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Abstract 

This paper presents an adaptive identification method for battery parameters in automotive 
applications such as electric vehicles (EVs). A simple yet accurate electrical equivalent model 
(ECM) with varying parameters is used to represent the whole battery pack. The modeling 
process requires the current, voltage, and SOC signals of the battery. Detailed physical 
knowledge of the battery pack and inside cells are not necessary. The ECM parameter 
identification approach is developed by employing the NLMS (normalized least mean square) 
algorithm, which is an advanced adaptive algorithm having fast convergence rate and easier to 
be implemented. This approach is verified on a 51.2 V, 95AH LiFePO4 battery pack operated 
in three-wheeler electric bikes. Battery signals during vehicle daily real-world driving were 
collected over a period of time and used for the ECM parameter identification. The identified 
internal resistance R0, R1 and capacitance C1 changes obviously over the period of time and the 
battery degradation is well reflected through the identified parameters of the ECM. 

Keywords: adaptive parameter identification, battery modules, battery packs, EV batteries, 

battery modeling, battery internal resistance/capacitance 

1. Introduction 

Lithium-ion battery is advantageous over other battery chemistries due to its superiority in capacity 

density and cycle life, which makes it be dominantly applied as storage devices for electrical vehicles 

(EVs) [1-3]. However, its performance including capacity and power output will continuously 

deteriorate with its life cycle due to irreversible physical and chemical changes. The capacity will 

gradually influence the remainder driving range, whereas the output power will affect the dynamic 

performance of the EVs. Thus, the accurate estimation of the battery states such as state of capacity 

(SOC) and state of health (SOH) is needed to maintain battery performance, safety and long life-cycle 

for the EVs’ efficient and safe operation, while the accurate estimation of the states are dependent on 

the battery model parameter estimation in battery management system. 

ECM (equivalent circuit model) is a commonly used model type to represent battery and reproduce its 

dynamic behavior and voltage response in time domain. In the ECM model, parameters including 

resistance and capacitance need to be identified to match the real signal of battery. A frequency used 

identification method for the parameters is offline analytical technique based on HPPC (Hybrid Pulse 

Power Characterization) test [4-5]. As a real-time parameter estimation method, the recursive least 

square (RLS) algorithm-based method is widely used, studied in detail in [7-9], and recommended in 
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[10] after comparison with other methods. In addition, optimization algorithms such as genetic 

algorithm [11] and Big-Bang Big-Crunch algorithm [12] are applied in battery model parameter 

identification. Particularly, in [12], vehicle operating signals are used to run the algorithm to identify 

the battery model parameters.  

However, the model parameters are subject to uncertainty due to the battery pack to pack variation, both 

inherent initial variation and variation caused by different working conditions of different EVs. 

Therefore, adaptive identification is needed to account for the parameter uncertainties. Furthermore, the 

parameters, especially the resistance, are important indicator linked to battery health, as they are closely 

related to battery SOH [13-15]. Thereby, through the parameter adaptive identification over a long 

period of battery usage time, battery degradation can be evaluated by using the estimated parameter 

such as internal resistance.  

Adaptive parameter identification algorithm can identify the parameter uncertainty and the time-varying 

modes online, and provide parameter estimation in real-time. Thereby, for the battery parameter 

estimation using the battery signals of vehicles collected during real-world driving time, we propose to 

use the adaptive parameter identification algorithm to estimate battery resistance in real time. The 

NLMS (normalized least mean square) adaptive algorithm [6] is used and easily implemented in 

Matlab/Simulink. Compared to RLS method, the NLMS method is a simple yet practical method, which 

has a fast convergence rate and is easier for real-time implementation.  

In this paper, the parameter identification for the battery ECM model is conducted for a 51.2 V, 95Ah 

lithium-ion battery pack installed on three-wheeler electric bikes. The model parameter identification 

uses the real-time current, voltage and SOC signals of the battery operating in real-world driving of the 

vehicles. The ECM modeling performance is investigated and verified by comparing the battery voltage 

signal from the model with the real voltage signal. The identified ECM parameters over the period of 

time are used to evaluate the battery degradation. 

2. Battery ECM model  

ECM model is commonly used to reproduce the battery voltage response to a current in a time duration. 

Fig. 1 shows a well-known structure of battery ECM [16-17]. The structure reproduces the dynamic 

behavior and the voltage response of a battery which includes transient responses in time durations. In 

this model, OCV is the open circuit voltage, U is the battery terminal voltage, I is the current, R0 is the 

ohmic resistance of the connectors, electrodes and electrolyte, and the parallel RC elements, (R1, C1) to 

(Rn, Cn) connected in series are responsible for transient dynamics. 
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Fig. 1. Battery ECM model structure. 

 

Fig. 2. The first order ECM model. 

The equation governing the battery output voltage during discharge is given by 

𝑈ഥ(𝑘) = 𝑂𝐶𝑉(𝑘) − 𝑈(𝑘) − 𝑈ଵ(𝑘) − ⋯ − 𝑈(𝑘) ,                                                                              (1) 

where OCV is the open circuit voltage, 𝑈(𝑘) = 𝑅𝐼(𝑘), and each RC circuit has the differential 

equation as follows. 
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𝑈,    i= 1, 2, …, n,                                                                                               (2) 

which leads to the discretized equation given by 

𝑈(𝑘) = 𝑈(𝑘 − 1)𝑒
ష
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where Δ𝑡 = 𝑡(𝑘) − 𝑡(𝑘 − 1) is the sampling time. The transfer function of (3) is written as 
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The overall transfer function is therefore given by 
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where U is the difference between 𝑈ഥ and OCV. 

The general form of (5) can be written as 



ூ
=

బାభ௭షభାమ௭షమ…ା௭ష

ଵାభ௭షభାమ௭షమ…ା௭ష
  ,    or                                                                                                  (6) 

𝑈(𝑘) = −𝑎ଵ𝑈(𝑘 − 1) − 𝑎ଶ𝑈(𝑘 − 2) − ⋯ − 𝑎𝑈(𝑘 − 𝑛) + 𝑏𝐼(𝑘) + 𝑏ଵ𝐼(𝑘 − 1) + 𝑏ଶ𝐼(𝑘 − 2) +

⋯ + 𝑏𝐼(𝑘 − 𝑚).                                                                                                                       (7) 
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This paper focuses on the relationship of the identified parameters with the degradation of the battery 

by using the proposed adaptive algorithm based on the vehicle real-driving data. For simplicity, the first 

order ECM [17], as shown in Fig. 2, is thus considered. As such, we have  



ூ
= 𝑅 +

ோభ(ଵିாభ)௭షభ

ଵିாభ௭షభ    .                                                                                                              (8) 

It is easily to derive that in (7),  

 𝑏 = 𝑅, 𝑎ଵ = −𝐸ଵ, 𝑏ଵ = 𝑅ଵ(1 − 𝐸ଵ),  n=1, m=1.                                                                                   (9) 

  

Fig. 3. Block diagram illustrating adaptive parameter estimation algorithm. 

3. NLMS adaptive algorithm for ECM parameter identification 

Let the parameters in (7) be written as 𝜃 = [𝑏, 𝑏ଵ … , 𝑏, 𝑎ଵ, … , 𝑎]்,  and its estimate is 

denoted by 𝜃 = [𝑏, 𝑏ଵ … , 𝑏, 𝑎ොଵ, … , 𝑎ො]் .                                                                                 

Fig. 3 shows the schematic of adaptive parameter identification, where NLMS algorithm is adopted.  

NLMS algorithm is simpler than RLS algorithm. Thus, it is easier to be implemented, with a fast 

convergence time and a good accuracy [6]. According to NLMS algorithm,  

𝜃(𝑘) = 𝜃(𝑘 − 1) +
ట()()

ଵାట()ట()
, 𝑒(𝑘) = 𝑈(𝑘) − 𝑈(𝑘),                                                                                          (10) 

𝑈(𝑘) = 𝜃்(𝑘)𝜓(𝑘), 𝜓(𝑘) = [𝐼(𝑘), ⋯ , 𝐼(𝑘 − 𝑚), 𝑈(𝑘 − 1), … , 𝑈(𝑘 − 𝑛)]் .                        (11) 

Given by the current I and the terminal voltage U, the parameter estimate 𝜃(k) can be obtained by using 

(10)-(11). Afterwards, the resistance Ri and capacitance Ci can be calculated by solving (9). The 

algorithm (10)-(11) can be implemented in Simulink/Matlab. Battery current and voltage signals in real-

time are injected to the Simulink model, which is run over the time duration of the signals. By running 

the Simulink model, the estimated parameter vector 𝜃(k) can be obtained. 
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4. EV battery ECM parameter identification: results and discussion 

The battery pack is Lithium iron phosphate battery pack, i.e., LiFePO4 battery. The battery pack is 

installed in electric three-wheeler bikes. The battery pack includes sixteen prismatic battery cells 

connected in series. The rated capacity is 95AH and nominal voltage is 51.2 V.  Each battery cell has a 

rated capacity of 95 Ah and a nominal voltage of 3.2 V. The proposed ECM parameter estimation 

approach requires battery current, voltage and SOC signals in real time. The battery signals were 

collected in real-driving mode for 156 days. The sampling time is 1 sec.  As an example, Fig. 4 shows 

the SOC, current, and voltage of the battery in the vehicle in one day, respectively.  

To run the algorithm, the battery cell OCV is calculated by using the polynomial function (5) in [18], 

which applies to LiFePO4 battery. The OCV of the battery pack used in the vehicle is the cell OCV 

multiplied by 16 as the battery pack is composed of 16 cells in series connection. Because the OCV is 

calculated from the collected SOC real-time signal, SOC needs to be accurate, which can be ensured 

since it is available from BMS.  

The battery signals of current, voltage and SOC during each driving were injected to the NLMS 

algorithm implemented in Matlab/Simulink. By running the Simulink model, 𝑈(k) and 𝜃(k) were 

available. As an example, an estimated voltage, i.e., 𝑈(k), is shown in Fig. 4c and compared with the 

real voltage signal. The error between the estimated and the real voltage is shown in Fig. 4d. The mean 

square error (MSE) of the error is 0.0057, which is less than 1% of the voltage peak-to-peak value. This 

means that the ECM model well reproduces the voltage response of the battery to the given current. 

The estimated parameter 𝜃(k) were used to calculate the parameters R0, R1, C1 by solving (9). As a 

result, the estimated R0(k) time-sequence is shown in Fig. 5, on several dates selected to show the 

difference of R0(k) The final value of each R0(k) time-sequence is taken as the internal resistance value 

on each date or cycle. The obtained internal resistance in each cycle is shown in Fig. 6, where it increases 

due to the battery degradation. It is known that battery internal resistance will increase with battery 

degradation [19-21], which means that the obtained internal resistance plotted in Fig. 6 agrees with the 

results in literature. Similarly, the internal resistance R1 and the capacitance C1, were also obtained and 

plotted in Figs. 7 and 8, respectively. It is observed that R1 increases and C1 decreases with battery 

degradation. This is easily understood as battery capacity becomes lower with degradation which affects 

the amount of available charge in the battery, and the RC pair represents the charge-transfer 

phenomenon inside the battery [8]. 

To this end, it is seen that the proposed NLMS algorithm-based approach has accomplished real-time 

estimates of the EV battery internal resistance and capacitance, given by battery voltage, current and 

SOC signals during the vehicle real-driving. The battery degradation can therefore be evaluated by 
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investigating the change of the battery parameters which are estimated by applying the proposed 

approach for every time of driving. 

    a. SOC of the battery in one day. 

 

    b. Current of the battery. 

c. Voltage comparison. d. Voltage error (MSE=0.0057). 

Fig. 4. Signals of the battery in the vehicle in one day. 

 

Fig. 5. Estimated real-time R0 of the battery with 
the signals collected in the selected days. 

 

Fig. 6. Battery parameter degradation: R0 versus 
the battery usage time. 
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Fig. 7. Battery parameter degradation: Internal 
resistance R1 versus the battery usage time. 

 

Fig. 8. Battery parameter degradation: Capacitance 
C1 versus the battery usage time. 

5. Conclusion 

In the paper, the ECM parameter identification of the battery used in the electric vehicles have been 
studied. The parameters are internal resistances R0, R1 and capacitance C1. The battery current, voltage 
and SOC signals collected when the vehicle is in real-world driving have been used to identify these 
battery parameters. The adaptive algorithm NLMS has been utilized in the proposed approach, which 
has been implemented with these real-time signals. With the identified parameters, the ECM has well 
reproduced the voltage response to the current, and the identified ECM parameters have clearly reflected 
the degradation of the battery over the usage time. As such, the proposed approach can be applied to 
evaluate the battery degradation with the real-time signals through the parameter identification. The 
proposed ECM parameter identification approach uses real-time signals of current, voltage and SOC, 
thus applicable to the practical situations with temperature effect and other battery chemistries. 
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References 

[1] L. Lam, and P. Bauer, Practical capacity fading model for Li-ion battery cells in electric vehicles, 
IEEE Trans. Power Electronics, 28(12), pp. 5910-5918, 2013.                                                                                             

[2] X. Han, X. Feng, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, A comparative study of charging 
voltage curve analysis and state of health estimation of lithium-ion batteries in electric vehicle, 
Automotive Innovation, 2(4), pp. 263-275, 2019. 

[3] E. Ezemobi, M. Silvagni, A. Mozaffari, A. Tonoli, and A. Khajepour, State of health estimation of 
lithium-ion batteries in electric vehicles under dynamic load conditions, Energies, 2022, 15, 1234. 

[4]T. Huria, J. Gazzarri, and P. Sanghvi, Battery model parameter estimation using a layered technique: 
An example using a lithium iron phosphate cell, 2013 SAE World Congress, Detroit Michigan, US, 16-
18 April 2013. 

[5] Rafael M. S. Santos, Caio L. G. de S. Alves, Euler C. T. Macedo, Juan M. M. Villanueva, and Lucas 
V. Hartmann, Estimation of lithium-ion battery model parameters using experimental data, The 2nd 
International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), Fortaleza, 
Brazil, 28 Aug. to 1 Sept. 2017. 



5th Singapore International Non-destructive Testing Conference and Exhibition (SINCE2025) 

  8 

[6] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 
1999. 

[7] D. Zhou, A. Ravey, F. Gao, D. Paire, A. Miraoui, and K. Zhang, Online estimation of state of charge 
of Li-ion battery using an iterated extended Kalman particle filter, 2015 IEEE Transportation 
Electrification Conference and Expo (ITEC 2015), Dearborn, MI, USA, 14-17 June 2015. 

[8] M. -K. Tran, and M. Fowler, Sensor fault detection and isolation for degrading Lithium-Ion batteries 
in electrical vehicles using parameter estimation with recursive least squares, Batteries, 6, 1, 2020. 

[9] K. Sarrafan, K.M. Muttaqi, and D. Sutanto, Real-time state-of-charge tracking embedded in the 
advanced driver assistance system of electric vehicles, IEEE Trans. Intelligent Vehicles, 5 (3), pp. 497-
507, 2020. 

[10] M. Hossain, M. E. Haque, and M. T. Arif, Kalman filtering techniques for the online model 
parameters and state of charge estimation of the Li-ion batteries: A comparative analysis, Journal of 
Energy Storage, 51, 104174, 2022. 

[11] X. Zhang, Y. Wang, C. Liu, and Z. Chen, A novel approach of battery pack state of health 
estimation using artificial intelligence optimization algorithm, Journal of Power Sources, 376, pp. 191-
199, 2018. 

[12] L. Vichard, A. Ravey, P. Venet, F. Harel, S. Pelissier, and D. Hissel, A method to estimate battery 
SOH indicators based on vehicle operating data only, Energy, 225, 2021, 120235. 

[13] M. Bahramipanah, D. Torregrossa, R. Cherkaoui, and M. Paolone, Enhanced equivalent electrical 
circuit model of Lithium-based batteries accounting for charge redistribution, state-of-health, and 
temperature effects, IEEE Trans. on Transportation Electrification, 3(3), pp. 589-599, 2017. 

[14] H. Chaoui, H. Gualous, Online parameter and state estimation of lithium ion batteries under 
temperature effects, Electric Power Systems Research 145, pp. 73-82, 2017. 

[15] P. Shen, M. Ouyang, L. Lu, J. Li, and X. Feng, The co-estimation of state of charge, state of health, 
and state of function for lithium-ion batteries in electric vehicles, IEEE Transactions on Vehicular 
Technology, 67(1), pp. 92-103, 2018. 

[16] H. Chaoui, H. Gualous, Online parameter and state estimation of lithium-ion batteries under 
temperature effects, Electric Power Systems Research, 145, pp. 73-82, 2017. 

[17] M. Einhorn, and F. Conte, Comparison, selection, and parameterization of electrical battery models 
for automotive applications, IEEE Power Electron., 28(3), pp. 1429-1437, Mar. 2013. 

[18] Sidhu, A. Izadian, and A. Anwar, Adaptive nonlinear model-based fault diagnosis of Li-Ion 
batteries, IEEE Trans. on Industrial Electronics, 62(2), pp. 1002-1011, 2015. 

[19] J. Wang, P. Liu, J. H. -Garner, and E. Sherman, Cycle-life model for graphite-LiFePO4 cells, 
Journal of Power Sources, 196, pp. 3942-3948, 2011. 

[20] M. Jafari, A. Gauchia, S. Zhao, K. Zhang, and L. Gauchia, Electric vehicle battery cycle aging 
evaluation in real-world daily driving and vehicle-to-grid services, IEEE Trans. on Transportation 
Electrification, 4(1), pp. 122-134, 2018. 

[21] A. Guha, and A. Patra, State of health estimation of Lithium-Ion batteries using capacity fade and 
internal resistance growth models, IEEE Transactions on Transportation Electrification, 4 (1), pp. 135-
146, 2018. 


