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Abstract. Edward C. Tolman revolutionized cognitive psychology by
proposing a clear distinction between learning and performance in be-
haviorism. Tolman’s ideas on latent learning and cognitive maps even-
tually led to what is now known as conceptual space; a paradigm where
ideas are represented as locations in a high-dimensional Euclidean space.
These insights are easily expanded to consider cognitive navigation be-
tween ideas — reasoning — as the basis of intelligence. Here, we explore
whether conceptual navigation is plausible by the neoRL architecture,
an RL architecture capable of having a distributed state representation
as found in the hippocampus. Adopting Kaelbling’s concerns for efficient
robot learning to spatial navigation, we test whether neoRL is general
across NRES modalities, compositional across considerations of experi-
ence, and effective when learning in multiple Euclidean dimensions. We
find neoRL learning to be more resemblant of biological learning than
of RL in AI, and propose autonomous neoRL navigation of conceptual
space as a plausible new path toward artificial general intelligence.

1 Introduction

The concept of a cognitive map was first introduced by Tolman as a model for
explaining how spatial inferences and taking shortcuts [22]. Aiming to under-
stand cognitive processes involved in behavior, Tolman was not satisfied with
behaviorists’ view that goals and purposes could be reduced to a hard-wired de-
sire for reward [4]. Tolman observed that unrewarded rats could perform better
when later motivated by reward [23]. Arguing that a reinforcement signal was
more important for behavior than for learning, Tolman proposed the existence
of a cognitive model of the environment in the form of a cognitive map. Neural
representation of Euclidean space (NRES) have later been identified by electro-
physical measurements for a range of modalities [3]. Further, NRES has been
implied for representing ideas as points in conceptual space, an Euclidean rep-
resentation of ideas where betweenness and relative location makes sense when
explaining concepts [7]. The involvement of NRES in cognition has been experi-
mentally verified in an experiment where human subjects were asked to adapt an
image to known concepts [5]. Results from theoretical neuroscience and psychol-
ogy indicates NRES’ role in social navigation [16], temporal representation [6],
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and reasoning [2]. This geometric view on cognition implies inference and gener-
alization between ideas based on location; voluntary navigation of an emulated
conceptual space could establish an interesting new take on artificial general
intelligence (AGI).
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Fig. 1: Evidence for latent learning by Tolman and Honzik (1930).
(after [23], from Systems and theories of psychology [4]).

Autonomous navigation is difficult to reproduce in technology. Autonomous
operation implies a decision agent capable of forming decisions based on own
desires and experience. Experience-based behavior for digital decision algorithms
is best approached by reinforcement learning (RL) from AI. Via trial and error
with respect to a scalar reward signal R, an RL decision agent is capable of
adapting its behavior according to the accumulation of R. A well-studied case
for adaptive policies in Euclidean space is RL for robotics [10]. Considering robot
path planning as an example of Euclidean navigation, we could look toward robot
learning for inspiration on autonomous navigation. However; whereas deep RL
has been demonstrated for playing board games at an expert level, requirements
to sample efficiency combined with high Markov dimensionality in temporal
systems makes deep RL difficult in navigation learning [10]. Leslie Kaelbling
(2020) points out key challenges in efficient robot learning, apparently concerned
with the current direction of deep RL. Navigation has to be efficient (require
few interactions for learning new behaviors), general (applicable to situations
outside one’s direct experience), and compositional/incremental (compositional
with earlier knowledge, incremental with earlier considerations). Current state
of the art deep RL for robotics struggles on all three points [9].

Inspired by neural navigation capabilities, Leikanger (2019) has developed
an NRES-oriented RL (neoRL) architecture for online navigation [12]. Via or-
thogonal value functions (OVF) formed by off-policy learning toward each cell in
one NRES representation, the neoRL architecture makes a distinction between
learning and behavior. Apparently inspired by Tolman, the neoRL framework



Navigating Conceptual Space 3

allows for purposive behavior to form based on desires formed by anticipated
reward [13]. However, navigating a multi-dimensional conceptual space of un-
known dimensionality imposes high requirements on the agent. In this work,
we adopt Kaelbling’s three concerns for efficient robot learning to test whether
neoRL navigation is plausible for a high-dimensional and multi-modal conceptual
space.

2 Theory

Central to all navigation is knowledge of one’s current navigational state. In-
formation about one’s relative location, orientation and heading, and for objects
that can block or otherwise affect the path, is crucial for efficient navigation.
When such knowledge is represented as vectors relative to one’s current config-
uration, neuroscientists refer to this representation as being egocentric. When
represented relative to some external reference frame, it is referred to as being
allocentric. In Euclidean geometry, vectors can be represented in Cartesian coor-
dinates, e.g. the vector @ = [1.0, 3.0] represent a point or displacement in a plane,
one unit size from the origin along the first dimension, and three units along a
second dimension. Vectors can be represented in polar coordinates @ = [r, ¢,
representing the point by the distance r and the allocentric direction ¢. In RL,
all relevant information must be included in the monolithic Markov state; each
instance of agent state must contain enough data to uniquely define a next
state distribution [18]. Combined with temporal dynamics, the number of such
instances becomes prohibitively expensive for autonomous navigation [10]. A
more distributed approach is found in neural orientation, i.e., representation of
navigational state in the only known system capable of autonomous navigation.
Neural vector coding in spatial cognition have been reported for a wide range of
parameters [3]. Navigational state appears to be represented across a number of
independent NRES structures for different NRES modalities. This section intro-
duces theory and considerations on how state is represented in the animal and
the learning machine, working slowly toward the internal mechanism of neoRL
navigation.

2.1 Neural Representation of Euclidean Space

The first identified NRES neuron was the place cell [15]; O’Keefe and Dostrovsky
discovered that specific neurons in the hippocampus became active whenever the
animal traversed specific location in the test environment. Reflecting the current
location of the animal, individual place cells can be considered as geometric fea-
ture detectors on the animal’s allocentric location; the place cell becomes active
when the animal is located within the receptive field of the cell. Other NRES cells
have later been identified, expressing information in various parameter spaces.
Identified NRES modalities for navigation includes: one’s allocentric location
[15], allocentric polar vector coordinates to external objects [8], and the one’s
current heading [21]. Additional NRES modalities are listed in Table 1 or in fig.



4 Per Roald Leikanger

Place Cell Grid Cell Location of other animals Head Direction Cell
: : 120° 60°
’ ) I 180° 0°
l 240° 300°
(O’keefe & Nadel 1978) (Hafting et al., 2005) (Omeretal. 2018) (Taube et al. 1990)
(Danjo etal. 2018)
Object Vector Cell Reward cell Boundary Vector Cell Goal direction cell

reward
v

start

reward
v

(Haydal et al,, 2017) (Gauthier & Tank 2018) (Lever et al. 2009) (Sarel 2017)

start

Fig. 2: Various identified NRES modalities of importance for navigation, with reference
to the original publication. All NRES modalities could be important for autonomous
spacial navigation. For the enclosed experiments, the reader only needs to understand
the place cell and the object vector cell. (Illustration adopted from [1] )

2. A comprehensive overview of NRES modalities identified in neurophysiology
is composed by Bugress and Bicanski [3].

Location Tuning Direction|NRES modality
Place Cell ac. |[proximal] 2D - Current position [15]
Border Cell ac. |[proximal] 2D - Location of borders  |[17]
Object Vector Cell | polar c. |[spectrum] 2D| ac. |Location of objects [8]
Boundary Vector Cell| polar c. |[spectrum] 2D| ac. |Location of boundaries|[14]
Head-Direction Cell - [angular] 1D| ac. |Head direction [21]
Speed Cell - [rate code] 1D - Current velocity [11]

Table 1: Neural representation for different Euclidean spaces of importance for naviga-
tion: Head-direction cell reflects the current allocentric (ac.) angle of the head (a scalar
parameter). The place cell and border cell respond to a proximal allocentric location
(2D). The remaining NRES reflect conditions represented in other Euclidean spaces —
listed as NRES modalities.

A population of NRES cells can map Euclidean coordinates to a represen-
tation suitable for neural computation. A simple mapping can be composed
of NRES cells that respond to mutually exclusive parameter configurations. A
group of NRES cells with non-overlapping receptive fields can be visualized as
a chessboard; exactly one cell (tile) is satisfied for any parameter configuration
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on the board. This mapping is referred to as one-hot encoding' in computing
sciences. The accuracy of this NRES map is defined by the map’s resolution and
the geometric coverage of the mapping; resolution is defined by the receptive
fields of the involved neurons, whereas coverage is further defined by the num-
ber of NRES neurons involved in the mapping. In the remainder of this text, we
only consider comprehensive one-hot encoding as illustrated in Figure 3. When
discussing NRES resolution, we use the convention listed in the figure text, e.g.,
N13 signifying a 13213 tile set in R2.

2.2 Autonomous Navigation by neoRL Agents

Navigation is characterized by two distinct features; the desired state — the
objective with the interaction; and how to achieve this objective. When an oper-
ation is governed by own inclinations and ezperience, we refer to the agent’s solu-
tion as an autonomous operation. A most accomplished approach to experience-
based behavior is reinforcement learning; an RL decision agent is an algorithm
that learns how better to reach an objective by trial and error. The decision
process of the agent can be summarized by 3 signals: the state of the system be-
fore the interaction, the action with which the agent interacts with the system,
and a reward signal that reflects the success of the operation with regard to its
objective. Experience can be expressed via the value function, reflecting the ex-
pected total reward from this state and forward under the current policy. Since
behavior (policy) is based on the current value function, and the value function is
defined under one policy, an alternating iterative improvement is required while
learning in RL. This asymptotic progress is slow, requiring many interactions in
RL. Although RL has proven effective for solving a range of tasks, autonomous
control for robotics remains a challenge [10]. Even RL powered by deep function
approximation (deep RL) has limited applicability for online interaction learning
in Euclidean spaces [9].

With a set of sub-agents learning how to achieve different NRES cells in a
single NRES representation, their experience can be combined by weighted sum
[12]. Orthogonal value functions (OVFs) are learned as general value functions
(GVFs) [19] with R defined by NRES cell activation. Via off-policy OVF learning
with intrinsic reward and behavior formed by desire, Leikanger (2021) demon-
strated how emulated NRES for agent state allows for autonomous navigation
in Euclidean space [13]. NeoRL navigation improved significantly when agent
value function was formed from multiple NRES resolutions. The neoRL value
function is governed by the superposition principle, implying that value function
could further be expanded across multiple NRES modalities. Combining experi-
ence across linearly independent parameters or NRES modalities remains to be
tested; a multi-modal neoRL across NRES modalities would fully assimilate neu-
ral state representation in navigation — possibly acquiring some learning aspects
from neural navigation.

! Note for computing scientists: NRES is not concerned with the Markov state. Any
similarity to RL coarse coding and CMAC can therefore be considered to be an
endorsement of these AT techniques, not grounds for direct comparison.
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Fig. 3: (A) The allocentric WaterWorld environment: Blue entity is governed by inertia
dynamics, with a desire for green (R = +1) and aversion for red (R = —1). (B) An
N5 mapping of NRES: Each axis is divided into N = 5 equal intervals, resulting
in N? = 25 NRES cells. An OVF represents the value function toward one NRES
activation. (C) Learned NRES maps can form behaviors via anticipated reward: When
an NRES tile contains an element associated with reward, the corresponding OVF is
weighted accordingly. Anticipated rewards are illustrated using the same colors as in
(a); one aversive NRES cell in red and two desirable NRES cells associated with various
anticipation are represented in shades of green.

3 Multi-modal neoRL navigation

Adopting Kaelbling’s three concerns for Euclidean navigation, we next explore
how neoRL navigation scales with increasing (Euclidean) dimensionality. First, it
is crucial that NRES-oriented navigation works across various Euclidean spaces;
with little knowledge of the form or meaning of conceptual spaces, neoRL must
be capable of navigation by other information than location. Further, we are
interested in how neoRL navigation scales with additional parameters or across
multiple NRES modalities. Any exponential increase in training time would
make conceptual navigation infeasible. NeoRL navigation must be general across
NRES modalities, compositional across conceptual components, without signifi-
cant decline in learning efficiency. In this section, we explore neoRL capabilities
for multi-modal navigation by experiments inspired by Kaelbling’s concerns for
efficient robot navigation.

All experiments are conducted in the allocentric version of the Water World
environment? [20], illustrated in fig. 3A. An agent controls the movement of the
self (blue), with a set of actions that accelerate the object in the four directions
N, S, E, W. Three objects of interest move freely in the closed Euclidean plane.
When meeting with an object, it disappears, and a new object with a random
color, location, and speed vector is initiated elsewhere. Green objects are desir-
able with an accompanying reward R = +1.0, and red objects should be avoided
with R = —1.0. No other rewards exist in these experiments, making R a good
measure of an agent’s navigation capabilities. Note how the agent must catch
the last green in a board full of red before receiving more reward than an average

2 The system that is interacted with by an RL agent is referred to as the environment.
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of 1.5 points. All execution runs smoothly on a single CPU core, and the agent
starts with no priors other than described in this section.

Observations from the WaterWorld environment could be considered as al-
locentric location coordinates. Thinking of the Euclidean plane in figure 3A as
location facilitates later discussion. A direct NRES encoding of this information
will be referred to as Place Cell (PC) NRES modality in the remainder of this
text. One can also compute a simple object vector cell (OVC) interpretation by
vector subtraction:

0'ove = 0'pe — Spc

where & is the location of self and ot is the location of object ¢ in PC or OV C
reference frame. Note that this OVC interpretation allows for a modality sim-
ilar to OVC with the self in the center and allocentric direction to external
objects, but not with polar coordinates as reported for OVC [8]. However, the
two Cartesian representations of location still give different points of view ex-
pressed through having different reference frames. All information is encoded in
NRES maps as described in section 2.1. The neoRL agent is organized across
multiple NRES maps of different resolutions as described in [13]. All multi-
res agents are with resolutions covering all primes up to N13, i.e., with layers
N2, N3, N5, N7, N11,and N13. For more on multi-resolution neoRL agents and
the mechanism behind policy from parallel NRES state spaces, see [13]. Remem-
ber that the use of PC and OVC for WaterWorld is only syntactical to facilitate
later discussion and how a 2D Euclidean plane could represent any 2D parameter
configuration.

Learning efficiency is compared by considering the transient proficiency of the
agent as measured by the reward received by the agent during 0.2s intervals. Any
end-of-episode reward is disabled, and the only received reward is R = +1 when
encountering green elements and R = —1 when encountering red elements. The
simple reward structure allows for direct measurement of how well the agent has
learned during one run. However, observing the transient proficiency — real-time
learning efficiency — of the agent requires some analysis. In all experiments, a per-
interval average or received reward is computed over 100 independent runs with
additional smoothing by a Butterworth low-pass filter. All runs are conducted
in isolation. The agent is initiated before each run and deleted after the run —
without any accumulation of experience between runs. The x-axis of every plot
represents the number of minutes since agent initiation. Proficiency is computed
as the per time interval average of received reward, scaled to reflect [R/s]. The
y-axis can thus be interpreted as how many more green than red are captured
per second.

3.1 NeoRL navigation: NRES generality

First, we test the generality of the neoRL architecture by comparing naviga-
tional proficiency for an agent exposed to the PC modality to one exposed to
the OVC modality. We are interested in finding out whether neoRL navigation
is generalizable across NRES modalities and how this would affect learning effi-
ciency for the neoRL agent.
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Fig. 4: The neoRL architecture is general across NRES modalities: (A) an original Place
Cell (PC) NRES modality, implemented by applying NRES code directly on allocentric
location of the agent or elements of interest. (B) an emulated Object Vector Cell (OVC)
NRES modality, implemented by vector subtraction. The agent is centered with an
allocentric representation of other objects — quite different from the PC modality.

Results are presented in figure 4: agent proficiency from the original PC
modality (fig. 4A) can be compared with agent proficiency by the OVC modality
(fig. 4B) The immediate proficiency of several mono-resolution neoRL agents are
plotted alongside the proficiency of a multi-resolution neoRL agent. For both the
PC and OVC modality, the multi-res neoRL agent performs significantly better
when including information from multiple NRES maps with different resolution.
There is no loss in sample efficiency when utilizing the OVC modality compared
to PC modality; both the PC and the OVC neoRL agent instance perform well
in the WaterWorld reactive navigation challenge. Results indicate that neoRL
navigation is general for different aspects of experience; the neoRL architecture
is flexible across experience modalities.

3.2 NeoRL navigation: NRES compositionality

Secondly, we are interested in how neoRL navigation scales with additional
NRES modalities. Experiment 1 uncovered that neoRL agents are capable of
reactive navigation by other information than allocentric location. The second
experiment considers whether neoRL navigation is compositional across multiple
NRES modalities; this experiment tests the effect of exposing one neoRL agent
to both the PC and the OVF modality. We are concerned with how well the
neoRL architecture scales with the additional information.

Results are presented in figure 5. Combining information across multiple
NRES modalities significantly improves neoRL navigation compared to both
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Fig. 5: Multi-modal neoRL navigation leads to higher proficiency and quicker learning
than for mono-modal agents. These are important results toward the multi-dimensional
navigation required for AGI by conceptual navigation.

mono-modal agents. The mono-modal performance of PC and OVC is shown in
green and orange in figure 5. In terms of learning efficiency, i.e., how fast the
agent reaches final proficiency, and in terms of trained performance, the multi-
modal neoRL agent performs better than mono-modal neoRL agents. The multi-
modal neoRL agent reaches final proficiency after 10 minutes, whereas the PC
neoRL agent uses 160 minutes. The final proficiency of the multi-modal neoRL
agent approaches 0.55[R/s] while the PC neoRL agent barely reaches 0.27[R/s].
NeoRL navigation can improve both learning speed and final proficiency when
exposed to more information.

4 Discussion

Contrary to RL in Al neoRL navigation learns quicker, to a higher proficiency,
when more information is available to the agent. The neoRL agent is capable of
multi-modal navigation, making conceptual navigation by neoRL plausible.
Mechanisms underlying orientation have been implied in cognition; a con-
ceptual space where ideas are represented as points in a multi-dimensional Eu-
clidean space. Technological advances have allowed new evidence from modern
neuroscience to support Tolman’s initial ideas on cognitive maps’ involvement in
thought. Inferring that active navigation of such a space corresponds to reason-
ing and problem solving, we have proposed autonomous navigation of conceptual
space as a new take on artificial general intelligence. With a high dimensionality
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and unknown form, possibly with an evolving number of Euclidean dimensions,
autonomous navigation becomes an interesting challenge. Adopting Kaelbling’s
three concerns for efficient robot learning to account for multi-modal naviga-
tion, we have considered NRES-oriented RL navigation for the task. Firstly, it is
crucial that neoRL navigation works well for other Euclidean spaces than one’s
current location. The first experiment verifies that the neoRL architecture is
general across FEuclidean spaces; a neoRL agent that navigates by the location
modality is compared to one exposed to relative vector-representation of exter-
nal objects. Both NRES modalities perform admirably at this task, indicating
that neoRL navigation is not restricted to one NRES modality. Secondly, we ex-
plore how neoRL navigation scales with additional NRES modalities; an agent
based on both place-cell and object-vector-cell representation NRES modality is
compared to the two mono-modal neoRL agents. Navigation, both in terms of
training efficiency and in terms of final proficiency, improves significantly when
more information is available. It appears neoRL navigation (learning) improves
with additional information instead of exploding with that cursed dimension-
ality, making multi-dimensional Euclidean navigation plausible for conceptual
navigation.

Moving on from reinforcement learning and classical behaviorism, Tolman
made a clear distinction between learning and performance based on results
from his latent learning experiments (see Figure 1). Observing how an animal
could learn facts about the world that could subsequently be used in a flexible
manner, Tolman proposed what he called purposive behaviorism. When moti-
vated by a reward, the animal could utilize latent knowledge to form beneficial
behavior toward that objective. A possible analogy could be how NRES-oriented
RL allows for distinguishing the two aspects of an RL agent; Latent learning is
expressed in the neoRL architecture through a set of off-policy OVF learners —
learning the GVF for different NRES activation signals. Behavior is a result of
the weighted sum over all OVF — scaled by reward expectancy. The resulting
cognitive model is fully self-trained, reducing the challenge of autonomous nav-
igation to being an online tuning of OVF weights. Purpose becomes an integral
part of agent performance.

In this work, we have collected evidence from theoretical neuroscience and
combined theory of learning with modern AI techniques to propose a new di-
rection for AGI. We have shown how autonomous navigation is feasible by the
neoRL architecture; Yet, the most interesting steps toward AGI by conceptual
navigation remain. What are the implications of autonomous navigation of con-
ceptual space? How is such a space affected by a changing environment? Would
latent knowledge and adaptive conceptual space affect neoRL navigational per-
formance? These and many more important questions are yet to be asked. In
showing that neoRL is up for the task of multi-modal navigation, we hereby
propose a novel approach to AGI and present a plausible first step toward con-
ceptual navigation in machines.
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