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Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the
negative even integers and complex numbers with real part 1

2 . In 2011, Solé and and Planat stated
that the Riemann Hypothesis is true if and only if the inequality

∏
q≤qn

(
1 + 1

q

)
> eγ

ζ(2) × log θ(qn)
is satisfied for all primes qn > 3, where θ(x) is the Chebyshev function, γ ≈ 0.57721 is the
Euler-Mascheroni constant and ζ(x) is the Riemann zeta function. Using this result, we create a
new criterion for the Riemann Hypothesis. We prove the Riemann Hypothesis is true using this
new criterion.
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1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part 1

2 . In mathematics, the Chebyshev
function θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x, where log is the
natural logarithm [1]. We denote the nth prime number as qn. We know the following property
for the Chebyshev function and the nth prime number:

Proposition 1.1. For all n ≥ 2 [2]:

θ(qn)
log qn+1

≥ n × (1 −
1

log n
+

log log n

4 × log2 n
).

Proposition 1.2. For n ≥ 8602 [2]:

qn ≤ n × (log n + log log n − 0.9385).
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In mathematics, Ψ = n ×
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ function, where q | n means

the prime q divides n. Say Dedekinds(qn) holds provided∏
q≤qn

(
1 +

1
q

)
>

eγ

ζ(2)
× log θ(qn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and ζ(x) is the Riemann zeta func-
tion. The importance of this inequality is:

Proposition 1.3. Dedekinds(qn) holds for all prime numbers qn > 3 if and only if the Riemann
Hypothesis is true [3].

We define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [4]. We
know the following formula:

Proposition 1.4. We have that [5]:

∞∑
k=1

(
log(

qk

qk − 1
) −

1
qk

)
= γ − B = H.

In addition, we know this value of the Riemann zeta function:

Proposition 1.5. It is known that [6]:

ζ(2) =
∞∏

k=1

q2
k

q2
k − 1

=
π2

6
.

Putting all together yields a proof for the Riemann Hypothesis using the Chebyshev function.

2. What if the Riemann Hypothesis were false?

Theorem 2.1. If the Riemann Hypothesis is false, then there are infinitely many prime numbers
qn for which Dedekinds(qn) does not hold.

Proof. The Riemann Hypothesis is false, if there exists some natural number x0 ≥ 5 such that
g(x0) > 1 or equivalent log g(x0) > 0 [3]:

g(x) =
eγ

ζ(2)
× log θ(x) ×

∏
q≤x

(
1 +

1
q

)−1

.

We know the bound [3]:

log g(x) ≥ log f (x) −
2
x

where f is introduced in the Nicolas paper [1]:

f (x) = eγ × log θ(x) ×
∏
q≤x

(
1 −

1
q

)
.
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When the Riemann Hypothesis is false, then there exists a real number b < 1
2 for which there are

infinitely many natural numbers x such that log f (x) = Ω+(x−b) [1]. According to the Hardy and
Littlewood definition, this would mean that

∃k > 0,∀y0 ∈ N,∃y ∈ N > y0 : log f (y) ≥ k × y−b.

That inequality is equivalent to log f (y) ≥
(
k × y−b ×

√
y
)
× 1
√

y , but we note that

lim
y→∞

(
k × y−b ×

√
y
)
= ∞

for every possible positive value of k when b < 1
2 . In this way, this implies that

∀y0 ∈ N,∃y ∈ N > y0 : log f (y) ≥
1
√

y
.

Hence, if the Riemann Hypothesis is false, then there are infinitely many natural numbers x such
that log f (x) ≥ 1

√
x . Since 2

x = o( 1
√

x ), then it would be infinitely many natural numbers x0

such that log g(x0) > 0 [3]. In addition, if log g(x0) > 0 for some natural number x0 ≥ 5, then
log g(x0) = log g(qn) where qn is the greatest prime number such that qn ≤ x0. Actually,

∏
q≤x0

(
1 +

1
q

)−1

=
∏
q≤qn

(
1 +

1
q

)−1

and
θ(x0) = θ(qn)

according to the definition of the Chebyshev function.

3. A Key Theorem

Theorem 3.1.
∞∑

k=1

(
1
qk
− log(1 +

1
qk

)
)
= log(ζ(2)) − H.

Proof. We obtain that

log(ζ(2)) − H = log(
∞∏

k=1

q2
k

q2
k − 1

) − H

=

∞∑
k=1

log(
q2

k

(q2
k − 1)

)
 − H

=

∞∑
k=1

log(
q2

k

(qk − 1) × (qk + 1)
)
 − H

=

∞∑
k=1

(
log(

qk

qk − 1
) + log(

qk

qk + 1
)
)
− H
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where

=

∞∑
k=1

(
log(

qk

qk − 1
) − log(

qk + 1
qk

)
)
− H

=

∞∑
k=1

(
log(

qk

qk − 1
) − log(1 +

1
qk

)
)
−

∞∑
k=1

(
log(

qk

qk − 1
) −

1
qk

)

=

∞∑
k=1

(
log(

qk

qk − 1
) − log(1 +

1
qk

) − log(
qk

qk − 1
) +

1
qk

)

=

∞∑
k=1

(
1
qk
− log(1 +

1
qk

)
)

and the proof is done.

4. A New Criterion

Theorem 4.1. Dedekinds(qn) holds if and only if the inequality

∞∑
k=1

(
1
qk
− (χ{x: x>qn}(qk)) × log(1 +

1
qk

)
)
> B + log log θ(qn)

is satisfied for the prime number qn, where the set S = {x : x > qn} contains all the real numbers
greater than qn and χS is the characteristic function of the set S (This is the function defined by
χS (x) = 1 when x ∈ S and χS (x) = 0 otherwise).

Proof. When Dedekinds(qn) holds, we apply the logarithm to the both sides of the inequality:

log(ζ(2)) +
∑
q≤qn

log(1 +
1
q

) > γ + log log θ(qn)

log(ζ(2)) − H +
∑
q≤qn

log(1 +
1
q

) > B + log log θ(qn)

∞∑
k=1

(
1
qk
− log(1 +

1
qk

)
)
+

∑
q≤qn

log(1 +
1
q

) > B + log log θ(qn).

Let’s distribute the elements of the inequality to obtain that

∞∑
k=1

(
1
qk
− (χ{x: x>qn}(qk)) × log(1 +

1
qk

)
)
> B + log log θ(qn)

when Dedekinds(qn) holds. The same happens in the reverse implication.
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5. The Main Insight

Theorem 5.1. The Riemann Hypothesis is true if the inequality

θ(qn)1+ 1
qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Proof. The inequality

∞∑
k=1

(
1
qk
− (χ{x: x>qn}(qk)) × log(1 +

1
qk

)
)
> B + log log θ(qn)

is satisfied when
∞∑

k=1

(
1
qk
− (χ{x: x≥qn}(qk)) × log(1 +

1
qk

)
)
> B + log log θ(qn)

is also satisfied, where the set S = {x : x ≥ qn} contains all the real numbers greater than or
equal to qn. In the inequality

∞∑
k=1

(
1
qk
− (χ{x: x≥qn}(qk)) × log(1 +

1
qk

)
)
> B + log log θ(qn)

only change the values of

log(1 +
1
qn

) + log log θ(qn)

and
log log θ(qn+1)

between the consecutive primes qn and qn+1. It is enough to show that

log(1 +
1
qn

) + log log θ(qn) ≥ log log θ(qn+1)

for all sufficiently large prime numbers qn. Indeed, the inequality

∞∑
k=1

(
1
qk
− (χ{x: x≥qn}(qk)) × log(1 +

1
qk

)
)
> B + log log θ(qn)

is the same as
∞∑

k=1

(
1
qk
− (χ{x: x≥qn+1}(qk)) × log(1 +

1
qk

)
)

> B + log log θ(qn+1) + log(1 +
1
qn

) + log log θ(qn) − log log θ(qn+1)

where qn and qn+1 are consecutive primes. If the Riemann Hypothesis is false, then

log(1 +
1
qn

) + log log θ(qn) ≥ log log θ(qn+1)
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must be violated for infinitely many n’s, since Dedekinds(qn+1) will not hold for infinitely many
qn+1’s. By contraposition, the Riemann Hypothesis should be true when the previous inequality
is satisfied for all sufficiently large prime numbers qn. This is

log
(
(1 +

1
qn

) × log θ(qn)
)
≥ log log θ(qn+1).

That is equivalent to
log log θ(qn)1+ 1

qn ≥ log log θ(qn+1).

To sum up, the Riemann Hypothesis is true when

θ(qn)1+ 1
qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

6. The Main Theorem

Theorem 6.1. The Riemann Hypothesis is true.

Proof. The Riemann Hypothesis is true when

θ(qn)1+ 1
qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn. That is the same as

θ(qn)1+ 1
qn ≥ θ(qn) + log(qn+1)

θ(qn)
1

qn ≥ 1 +
log(qn+1)
θ(qn)

after dividing the both sides of the inequality by θ(qn). We would only need to prove that

1 +
log θ(qn)

qn
≥ 1 +

1

n × (1 − 1
log n +

log log n
4×log2 n

)

because of
θ(qn)

log qn+1
≥ n × (1 −

1
log n

+
log log n

4 × log2 n
)

θ(qn)
1

qn = e
log θ(qn )

qn ≥ 1 +
log θ(qn)

qn
.

That is equivalent to (
n × (1 −

1
log n

+
log log n

4 × log2 n
)
)
× log θ(qn) ≥ qn.

Therefore,(
n × (1 −

1
log n

+
log log n

4 × log2 n
)
)
× log θ(qn) ≥ n × (log n + log log n − 0.9385)
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which is (
1 −

1
log n

+
log log n

4 × log2 n

)
× log θ(qn) + 0.9385 ≥ log n + log log n

θ(qn)1− 1
log n+

log log n
4×log2 n × e0.9385 ≥ n × log n

e0.9385 ≥
n × log n

θ(qn)1− 1
log n+

log log n
4×log2 n

.

However, we know that

lim
n→∞

n × log n

θ(qn)1− 1
log n+

log log n
4×log2 n

= lim
n→∞

n × log n

θ(qn)1− 1
log n+

log log n
4×log2 n

= 1

since

lim
n→∞

(
1 −

1
log n

+
log log n

4 × log2 n

)
= 1

θ(qn) ∼ qn, (n→ ∞)

qn ∼ n × log n, (n→ ∞).

Moreover, we can see that e0.9385 > 2.5561. By the definition of the limit superior yields the
proof of the Riemann Hypothesis.
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