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Abstract—Microvascular decompression (MVD) is a neurosur-
gical procedure that relieves nerve compression by repositioning
or separating offending blood vessels, effectively reducing pain
or spasms. Accurate localization of the compression site is crucial
for optimal surgical outcomes, as it enables precise identification
and decompression of the offending vessel. While horizontal
anatomical relationships are easily identified in the surgical view,
compressions occurring along the depth axis are more challenging
to discern. In this study, we propose a method to measure accu-
rate intraoperative distances during MVD surgery using Depth-
Anything-V2. By leveraging the optical properties of standard
imaging equipment in conjunction with the depth estimation
model, our method computes precise, absolute distances rather
than relying solely on relative measurements, achieving distance
estimation errors of less than 2 mm compared to intraoperative
and preoperative reference measurements.

Index Terms—Deep Learning, Depth Estimation, Surgical
Video Analysis, Microvascular Decompression (MVD)

I. INTRODUCTION

Microvascular decompression (MVD) is a neurosurgical pro-
cedure designed to relieve nerve compression by repositioning
or separating offending blood vessels. The success of MVD
critically depends on the precise localization of the compres-
sion site, as accurate identification enables targeted decom-
pression and improves patient symptoms [1]. The surgery is
typically performed based on preoperative planning using MRI
or CT imaging and executed under direct visualization through
an operating microscope or endoscope [2]. However, the
complexity of anatomical structures and inherent limitations
of intraoperative visual information pose significant challenges
to precise assessment and decision-making [3]. Consequently,
there has been an increasing demand for computer-assisted
techniques to provide complementary insights and enhance
surgical precision.

Several studies have explored computer vision and Al-based
approaches to assist various aspects of MVD procedures. Pre-
operative efforts have focused on vessel and nerve segmenta-
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tion using MRI or CT data to improve surgical planning. Tu et
al. [4] proposed a multimodal MRI segmentation network for
extracting key structures in MVD using knowledge-driven mu-
tual distillation and topological constraints. Intraoperatively,
scene analysis techniques have been applied to microscope
or endoscope views to segment anatomical structures, detect
landmarks, and assist navigation in real time [5], [6]. However,
preoperative segmentation lacks adaptability to intraoperative
anatomical changes, and most intraoperative scene analysis
methods are limited to two-dimensional representations [7],
providing limited positional information without depth, which
restricts accurate anatomical interpretation and intraoperative
decision-making. While approaches such as stereo endoscopy
and depth cameras can provide three-dimensional information,
their reliance on specialized hardware and complex setups
limits practical adoption in typical surgical settings.

In recent years, monocular depth estimation models based
on deep learning [8], [9], [10] have achieved remarkable
performance in general computer vision tasks. These mod-
els predict dense depth maps from single images, providing
relative depth information without requiring specialized hard-
ware. Several studies have since explored their application in
surgical scenes, demonstrating potential to enhance intraop-
erative navigation and visualization. Lou et al. [11] showed
that fine-tuning a general-purpose depth model on surgical
images improves estimation accuracy. However, monocular
models still lack metric scale, generating depth maps that are
accurate only up to an unknown scaling factor. This limitation
becomes critical in MVD, where precise absolute distance
measurements are required to evaluate the spatial relationships
between anatomical structures.

In this work, we propose a method to estimate objective,
real-world distances during MVD surgery by combining a
monocular depth estimation model with the optical proper-
ties of surgical microscopes. By leveraging the microscope’s
focal adjustment, we extract relative depth differences and
calibrate them with the predicted depth map to obtain absolute



measurements. The approach is validated using preoperative
MRI-based 3D reconstructions, demonstrating its accuracy and
potential applicability in intraoperative environments.

II. RELATED WORK
A. MVD surgery

Microvascular decompression (MVD) is a neurosurgical pro-
cedure used to treat neurovascular compression syndromes
such as trigeminal neuralgia (TN) and hemifacial spasm
(HFS). TN is primarily caused by compression of the trigemi-
nal nerve (CN5) by the superior cerebellar artery (SCA) or
the anterior inferior cerebellar artery (AICA). HFS results
from compression of the facial nerve (CN7), typically by the
AICA or posterior inferior cerebellar artery (PICA) [1], [12].
The retrosigmoid approach in MVD provides access to the
cerebellopontine angle and involves navigating around various
neurovascular structures within the posterior fossa, including
cranial nerves, arteries such as the SCA and AICA, and veins
such as the superior petrosal vein (SPV) [13], [14]. Fig. 1
illustrates the spatial relationships among these key anatomical
features relevant to MVD procedures.

Unlike traditional open neurosurgical procedures that re-
quire extensive exposure, MVD is a highly precise and min-
imally invasive surgery that involves opening only a small,
well-defined area of the skull to access the affected cranial
nerve [15]. Given the compact and confined surgical field,
MVD relies on advanced visualization tools such as high-
resolution operating microscopes and endoscopes. These tools
provide magnified and panoramic views, allowing surgeons
to accurately identify neurovascular structures and delicately
relieve the compression by repositioning the vessel or inserting
Teflon. The limited operative space demands exceptional pre-
cision, making MVD one of the most refined and technically
challenging procedures in neurosurgery [16], [17].

Although modern operating microscopes and endoscopic
systems offer high-resolution visualization, they typically pro-
vide two-dimensional images that limit depth perception dur-
ing MVD procedures [18]. To mitigate the limitations of
2D visualization, technologies such as 3D exoscopes and
VR-based surgical planning have been introduced. However,
their clinical adoption is limited by cost, complexity, and
lack of standardization [2]. In MVD, where the operative
field is compact and anatomically dense, accurate real-time
depth information is essential for safe vessel manipulation and
precise Teflon placement.

B. Depth Estimation in Surgical Imaging

Depth information in medical imaging is crucial for enhancing
surgical safety and accuracy, facilitating tasks such as precise
lesion localization and improved navigation [19]. Preoperative
imaging modalities such as CT and MRI are widely used to
obtain volumetric anatomical data, which can be transformed
into high-resolution 3D reconstructions using tools like 3D
Slicer [20]. However, these scans, acquired preoperatively,
cannot reflect real-time anatomical changes, limiting their
intraoperative utility [21].
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Fig. 1. Simplified schematic of neurovascular anatomy in the cerebellopontine
angle from a retrosigmoid approach, showing the relationships among the SPV,
cranial nerves (CN5, CN7, CN8, and CN9), and surrounding arteries(SCA,
AICA and PICA), as typically visualized during microvascular decompression.
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Several imaging techniques have been proposed for real-
time depth estimation and explored in surgical applications.
Stereo vision reconstructs depth by analyzing images from
multiple viewpoints and has been applied in robotic surgery
and select stereo-endoscopic systems. RGB-D imaging has
shown potential for enhancing spatial awareness in experimen-
tal surgical settings. While these techniques offer the potential
to improve intraoperative depth perception, their adoption
remains limited due to spatial constraints, high costs, and chal-
lenges in integrating them into existing surgical workflows.

Recent advances in deep learning have significantly im-
proved monocular depth estimation, predicting depth maps
from a single camera feed using convolutional neural networks
or transformer-based architectures [22], [23]. Leveraging large
datasets, these models achieve state-of-the-art depth estimation
without stereo setups or specialized sensors, demonstrating
strong performance across various applications. In medical
imaging, particularly endoscopic and microscopic images,
monocular depth estimation has been actively explored to en-
hance spatial perception and surgical precision. Recent studies
have proposed supervised and self-supervised approaches for
medical data, utilizing anatomical priors, geometry constraints,
and uncertainty modeling to improve robustness in complex
surgical environments [24], [25].

III. METHOD

The overall pipeline of our proposed method is illustrated
in Fig. 2. Intraoperative depth estimation is first performed
using a monocular model to obtain relative depth information.
Absolute depth is then calculated by calibrating these relative
predictions using optical measurements of known landmark
distances acquired intraoperatively. Finally, the computed ab-
solute distances are validated against preoperative measure-
ments derived from MRI-based 3D reconstructions using 3D
Slicer.
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Fig. 2. Overview of the proposed pipeline. Relative depth maps are generated using Depth-Anything-V2 [10], and anatomical structures are segmented
with Segment-Anything-Model 2 [26] for centroid-based depth measurement (leff). Absolute distances are computed by calibrating depth differences using
intraoperative microscope focus-based distance measurements between known landmarks (right).

A. Relative Depth Estimation

We used a pre-trained Depth-Anything-V2 [10], a state-of-
the-art monocular depth estimation model based on a Vision
Transformer (ViT) architecture [22], to estimate relative depth
within the surgical field. The model, trained on both real and
virtual datasets using knowledge distillation from a teacher
model, is designed to generalize effectively across a wide
range of complex environments, including surgical scenes.
To enhance prediction accuracy around critical anatomical
structures, we crop the region of interest (ROI) around targeted
neurovascular areas. This step reduces interference from irrel-
evant background elements and focuses the model’s prediction
capability on clinically relevant region.

B. Absolute Depth Calibration via Optical Scaling

To obtain absolute depth measurements without introducing
additional equipment or disrupting the surgical workflow, we
utilize a surgical microscope, which is routinely integrated
into the neurosurgical setup. This microscope provides in-
traoperative focal length readouts and allows precise manual
focus adjustments at increments of 1 mm. By recording the
difference in working distances displayed by the microscope
when sequentially focusing on known anatomical landmarks,
we derive a reliable physical reference distance for calibration.

Specifically, we first measure the actual physical distance
between two clearly identifiable anatomical landmarks via mi-
croscope focus adjustment. This measured distance serves as
a reference scale factor, enabling us to establish a proportional
relationship between pixel-based relative depth values from the
Depth-Anything-V2 model and their corresponding real-world
distances. We then apply a segmentation model to automati-

Fig. 3. Synchronized views for depth validation. The top-left inset shows
the intraoperative microscopic view, while the main panel displays the
corresponding 3D reconstruction using 3D Slicer. Distance between target
structures was measured in both views after manual alignment.

cally delineate the anatomical structures of interest within the
surgical scene. For each segmented structure, we select the
centroid of the segmented mask as the representative point for
absolute depth calculation. By applying the computed scale
factor, relative depth predictions are converted into absolute
distances across the entire surgical field. This procedure is
illustrated in detail in Fig. 2.

C. Validation of Absolute Depth Using 3D Slicer

To validate the absolute depth measurements obtained during
surgery, we utilized 3D Slicer, a widely adopted open-source
platform for medical image analysis and 3D reconstruction
[20]. 3D Slicer generates volumetric anatomical models based
on preoperative MRI scans, providing accurate reference
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Fig. 4. Qualitative comparison of depth estimation models in representative MVD surgical scenes. Depth-Anything-V2 [10] outperforms DepthPro [9] and

Marigold [8] in producing stable and anatomically consistent depth maps.

Fig. 5. Validation of absolute distances using 3D Slicer. Each row shows the surgical view, the Depth-Anything-V2 depth map with annotations, and the
corresponding 3D Slicer measurement. The annotated values represent distances in the depth direction.

distances for evaluating intraoperative depth measurements.
From these volumetric models, we extracted inter-structural
distances that served as reference values to assess the accuracy
of our absolute depth estimates [27].

To facilitate a direct comparison, we manually aligned the
intraoperative surgical scene captured by the microscope with
the corresponding 3D reconstructed view from 3D Slicer. This
manual alignment ensured consistency in perspective between
the intraoperative images and preoperative models. After
alignment, distances between corresponding target anatomical
structures were measured and directly compared between the
two modalities. Fig. 3 illustrates examples of synchronized
views and the procedure for measuring distances.

IV. RESULTS
A. Experimental Setup

Our experiments were conducted using intraoperative video
recordings from 11 patients who underwent MVD surgery

for TN or HFS. The operation was performed by a single
neurosurgeon using the same surgical method for all cases.
All frames were recorded using a ZEISS TIVATO 700 surgical
microscope [28] at a resolution of 1920 x 1080 pixels, and
manually cropped to focus on regions of anatomical inter-
est. For anatomical segmentation, we utilized the pre-trained
Segment-Anything-Model 2 (SAM2) [26] to identify target
structures accurately.

Since no monocular depth estimation models specifically
designed for MVD currently exist, we qualitatively evaluated
several general-purpose models, including Depth-Anything-
V2 [10], Depth-Pro [9], and Marigold [8]. As shown in
Fig. 4, Depth-Anything-V2 qualitatively outperformed other
candidates, producing clearer and more stable depth maps in
representative MVD surgical scenes, particularly in regions
involving CN5, CN8, and adjacent vessels. Therefore, we
selected Depth-Anything-V2 as the primary model for sub-
sequent experiments. For these experiments, we utilized the



TABLE I
REPRESENTATIVE ABSOLUTE DISTANCE MEASUREMENTS BETWEEN ANATOMICAL STRUCTURES. ESTIMATED DISTANCES FROM THE DEPTH MODEL ARE
COMPARED WITH CORRESPONDING INTRAOPERATIVE MICROSCOPE MEASUREMENTS AND PREOPERATIVE 3D SLICER REFERENCES.

. Reference [CN5-CNS8] (mm) Measured (mm) . Errors (mm)
Subject Microscope 3D-Slicer Target Structures Microscope | 3D-Slicer Estimated (mm) Microscope | 3D-Slicer
CN5-CNO 4.0 10.74 104 36 034
CN8-CN9 10 0.78 26 1.6 1.82
Pl 13 11.49 CN5-CN6 3.0 5972 2.97 0.03 3.002
CN8-CN6 16.0 17.37 15.97 0.03 1.4
CN5-CN9 4.0 1234 371 0.29 37
P2 12 10.4 CN8-CN9 1.0 1.954 171 071 0.244
CN5-CNO 2.0 12.06 108 2 336
P3 12 11.27 CN8-CN9 0.0 2.786 12 12 1586
CN5-CNO 2.0 10.72 19.09 7.00 837
P4 1 10.46 CN8-CN9 10 0231 8.08 7.08 7.849
CN5-CNO 10.0 7829 839 T6l 0561
P35 10 9411 CN8-CN9 0.0 1.595 161 161 0015
CN5-CN9 90 9.492 74 6 700
P6 9 9-827 CN8-CN9 0.0 0.17 1.6 1.6 143
CN5-CNO 80 5505 1125 335 5745
P7 1 9223 CN8-CN9 3.0 3.699 0.25 2.75 3.449
CNB-artery - 5202 535 - 0.028
P8 7 10.91 CN5-vein - 7.781 10.75 - 2.969
CN8-vein ] 311 3.75 ] 0.64
CN5-CNO 2.0 13.03 300 508 11
P9 1 10.58 CN8-CN9 1.0 2.401 7.08 6.08 4679
CN5-CNO 3.0 13.23 573 727 75
P10 16 14.00 CN8-CN9 3.0 0.663 10.26 7.6 9.597
CN3-artery - 6.154 319 - 1964
Pl 8 6.154 CN8-artery - 0.507 381 - 3.303
Average Error - - - - - - 3.197 3.326
Average Error ) } ) ) ) ) 1.504 1.897
w/o extreme cases

pre-trained Depth-Anything-V2 model configured with a ViT-
L encoder and an input resolution of 518x518. Both the Depth-
Anything-V2 and SAM2 were used as off-the-shelf pre-trained
models without additional fine-tuning on surgical datasets.

B. Absolute Depth Measurement

To demonstrate the effectiveness of our method, we compared
the estimated absolute distances between various anatomical
structures derived from the depth maps with validation mea-
surements independently obtained from 3D Slicer reconstruc-
tions. Figure 5 shows representative examples, including the
original surgical images, corresponding predicted depth maps,
and aligned 3D Slicer views annotated with identical inter-
point measurements. The intraoperative images and 3D Slicer
reconstructions were visually aligned to provide consistent
anatomical perspectives. Estimated absolute distances from the
depth maps and reference distances from 3D Slicer are overlaid
in millimeters for direct comparison.

Table I summarizes the quantitative comparisons for mul-
tiple anatomical structure pairs, including CN5, CN6, CNS,
CN9, and adjacent vessels. The estimated absolute depths
closely match the reference measurements derived from mi-
croscope focal adjustments and 3D Slicer reconstructions,
achieving an overall accuracy within approximately 3 mm
for most evaluated anatomical structure pairs. When excluding
extreme cases, the error is further reduced to approximately
1.5-1.8 mm, indicating a notably lower margin of error.

.

Fig. 6. Depth information is noticeably reduced for deep structures, indicating
the model’s limited ability to preserve distant depth variations.

V. DISCUSSION

This study demonstrates that absolute depth can be estimated
in real time by calibrating depth estimation models with actual
measurements. This enables depth perception from 2D surgical
views, potentially improving the identification of offending
vessels in MVD surgery by clarifying complex anatomical
structures. However, we find that our method does not perform
effectively in scenes with large depth disparities. As shown in
Figure 6, while Depth-Anything-V2 is effective at capturing
relative depth, it tends to lose resolution in regions that are
significantly farther from the nearest structures. In such cases,
depth values for distant anatomical features are compressed



toward the lower end of the value range or inaccurately
predicted, despite their physical presence in the scene. When
these underestimated values are used for absolute scaling, the
resulting distances can become unrealistically large. In cases
with extreme depth disparities, the error can reach up to Smm.
Additionally, we observed a baseline discrepancy of ap-
proximately 2mm between intraoperative microscope mea-
surements and preoperative 3D Slicer reconstructions, which
may contribute to residual error. In our future efforts, using
phantom models with knowledge of the objective distance may
help improve the accuracy of calibration, and we plan to utilize
advanced surgical microscopes equipped with integrated depth
sensing modules. As more MVD procedures are conducted
with such equipment, it will become feasible to collect accu-
rate intraoperative depth measurements for robust validation.
Based on this data, we aim to construct a dedicated dataset
for MVD and develop a depth estimation model capable of
predicting absolute depth in real time, ultimately enabling 3D
reconstruction to enhance spatial awareness during surgery.

VI. CONCLUSION

In this work, we present a method to estimate absolute
depth during MVD surgery by combining monocular depth
prediction with intraoperative optical calibration. The approach
enables real-time distance measurement between anatomical
structures and shows accuracy within 2mm compared to 3D
Slicer references. These results demonstrate that integrating
these methodologies effectively bridges the gap between pre-
operative static imaging and real-time intraoperative analysis,
enhancing spatial awareness during surgery.
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