
EasyChair Preprint
№ 4378

Semantic Segmentation with Peripheral Vision

Mohammad Hamed Mozaffari Maaref and Won-Sook Lee

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 12, 2020



Semantic Segmentation with Peripheral Vision

M. Hamed Mozaffari1[0000−0002−2297−6114] and Won-Sook Lee1

School of Electrical Engineering and Computer Science
University of Ottawa, Ottawa, Canada

mmoza102@uottawa.ca, wslee@uottawa.ca

Abstract. Deep convolutional neural networks exhibit exceptional per-
formance on many computer vision tasks, including image semantic seg-
mentation. Pre-trained networks trained on a relevant and large bench-
mark have a notable impact on these successful achievements. However,
confronting a domain shift, usage of pre-trained deep encoders cannot
boost the performance of those models. In general, transfer learning
is not a general solution for various computer vision applications with
small accessible image databases. An alternative approach is to develop
stronger deep network models applicable to any problem rather than
encouraging scientists to explore available pre-trained encoders for their
computer vision tasks. To deviate the direction of the research trend in
image semantic segmentation toward more effective models, we proposed
an innovative convolutional module simulating the peripheral ability of
the human eyes. By utilizing our module in an encoder-decoder config-
uration, after extensive experiments, we achieved acceptable outcomes
on several challenging benchmarks, including PASCAL VOC2012 and
CamVid.

Keywords: Semantic segmentation · Convolutional Neural Networks
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1 Introduction

Semantic segmentation is a fundamental step in a large group of applications,
from scene understanding in self-driving vehicles to delineation of lesions in med-
ical image analysis [19]. The aim of semantic segmentation is to assign one label
for multiple objects of the same type. The main complication of semantic seg-
mentation is closely related to scene and label variety [30] as well as the require-
ment of laborious works for manual labelling. However, in recent years, several
groundbreaking deep learning methods based on Fully Convolutional Networks
(FCNs) [21] have been exploited for the problem of semantic segmentation with
astonishing advancements in several benchmarks [19] over systems relying on
hand-crafted features [7].

Researchers conclude that the crucial elements for success of semantic seg-
mentation methods are one of the two factors [4, 30, 7] of using multi-scale fea-
tures, where features concatenated from intermediate layers using skip connec-
tions (e.g. spatial pyramid pooling) [30] or utilizing multi-scale input images to
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a shared network [4, 16]. Moreover, embedding different Convolutional Neural
Networks (CNNs) in ”cascade” (deeper [11]) and ”cascode” (shallower [30, 7])
configurations have boosted the performance of CNN models. Recently, combina-
tions of encoder-decoder architectures [25] and other techniques such as spatial
pyramid pooling [30] architectures with dilated convolution [7, 6, 22], and also
post-processing methods [5] provide sharper object boundaries for several image
segmentation benchmarks.

The major success of deep learning models in computer vision area owes to
domain adaptation [12] where weights of a pre-trained model [28, 13] employed
for fine-tuning of another model [29]. In designing almost all state-of-the-art
image semantic segmentation models, the default routine is to adopt a pub-
licly available classification encoder [1, 3], trained on a large database such as
ImageNet [8]. Although this approach demonstrates considerable improvement
in both accuracy [30, 7, 14] and speed [27], the impact of elaborating a model
pre-trained on the current task as a relevant feature extractor is always ignored
in many studies [27]. Moreover, using a model designed for classification tasks,
pre-trained on a large dataset, cannot be a reliable approach for fine-tuning of
another model which designed for image semantic segmentation task. This issue
becomes even more critical when the target domain is entirely different from
the source domain [18] (e.g. Pre-trained VGG16 model [28] on ImageNet [8],
fine-tuned for medical image segmentation).

On the other hand, publicly available encoders are trained for specific tasks,
and there are usually restrictions for using available pre-trained weights [18].
For instance, a non-modifiable network structure with a fixed-sized input im-
age (e.g. PSPNet [30], DeepLabV3+ [7], and VGG16 [28] require squared sized
images of 384 × 384, 513 × 513, and 224 × 224, respectively), forces researchers
to manipulate (crop or interpolation) training data. An alternative technique
is optimizing network architectures and improving their effectiveness [18]. For
example, variants of U-net [25] model are optimized, dominated and applied in
many medical image analysis tasks with outstanding results [10], even without
using pre-trained encoders.

In this work, we demonstrate that the performance of recent scene parsing
frameworks strongly depends on their pre-trained encoder block despite their
outstanding results in many studies. At the same time, we demonstrate that for
small-sized networks, pre-trained models cannot even boost the performance [24].
As a result of this dependency, there is not yet one prevailing deep learning
model applicable to different types of databases. Towards designing a general
deep learning model for semantic segmentation task, we proposed a new convo-
lutional module inspired by human peripheral vision [26] (named RetinaConv),
embedded into a new deep convolutional encoder-decoder architecture called Iris-
Net. Several novel scenes parsing framework [30, 25, 22, 3, 21] and IrisNet model
evaluated on different databases, PASCAL VOC 2012 [9] and CAMVID [2] with-
out employing any pre-trained model. Experimental results demonstrate that our
proposed model can predict similar or even better instances in comparison with
other techniques.
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2 Methodology and Network architecture

The human brain can process different scenes in a fraction of a second, and it can
detect objects and movements outside of the direct line of sight, away from the
center of gaze (known as peripheral vision [26]). With the aid of this ability, we
can detect and sense objects without turning our heads or eyes, resulting in fewer
computations for our brain. Moreover, the human eye has a limited field of view,
whereas the scene is sharper in the center and more blurry around edges [26].
Simulating the peripheral vision property of the human eye, we designed a new
convolutional module called RetinaConv. RetinaConv module is presented in
Figure 1, where the center of the filter (mimicking center of the human eye
gaze) is stronger than neighbours. A RetinaConv kernel is created by adding
two convolutional kernels, one standard and another dilated type. Similar to a
Gaussian filter, RetinaConv can have different standard deviations with varying
dilation and stride rates in both type of kernels.

For the implementation of RetinaConv, we benefit from the distributivity
property of convolution operators f ∗ (g + h) = f ∗ g + g ∗ h, where f is input
feature, g and h are standard and dilated convolutional kernels, respectively.
Different concentrations of peripheral vision can be generated by changing the
hyper-parameters of RetinaConv. One advantage of RetinaConv is that it has two
different effective receptive fields simultaneously. With the RetinaConv block,
we propose our end-to-end IrisNet model (see Figure 2) for solving semantic
segmentation tasks. IrisNet detects and emphases the core features of an input
image easier than individual convolutional block due to the use of both standards
and dilated convolutions in each RetinConv block. The minimum performance
of the IrisNet is guaranteed at least to the extent of the U-net [25] network using
unit dilation rates.

Due to the particular configuration of the RetinaConv block, IrisNet benefits
from the receptive filed of both standard and dilated convolution. For instance,
applying two times a standard convolutional kernel to an input image with a
filter size of 3 × 3, padding size of 1, and stride of 2 × 2, the effective receptive
field [20] for each feature is 3 × 3 and 7 × 7 for the first and second time,
respectively. On the other hand, using a RetinaConv with a dilation rate of 2
and the same settings as the previous example, corresponding effective receptive
filed is 5×5 and 13×13 with more concentration on features near to the center of
the receptive fields. Stacking several layers of RetinaConv mimics the peripheral
vision ability of the human brain (see Figure 1).

3 Experimental evaluations

Our proposed method is successful on scene parsing and semantic segmentation
of different database types. One strength capacity of our model is its ability to
train on different types of image data with acceptable results without employ-
ing any pre-trained model. We evaluate the proposed method in this section
on two different databases, including PASCAL VOC 2012 or general semantic
segmentation [9] and CamVid for pedestrian and vehicle segmentation [2].
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Fig. 1. Peripheral vision in the human eye. The center of gaze is sharper due to more
light detectors on Retina (dense kernel) and around is blurry because of fewer detectors
on Retina (sparse kernel).

Fig. 2. Network architecture of IrisNet with different embedded blocks.

We implemented RetinaConv and IrisNet on the public platform Tensorflow.
All models in this study were optimized using categorical cross-entropy loss by
Adam optimization method with first (β1) and second (β2) momentum of 0.9
and 0.999, respectively. In the last layer of all networks, we used ”Softmax”
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activation functions. The learning rate value for all models was exponentially
variable with iterations, initially set by 0.001 with the decay factor of 10−6. The
performance might be slightly improved by increasing the epoch number, which
is set by 100 for CamVid and 150 for PASCAL VOC. For data augmentation, we
adopt horizontal flipping, scaling between 0.5 to 1.5, and shift with 10 percent
in all directions, randomly.

Furthermore, for the CamVid dataset, we added a random Gaussian blur-
ring filter with a variance noise ranges of 0.2. We cropped images during our
online data augmentation process to 320 × 320 for CamVid and 224 × 224
for PASCAL VOC. Following [15], we employed batch normalization instead
of drop-out layers between each convolutional layer. For network configuration
and hyperparameter-tuning of our model, we used default values from each pub-
lication or publicly available codes. For IrisNet, we followed the configuration
of common encoder-decoders [25, 1, 23, 6] in the literature for a fair comparison
between models. Activation function for IrisNet was ReLU, and due to the lim-
ited computational resources (GPU power), we selected the ”batch-size” to 20
during training. The ratio of train, validation, and test sets are 90%, 5%, and
5%, respectively. For the comparison study, we keep the best models by saving
checkpoints during the training and validation stage. In the test step, raw data
are fed to each network with their original sizes.

IrisNet works satisfyingly on scene parsing challenge of PASCAL VOC 2012
benchmark where the dataset has 20 objects categories and one background.
Online augmentation of the PASCAL VOC dataset results in 7, 863K, 438K,
and 438K images, cropped by 224 × 224 for training, validation, and testing.
Table 1 shows the comparison results of IrisNet with several advanced methods
on each benchmark.

Table 1. Performance of models in evaluation study on the PASCAL VOC 2012 test
set in terms of IOU and mean IOU. The number of trainable parameters for each model
is in millions.
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BowNet 0.92 62.7 41.5 16.3 17.6 53.8 35.6 41.9 67.2 13.8 67.8 12.9 85.4 63.2 49.1 38.4 51.7 67.2 23.8 27.6 21.9 51.2

UNET [25] 23.7 61.8 39.6 56.8 27.3 53.5 74.6 48.6 73.8 18.3 74.9 10.2 84.3 65.3 53.0 79.0 70.4 72.5 70.6 31.4 17.8 55.7

FCN8 [21] 13.2 56.9 40.2 23.9 34.2 40.6 42.6 50.2 64.8 20.9 59.9 13.8 79.2 52.1 54.9 68.2 69.1 60.9 59.4 29.7 20.6 55.1

LinkNet [3] 20.3 55.2 32.1 34.2 35.0 35.2 68.5 39.1 53.6 38.9 49.6 20.3 30.2 30.6 52.6 56.8 59.7 55.8 22.7 22.0 13.9 55.8

FPN [17] 17.5 38.4 28.7 62.6 42.1 36.8 60.0 23.8 36.1 21.3 32.7 13.4 75.8 50.7 49.9 55.7 49.8 48.7 35.9 28.1 12.2 53.5

IrisNet 71.7 44.9 30.2 66.3 24.3 44.5 75.6 52.4 65.8 43.5 72.1 42.8 80.3 51.6 80.3 82.7 51.8 55.5 62.6 42.6 27.8 57.2

From table 1, IrisNet outperforms other methods in terms of mean intersec-
tion over union (mIOU). The number of trainable parameters for each model is
also reported in this table. As can be seen, models such as BowNet and UNET
with fewer parameters can predict acceptable results due to their efficient struc-
tures. For this reason, optimizing all sections of a network structure (even en-
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coder block) is just as crucial as investigating other Influential aspects, such as
decoder block. Several instances predicted by each encoder-decoder network are
illustrated in Figure 3. Although the results for all models are not considerable,
IrisNet predicted instances with more details. For instance, the tail of the ”cat”
and ears/grass for ”cow” have more details than other models.

Fig. 3. Results of each model in terms of per-class results on the PASCAL VOC 2012 [9]
testing set. All models are trained on the dataset with random weight initialization (no
pre-trained encoder).

CamVid dataset has 32 semantic classes for urban scene understanding. To
compare each model on a more straightforward dataset, we employed a subset
of CamVid contains three classes of ”background”, ”car”, and ”pedestrian”.
In our evaluation study, there were 367, 101, and 233 annotated images for
training, validation, and testing sets, while after online augmentation, training
and validation sets were increased to 734K and 202K images, respectively. All
models except PSPNet (384×384) were trained with cropping sizes of 320×320.

Table 2 reports our assessment results of six networks on the CamVid dataset
in three configurations (random initialization, initializing with pre-trained weights,
and fine-tuning by freezing encoder parameters) while, except BowNet and Iris-
Net, the backbone network is VGG16 encoder network pre-trained on ImageNet
dataset. For each configuration, we presented three evaluation criteria mIOU,
F1, and Categorical Cross-Entropy. From the table, IrisNet could predict bet-
ter instances than other models, while random initialization was used for each
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Table 2. Quantitative results of the CamVid test set. Methods without available pre-
trained models are indicated by n/a. None means the network could not train features
from the dataset, without providing any predicted instance.

Method
Backbone Random initial Pre-trained weights Fine-tuning

ImNet mIOU F1 Loss mIOU F1 Loss mIOU F1 Loss

BowNet [22] n/a 50.52 0.58 0.48 n/a n/a n/a n/a n/a n/a

UNET [25] VGG16 35.80 0.38 0.87 37.58 0.41 0.86 0.40 0.43 0.81

PSPNet [30] VGG16 32.18 0.33 0.93 46.50 0.54 0.65 54.80 0.63 0.50

LinkNet [3] VGG16 38.83 0.44 0.80 39.19 0.44 0.80 65.06 0.73 0.36

FPN [17] VGG16 None None None None None None 68.44 0.76 0.32

IrisNet n/a 55.77 0.61 0.45 n/a n/a n/a n/a n/a n/a

model. Definitely, all models might achieve better results by optimizing all as-
pects of the experiment and training for more epochs. Some examples of this
evaluation study are displayed in figure 4. From the figure can be seen that al-
though IrisNet performs better in comparison with other models, it is weak in
dealing with large objects in the scene.

Fig. 4. Results of assessment of each model on CamVid test set.
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4 Conclusion

Our proposed encoder-decoder model (IrisNet) employs a new convolutional
module (RetinaConv) to mimic the nature of peripheral vision in human eyes.
Specifically, benefits from the effective receptive field of RetinaConv, IrisNet en-
codes multi-scale information superior to other cutting-edge deep learning mod-
els. The primary motivation behind IrisNet architecture using the RetinaConv
module was the need to implement an efficient deep learning model for semantic
segmentation, which works independently from pre-trained models while capa-
ble of applying on several types of datasets. To address this desired model, we
improved the feature extraction ability of a ubiquitous encoder-decoder model
(UNET) by employing RetinaConv. Our experimental results show that the de-
pendency of the proposed method from using pre-trained encoder blocks is signif-
icant, and it achieves comparable performance with other state-of-the-art models
in similar configurations on several challenging benchmarks. Generalization ca-
pability of the IrisNet in image segmentation task on datasets with different
distributions and context was evaluated with an acceptable achievements. We
believe that optimized, universal, and efficient deep network architectures will
stay longer in literature than models with just higher accuracy and performance.
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