) satisfies 
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From (4) the correlation coefficient,, between the BH(t) 

successive increments can be written in the form 
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where 
 
 If t  t0, then BH(t  t0), 
 If t  t, then BH(t  t)  BH(t), and 
 BH(t)  BH(t), for all t. 
 

Therefore, we have 
 
    .H2 12 1  (6) 
 

Then, be y(t) a FP with a Hurst exponent given by H 
and then for an arbitrary process with 
 
 ( ) ( ),   ,Hy ct c y t c 0  (7) 
 
is also a FP with the same statistical distributions than the 
y(t) process, and in which it is verified that D is given by 
the expression [20] 
 
   .D H2  (8) 
 

Table 1 shows the relationships between H, D, , and 
FP behavior. 



 

 

TABLE 1 
INTERVALS OF H AND D VALUES AND THEIR ASSOCIATED 

PROCESSES 

H D (8)  (6) FP Behavior 
> 0.5 < 1.5 Positive Persistent 
 0.5  1.5 Random fBm 
< 0.5 > 1.5 Negative Non-persistent 

2.2 Power-Spectral Analysis (PSA) 
Time series can be described in the time-domain by 

x(t), but can also be described in the frequency domain by 
Fourier Transform (FT), X(), where  angular frequency. 

The autocorrelation function of a non-stationary time 
series x(t), is given by 
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The FT of (9) is the same as X()2 therefore the power-

spectral density (PSD), S(), can be written as 
 

  ( ) ( ) .S X
2

 (10) 

 
Using the Wiener-Khintchine theorem, the time series 

PSD can be expressed as the FT of (9) as follows 
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The power-spectral function provides an important 

parameter to characterize persistence in time series. For a 
fractal time series, its power-spectral function [20] obeys 
the frequency-based power-law behavior and is given by 
the expression 
 
   ( ) ,   with , ,..., / ,m mS m N1 2 2  (12) 
 
where m  n/N; N the length of the time series and   the 
spectral-exponent that characterizes series persistency. 

The relationship between , H, and D is given by [20] 
 
      .H D2 1 5 2  (13) 
 

This expression allows to obtain the value of β using 
the least-squares method on the adjustment curves of H 
or D. 

The PSA method only provides the global value of H 
from the FT using a harmonic function. However, it is 
traditional in fractal analysis for its simplicity to obtain 
based on an estimate of the real H value [27]. 

2.3 Detrended Fluctuation Analysis (DFA) 
The DFA was widely used to determine the scaling prop-
erties of self-similar processes and to determine LRD on 
noisy and non-stationary time series. In general, this type 
of analysis is used to estimate the fluctuation of the RMS 
(Root-Mean-Square) of series with and without a trend 

(this latter case is a variant of the RMS analysis of the 
processes based on the theory of random walks [28]), and 
also because it can detect LRD.  

The mathematical form of a time series Y(i), is given 
according to [29] by 
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where xk is the kth sequence of the time series of length N, 
and x is its average. 

Then the series Y(i) given by (14) is regrouped in Ns  
Int (Ns1) on non-overlapping segments of equal length, s, 
as shown in Fig. 1, a process which is also known as ag-
gregation. 
 

 
Fig. 1. Aggregation process of non-overlapping segments for a time 
series. 

As it often happens, the lengths of the time series are 
not a multiple of the time-scale, s, so a short part of it 
remains at the end of the aggregate series. 

To solve this problem, the same procedure is repeated 
but this time starting from the opposite end and analyz-
ing the part that will remain at the beginning of the ag-
gregate series; therefore, the total number of segments is 
2Ns. 

After the aggregate time series composed of Ns seg-
ments of length s have been obtained, an optimal adjust-
ment line is projected using the least-squares method in 
each series to obtain the local tendency of each segment 
that composes it. 

The deviation of each time series is obtained from the 
subtraction of the line of best fit of the minimum squares 
and the variance which is calculated by the expression 
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for each segment v, with v  1,…, Ns, and 
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for each segment v  Ns1,…, 2Ns, where yv(i) corresponds 
to the best adjustment line obtained by using the least-
squares method in segment v. 

The last step of the DFA analysis is to obtain the aver-
age of all segments of each time series disaggregated to 
find the function given by 
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where F(s) increases as s increases and is defined only for 
segments of length s  4. Therefore, the previous steps are 
repeated several times to obtain a data set of F(s) versus s, 
where the slope of the curve obtained from that graph 
represents the scaling exponent  if the series is correlat-
ed according to a long-range power-law. 

Therefore, F(s) and s are related by the power-law 
 
 ( ) .F s s  (18) 
 

Table 2 relates the scaling exponent  to different types 
of processes. 

TABLE 2 
RELATIONSHIP BETWEEN  AND PROCESS TYPES 

 Interval Process Type 
0 <  <0.5 Power-law anti-correlation 
  0.5 White noise 

0.5 <  < 1 Long-range power-law correlation 
  1 1/f process 
 > 1 fBm process 

2.4 Time-Scale Analysis (TSA) 
The methods presented in the previous sections are based 
on the development of a linear log-log type graph that 
only outputs a unique H value. These methods are insuf-
ficient when estimating the locally time-dependent Hurst 
exponent, H(t) [30], [31]. 

The Wavelet Transform approach results in a powerful 
mathematical tool that serves for both the hierarchy of a 
FP and spatial distribution of the singularities of the frac-
tal measurements. In this research only the Continuous 
Wavelet Transform (CWT) is considered for temporal 
scales analysis to estimate H(t) [32]. 

It should be noted that in the literature H is a global 
(also called general) Hurst exponent, and H(t) as a local 
Hurst exponent [33], [34]. 

So, the CWT is defined as [35] 
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where * is the conjugate complex of  function, that for 
different observations scales is defined as 
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where a is the scale-parameter and a    1. 

In this research the Morlet Wavelet is used for the TSA 
and its scalogram is defined as 
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where Ex is the energy of function x [36]. 

Therefore, a scalogram is an energy distribution func-

tion of a signal in a time-scale plane associated with a2dt 
da. Concerning the above, in general, any time series is a 
representation of a signal. Thus, considering time series 
with uniform H can be described as [37] 
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Applying CWT for x(t) in (22) 
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and the scalogram for this time series is given by [37] 
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Based on (24), it is possible to estimate H(t) and write 
H as follows 
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Thus, the TSA provides both H and H(t). 

Therefore TSA is a more powerful mathematical tool 
compared to PSA and DFA in FP analysis since most of 
traffic flow processes exhibit multifractal scaling behav-
iors and it is possible to characterize them with the fluc-
tuations of H described by H(t). 

3 FRACTAL ANALYSIS DEVELOPMENT 
3.1 Preliminary 
The test scenario is presented in the following figure 
 

 
Fig. 2. Network traffic testing scenario. 

3.2 Fractal Analysis 
The spectral exponent (), H, D, and  of the SERV-1 and 
SERV-2 time series estimated with the PSA method are 
tabulated in Table 3. It is emphasized that the spectral 
exponent is defined in (12) and is related to H and D by 
means (13); it stands out that  is related to H through (6). 
The results clearly show that the SERV-1 and SERV-2 
time series exhibit fractal behavior with LRD that agrees 
with the theory. 

To test the accuracy of the DFA algorithm which used 
in this research, the algorithm is used to calculate the 
scaling exponent of three known scaling exponent gener-
ated signals, wich are Brownian motion, persistence pow-
er-law, and anti-persistence power-law processes with H 
 0.50, H  0.80, and H  0.20 [37], respectively. 



 

 

The results are shown in Table 4. 
The results show that the scaling exponents obtained 

are consistent with the H for the three generated series, 
which verifies that the DFA method carried out in the 
fluctuation analysis without tendency is assertive to re-
produce results. 

The scaling exponent () of SERV-1 and SERV-2 series 
estimated with the DFA method are shown in detail in 
Table 5. 

The results show complete coherence with the theory 
estaments and that the behavior of the time series under 
study, responded to a fractal character with LRD trend. 
The experiment on the scaling exponent reflects that both 
series respond to a behavior of the fractal type with LRD. 

The scalogram allows H and H(t) to be estimated for 
SERV-1 and SERV-2 time series. The results applying the 
TSA method are summarized in Table 6. 
 

TABLE 3 
NUMERICAL EXPERIMENTS FOR SERV-1 AND SERV-2 TIME 

SERIES CONSIDERING H, D, , AND  
Time 

Series H D   

SERV-1 0.700.01 1.800.01 1.600.01 0250.01 
SERV-2 0.710.01 1.810.01 1.610.01 0.240.01 

 
TABLE 4 

 FOR DIFFERENT PROCESSES 

Time Series 
Type H  According to 

DFA Method  

Brownian Motion 0.50 1.20 0.10 
Persistence 
power-law 0.80 1.51 0.09 

Anti-persistence 
power-law 0.20 1.80 0.03 

 
TABLE 5 

 FOR SERV-1 AND SERV-2 TIME SERIES 
Time 

Series       
SERV-1 0.65 0.04 1.08 0.05 2.01 0.05 
SERV-2 0.64 0.03 1.07 0.05 2.00 0.04 

 
TABLE 6 

GLOBAL HURST EXPONENT, LOCAL HURST EXPONENT IN 
TERMS OF MINIMUM AND MAXIMUM VALUES, AND D FOR 

SERV-1 AND SERV-2 TIME SERIES 
Time 

Series H Min {H(t)} Max {H(t)} D 

SERV-1 0.32 0.49 1.48 1.68 
SERV-2 0.27 0.26 1.15 1.73 

 
From the results given in Tables 3, 4, 5 and 6, it is 

shown that the two time series under analysis (SERV-1 
that contains the frame sizes that are transferred to the 
server from the Internet and SERV-2 that contains the 
frame sizes that are transferred from the server to the 
internet) exhibit fractal characteristics with LRD. It is 
inferred that the increase of samples for any of both series 
as a result of the extension of the observation time will 

not result in a modification of their nature, given that 
these two series have a behavior with LRD. 

Even when the FT uses harmonic basis functions and 
processes non-stationary signals, the PSA is a good way 
to start with the initial measurements of non-stationary 
time series that are suspected to have a fractal nature: as 
is the case of the time series presented in this research. 

Two of the main results obtained are: 
1) H  0.70  0.01 in SERV-1 time series. Result that 

clearly reveals fractal character with LRD trend. 
2) H  0.67  0.01 in SERV-2 time series. Result that 

clearly reveals fractal character with LRD trend. 
It is interesting to examine the results of the fluctuation 

analysis without tendency since they show that both time 
series present the crossing phenomenon characteristic 
described in [13]. 

The origin of this phenomenon can be explained by the 
fact that there are very short periods between a service 
request and the server's response. This generates a time 
series for a highly fluctuating uncorrelated process. As 
time passes, the signals show fluctuations that tend to 
soften, reflecting the dynamics of every current telecom-
munications system, resulting in an exponent   1 asso-
ciated with a process 1/f. 

The results of TSA show that the considered time se-
ries are constitutive of extremely complicated systems 
that present a time-dependent Hurst exponent which 
ranges from negative to positive values 0.50  H(t)  1.50 
for the SERV-1 series and 0.30  H(t)  1.15 for the 
SERV-2 series. It is further noted that H(t) for the SERV-1 
series has greater complexity than H(t) for the SERV-2 
series. This difference can explain the following; for 
SERV-1, the data comes from thousands of points dis-
tributed on the internet to a server entry port, which cre-
ates a bottleneck in the server gateway. Also, there is an 
interaction between incoming signals and outgoing sig-
nals on the gateway during the period when the input 
signal is overloaded and causes network congestion. 
However, the SERV-1 series turns out to be more regular 
since the data is transferred from the main gateway to 
thousands of points distributed on the internet, this trans-
fer is simpler compared to the case of incoming traffic. 

Since H(t) for the series under study are outside the 
range 0.50  H(t)  1.50, they are very complicated sys-
tems that merit independent study to obtain a better de-
scription, both quantitative and qualitative. 

Notwithstanding the above, the TSA provides valuable 
information in comparison with the PSA and the DFA 
allows us to study the behavior of the complex system 
considered recorded data of traffic flows from and to the 
internet from an online application server. 

5 CONCLUSION 
In this paper has been presented the application fractal 
analysis techniques on a time series obtained fram traffic 
captures coming from an application server connected to 
the Internet through a high-speed link. The results ob-
tainede show that traffic flow in the dedicated high-speed 



 

 

network link have fractal behavior since the Hurst expo-
nent is in the range of 0.5, 1, the fractal dimension be-
tween 1, 1.5, and the correlation coefficient between —0.5, 
0. Based on these results, it is ideal to characterize both 
the singularities of the traffic and its impulsiveness dur-
ing a fractal analysis of temporal scales. 

A detailed analytical study on long-range fractality 
and dependence for two traffic time series is presented. 
The time series SERV-1 and SERV-2 are examined by 
three methods: PSA, DFA, and TSA. 

It is made clear that there are other techniques to ex-
amine LRD that are not addressed in this research, such 
as dispersion analysis and maximum likelihood estima-
tors. 

The main results are summarized as follows: 
1) The PSA reports that the series are fractal and have 

LRD given that the following conditions: 
 : 1 <  < 2, 
 H: 0.5 < H < 1, 
 : –0.5 <  < 0, and 
 D: 1 < D < 2. 

2) The analysis of fluctuation without trend shows 
that the series presents the characteristic crossing 
phenomenon of FP with LRD. 

3) The TSA reports that the time series under study, 
SERV-1 and SERV-2, present a time-dependent 
Hurst exponent, outside the range (0, 1). Therefore, 
these time series require an advanced quantitative 
as well as qualitative description to improve the 
understanding of the series of internet traffic com-
ing from a high demand environment as it is an 
online application server, it is recorded that: 
 H(t): 0.5  H(t)  1.5, 
 H: 0.5 < H < 1.0, and 
 D: 1 < D < 2. 

Finally, fractality and LRD are presented in the studied 
series that represent traffic captures from a high-speed 
dedicated link aggregation. 
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