ﬁ EasyChair Preprint

Ne 623

LSTM Neural Network for Textual Ngrams

Shaun D’'Souza

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 10, 2018

LSTM Neural Network for Textual Ngrams

Shaun C. D’Souza!

Accenture
shaun.c.dsouza@accenture.com

Abstract

Cognitive neuroscience is the study of how the human brain functions on tasks like
decision making, language, perception and reasoning. Deep learning is a class of machine
learning problems that use neural networks. They are designed to model the responses
of neurons in the human brain. Learning can be supervised or unsupervised. Ngram
token models are used extensively in language prediction. Ngrams are probabilistic models
that are used in predicting the next word or token. They are a statistical model of word
sequences or tokens and are called Language Models or Lms. Ngrams are essential in
creating language prediction models. We are exploring a broader sandbox ecosystems
enabling for Al. Specifically, around Deep learning applications on unstructured content
form on the web.

Keywords— Deep learning, Cognitive, LSTM, Neural network, Ngrams

1 Introduction

Ngram models work on the basis that we can predict the next token given the previous n-1 tokens.
We use the following notation to compute the probability of a word sequence. In order to represent
a random variable X taking on the value y we use P(X = “y”) or the simplification P(y). Now, to
compute the joint probability of a sequence of words wi...w, we use P(w1,wa, ..., wy).

We compute the probability of an entire sequence of word by decomposing this probability using

the chain rule of probability
P(w1,wa, ..., wpn) = Plwi|wa, ..., wn) * P(wa|ws, ..., wn) * P(wz|wa, ..., wn) * P(wn) (1)

The chain rule shows the relation between computing the joint probability of a sequence of words
given the conditional probability of the previous sequence of words. Using a Ngram model allows us to
further simplify this equation as we estimate the probability of a word given its history by approximating
the last N words. A Bigram model for example would use the conditional probability of a word given

the word before it.

P(wi|wz, ..., wn) = P(wi|ws2) = % @)

A trigram model allows us to improve our predictability by using the preceding 2 word tokens.
P(w1|wz, ..., wn) = P(w1|wsz, ws) * P(w2|ws) (3)

The easiest way to estimate these probabilities is using the count value of the token sequences in
the training data.
C(w1, w2, ..., wy)
— = 7 (4)
C(wg, ,wn)

To obtain the count values for our tokens we use the ngram utility [12] to obtain a set of token
sequence counts for all the data in the training set. For the purposes of our investigation we used
the textual book data from the Gutenberg project and Brown data set. The Google Books Ngram
Corpus [10] is available at http://books.google.com/ngrams.

P(wi|wz, ..., wn) =

http://books.google.com/ngrams

LSTM Neural Network for Textual Ngrams D’Souza

Total 9624 unique ngrams in 890415 1-grams

the 50869
N 32481
of 24406
to 23662
a 21639

Table 1: 1-grams

Total 273906 unique ngrams in 890414 2-grams

N_N 7204
of_the 5293
in_the 4507
N_million 4493
to_N 2865

Table 2: 2-grams

We process the data to obtain the 5-gram tokens using the ngram utility which gives us a count
value of all consequent tokens in the training data. We are using textual data for the purposes of our
investigation on computing the ngram probabilities.

We use a variety of smoothing techniques to normalize the data and since a large number of token
sequences are not in the training data. We use a ngram log probability (NGLP) to estimate the
probability of our language model. This allows us to maintain a sum value of the log probability for
the training data as it is difficult to compute accumulated product value on decimal values. We use
these values to compute the cross entropy of the data.

Crossentropy = H = —(log2(P(w1|wz, w3) 4+ log2(P(wz|ws, wa)) + ...log2(P(wn — 2|w, — 1, wy)) (5)

This allows us to compute the cross entropy of the data on the test set which gives us a measure of
how well our language model is able to predict the tokens in the code. We calculate a perplexity value
equivalent to 2.

2 Results

A low cross entropy means that we are able to accurately predict the next token. If the model predicts
every token correctly with a probability of 1, then our cross entropy is 0. We use this data to study

Total 613476 unique ngrams in 890413 3-grams

the_u_s 920
N_million_or 687
of _N_million 665
N_a_share 631
million_or_N 621

Table 3: 3-grams

LSTM Neural Network for Textual Ngrams D’Souza

entropy 7.95
perplexity 247

3-grams

Table 4: Cross entropy

multiple types of identifiers in the code including variable and class field definitions, method names
and function calls in the code.

Figure 1: Zipf distribution.

Frequency

1 10 100 1000 10000

Rank

We measured the zipf distribution - Fig. 1 of the data in the text [3]. As per Zipf’s law we see that
the frequency of the tokens in the data set is inversely proportional to its rank in the number count of
tokens. The training data contained 9624 unique tokens. The slope is -0.0479.

We plan to extend this code to deep learning applications [6, 7] on unstructured content form on
the web along the lines of the Google Brain project [2] and TensorFlow [1]. This will allow us to build
a knowledge base [14] using existing projects and reuse code as per the application.

TensorFlow is an open source library for deep learning developed by Google. It is a python library
that is similar to numpy, scipy and uses data flow graphs and tensors for numerical computation. They
support the development of neural networks using a set of libraries. A perceptron is a simple neural
network designed to use a threshold activation function. It computes the activation of a neuron using

the dot product of the input and weight vectors.

O(x) = sgn(z w; * ;) (6)

1 ify >0

where sgn(y) = {—1 otherwise

Fig. 2 shows a single layer perceptron. For a given dataset the perceptron is guaranteed to find a
linear plane of separation described as the hyperplane decision surface in the n-dimension space. The
perceptron training rule is used iteratively to update the network weights. The weight vectors are
initialized randomly and updated using the rule

w; — w; + Aw;

Aw; =n(t — o)z Q)

Additionally, multiple layers can be used in a multi-layer perceptron. This is effective on uni-
dimensional data and finds application in a number of natural language processing tasks [4, 11] including

3

LSTM Neural Network for Textual Ngrams

y=1(W*x>0)
—W ‘ =0 (else)
.
Figure 2: Single layer perceptron.
‘ Sigmoid ‘ Softmax ‘ Hyperbolic tangent ‘
1 e’ 1—e 2
o(y) = ——— | f(2) = == | tanh(z) = ———~
1+ev D i€ L+e

Table 5: Activation functions

D’Souza

part of speech (POS) tagging. The OpenNLP library uses a multi-layer perceptron in its trained
model. These have been effectively used in applications in information extraction as shown in [5]. [8]

demonstrated the use of a chunker model in detection of semantic triples.

A neural network uses a continuous activation function in each of the layers. Some of the activation

functions are in Table 5.

Figure 3: Neural Network.

Y Y. Y,
Y, = (S wy-0) ¥ 3
! ; e N ./?\ ’f\- Output layer, k

O

0;= f(z wi X;) © {\JHidden layer, j

X Input layer, i

Fig. 3 shows an artificial neural network with Sigmoid activations. The weights in the hidden
layer are used in determination of word vectors used in the Continuous Bag-of-words (CBOW) and
Skip-gram models [13]. These are used in predicting semantic similarity. We use a TensorFlow Keras
LSTM layer - Fig. 4 to output word sentences in the PTB corpus. Below is a generated text sequence
corresponding to an input seed value. This can be used in applications like the Google Smart compose

for autocompletion of input text given a suitable corpus of training data.

————— Generating with seed: "n plant near <unk> ill. was completed in n <eos> in a

LSTM Neural Network for Textual Ngrams D’Souza

disputed n ruling the commerce commission said commonwealth edison could raise its
electricity rates by $ n million to pay for the plant <eos> but state courts upheld

n plant near <unk> ill. was completed in n <eos> in a disputed n ruling the commerce
commission said commonwealth edison could raise its electricity rates by $ n
million to pay for the plant <eos> but state courts upheld a challenge of last year

’s that list of the low ’s action action of the low are to debt higher prices the
in financing <eos> the u.s. until that the latest will leave <eos> the and and
japan is expected to slip <eos> the funds have money funds have received these rich

since that the decline plot increase <unk> with the low and japan automobile said
that the u.s. is that that u.s. is is already for a request <eos> the decline and
japan of their program managers the highest has authority dropped n n in september
<eos> first n n for export and $ n million debt and year plant <eos>

1398496810544

input: | (None, 40, 2138)
output: (None, 128)

Istm_1: LSTM

input: (None, 128)
output: | (None, 2138)

dense_1: Dense

4

input: | (None, 2138)
output: | (None, 2138)

activation_1: Activation

Figure 4: Keras LSTM model.

3 Conclusion

We explore the use of the TensorFlow library in creating a recurrent neural network (RNN). We train
a LSTM neural network on textual data from the Penn Tree bank corpus. We see that the LSTM
is able to accurately predict the word ngrams using a seed sentence. We plan to extend the work to
use POS and chunker sequences [9] in phrase construction. We continue to explore the intersection of
Technology and Business in the context of Al, Globalization, CSR and the Last mile with an emphasis
on Deep learning applications in the broader web.

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,

LSTM Neural Network for Textual Ngrams D’Souza

2]

B8l

[10]

(11]

[12]

[13]

[14]

Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from tensorflow.org.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-scale
machine learning. In OSDI, volume 16, pages 265283, 2016.

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale using
language modeling. In Proceedings of the 10th Working Conference on Mining Software Reposito-
ries, pages 207-216. IEEE Press, 2013.

Xavier Carreras and Lluis Marquez. Introduction to the conll-2005 shared task: Semantic role
labeling. In Proceedings of the ninth conference on computational natural language learning, pages
152-164. Association for Computational Linguistics, 2005.

Shaun D’Souza. Parser extraction of triples in unstructured text. TAES International Journal of
Artificial Intelligence (1J-AI), 5(4):143-148, 2017.

Shaun C D’Souza. Cognitive architecture for a connected world. arXiv preprint arXiv:1810.03955,
2018.

Shaun C D’Souza. Evolving system bottlenecks in the as a service cloud. arXiv preprint
arXiw:1809.07794, 2018.

Shaun Cyprian D’souza. System and method for extracting information from unstructured text,
June 19 2018. US Patent App. 15/474,194.

Matthew Honnibal and Mark Johnson. An improved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1373-1378, Lisbon, Portugal, September 2015. Association for Computational
Linguistics.

Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden, Jon Orwant, Will Brockman, and Slav
Petrov. Syntactic annotations for the google books ngram corpus. In Proceedings of the ACL 2012
system demonstrations, pages 169-174. Association for Computational Linguistics, 2012.

Donald Metzler and Oren Kurland. Experimental methods for information retrieval. In Proceedings
of the 385th international ACM SIGIR conference on Research and development in information
retrieval, pages 1185-1186. ACM, 2012.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva P Aiden, Adrian Veres, Matthew K Gray, Joseph P
Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, et al. Quantitative analysis of
culture using millions of digitized books. science, page 1199644, 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111-3119, 2013.

Rajeev Rastogi. Building knowledge bases from the web. In Proceedings of the 18th International
Conference on Management of Data, pages 5-5. Computer Society of India, 2012.

	Introduction
	Results
	Conclusion

