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Abstract. Reconfigurable intelligent surfaces (RIS) are widely perceived
as a transformative technology for 5G and beyond, enabling dynamic
programming of wireless propagation channels. However, acquiring ac-
curate channel state information (CSI) remains a major challenge in
RIS-assisted wireless communication systems. Most existing research as-
sumes the availability of full CSI, which is often impractical due to the
passive nature of the RIS elements and the high-dimensional nature of
the channels. To fill this gap, we introduce a two-stage framework, called
the denoising super-resolution network (DSRnet), to estimate full CSI
from partial representations. Then the estimated full CSI is utilized to
maximize the weighted sum-rate (WSR) via phase shift prediction. DSR-
net employs a hierarchical architecture consisting of a super-resolution
sub-network for initial estimation, followed by a denoising sub-network
enhanced with spatial attention modules for refined processing. The pro-
posed model achieves impressive channel estimation performance with an
NMSE of −13.14 dB while maintaining computational efficiency, utilizing
only 80, 916 parameters. When the estimated full CSI is used for phase
shift prediction, it shows an approximately 15% improvement in WSR
compared to the methods with partial CSI. These findings verify DSR-
net as a practical and efficient solution for large-scale RIS deployments,
effectively balancing high performance with reduced CSI overhead.

Keywords: Reconfigurable intelligent surfaces · deep learning · denois-
ing · channel state information · super-resolution

1 Introduction

Reconfigurable intelligent surfaces (RIS) have emerged as a promising technol-
ogy for beyond 5G wireless communication systems. A RIS typically consists of
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a large array of nearly passive elements that can be individually controlled by
an intelligent controller to dynamically adjust the phase shifts of incident sig-
nals [12], [15]. By forming a continuous electromagnetically active surface, these
elements alter the direction of signal propagation, effectively enhancing through-
put, spectral efficiency, and coverage in wireless systems. The energy efficiency
of these surfaces, enabled by nearly passive components, further enhances their
practical viability and appeal [13]. Furthermore, RIS is proposed to manipulate
channel property, thereby enhancing the performance of multiple access tech-
nologies [9]. Among the potential applications of RIS, this paper focuses on
the weighted sum-rate (WSR) maximization problem in the RIS-assisted down-
link broadcast channel. The WSR maximization problem has been studied in the
literature. In [5], authors proposed a low-complexity block coordinate descent al-
gorithm to maximize the WSR in RIS-aided multi-input-single-output (MISO)
systems through joint optimization of beamforming and phase shifts. In [6],
authors proposed an alternating optimization algorithm that used majorization-
minimization (MM) for RIS-aided MISO systems, establishing the fundamental
framework for joint optimization of active beamforming and passive reflection
coefficients. The authors in [19] extended this to multigroup-multicast scenar-
ios. They developed two efficient algorithms, a second-order cone programming-
based MM method and a low-complexity closed-form solution approach, to max-
imize the sum-rate while handling the more complex group-based transmission
constraints. Furthermore, in active RIS deployments, successive refinement algo-
rithms for passive beamforming enhancement and successive convex approxima-
tion techniques for signal-to-noise ratio (SNR) optimization. However, these it-
erative methods exhibit significant scalability limitations. Most implementations
are constrained to handling 100 or fewer RIS elements, with even advanced ap-
proaches extending to only about 400 elements. This limitation presents a critical
challenge, as practical deployments often require several hundred to thousands of
RIS elements to achieve adequate link budgets in diverse and complex environ-
ments [8]. In addition, these methods often rely on suboptimal approximations,
which may compromise overall system performance and limit their effectiveness
in real-world scenarios.

The advent of deep learning (DL) has driven significant advances in various
domains of wireless communication, including modulation recognition [16], chan-
nel state information (CSI) reconstruction [2], [11] and resource allocation [17].
In recent years, different DL-based models have been utilized to optimize RIS-
aided communication. Although DL-based frameworks significantly reduce in-
ference time post-training and offer higher flexibility due to the universal ap-
proximation theorem, existing implementations often struggle with scalability
challenges. Current DL approaches, including conventional neural networks, re-
inforcement learning frameworks, and meta-learning paradigms, remain limited
by the complexity of the model that grows proportionally to the RIS elements
[9]. Consequently, most machine learning-based solutions operate with restricted
RIS configurations, typically not exceeding 100 [4], [7] elements.



DRSNet in RIS-Aided Wireless Communication 3

CSI acquisition presents another critical challenge in RIS-assisted commu-
nications. The majority of the existing literature assumes full CSI availability,
an impractical requirement given the large number of RIS elements in realistic
deployments. Although codebook-based RIS optimization methods have been
proposed as potential solutions [14], the associated beam training overhead re-
mains a significant implementation barrier. As RIS surfaces grow larger with
hundreds or thousands of elements to meet coverage and capacity demands, ac-
quiring full CSI becomes increasingly impractical and resource intensive due to
the massive overhead. In [10], the authors addressed this challenge by introduc-
ing a scalable DL model called RISnet which was further improved in [9]. RISnet
introduced two variants: one assumed the availability of the full CSI and another
used partial CSI from just a few active elements to configure the phase shifts
of the RIS elements. Although their studies showed that RISnet with partial
CSI performs well compared to RISnet with full CSI scenarios in deterministic
channels, the approach did not estimate the complete channel information.

In our paper, we are motivated by the fact that obtaining full CSI will enhance
the RIS phase shift configuration, as it would provide comprehensive channel
knowledge for the optimization process. Therefore, to improve the phase shift
prediction and the WSR, we propose a novel two-stage DL model, called deep
super-resolution network (DSRnet), to estimate the full CSI from the partial
inputs. The DSRnet consists of a super-resolution sub-network and a denoising
sub-network. In the first stage, the super-resolution sub-network estimates the
full CSI from partial representation. Then, the estimated full CSI is refined by
the denoising sub-network. Finally, the refined full CSI is input into the RISnet
model introduced in [10] for phase shift prediction, aiming to maximize WSR.
The main contributions of our work are summarized as follows:

– We propose a novel two-stage network that efficiently estimates the full CSI
from partial measurements through a hierarchical design. It begins with a
super-resolution sub-network to generate an initial estimation, followed by a
denoising sub-network that employs refinement techniques. This cascade de-
sign enhances phase shift accuracy while minimizing the overhead associated
with CSI measurements.

– The denoising sub-network employs inception-inspired parallel dilated con-
volution layers to effectively capture local and global CSI features across
various scales. In addition, it integrates channel attention mechanisms to
adaptively weight different channel regions based on their relevance. This
dual-mechanism design enhances the accuracy of CSI estimation by effi-
ciently suppressing noise while preserving critical channel characteristics.

– Extensive simulations are conducted to evaluate the performance of our pro-
posed DSRNet-enhanced hybrid model in improving WSR. The comparative
study reveals that feeding the estimated full CSI from our DSRnet approach
into the existing RISnet. This results in an approximate 15% improvement
in WSR.

The remainder of the paper is organized as follows. Section 2 discusses the
system model, while Section 3 provides the architecture of the proposed model.
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Section 4 presents numerical results and includes an ablation study to evaluate
the performance of the proposed model. Finally, Section 5 offers concluding
remarks on the findings of our study.

2 System Model

In this paper, we consider a multi-user MISO system where RIS serves a single
multi-antenna base station (BS) and NK users, as shown in Fig. 1. The BS is
equipped with NT antennas, and the RIS consists of NM reflecting elements. The
antenna arrays of the BS, as well as the RIS, are arranged in a uniform linear
array. The channel from BS to RIS is denoted by HBS-RIS ∈ CNM×NT . The
channel from RIS to users is indicated by HRIS-User ∈ CNK×NM and the direct
channel from BS to the user is indicated by HDirect ∈ CNK×NT . The objective
is to employ space-divison multiple access to maximize the users’ sum-rate. The
BS performs precoding under a maximum transmit power constraint ETr. Each
RIS element receives the signal from the BS, applies a complex phase shift to
it, and reflects the signal without altering its amplitude. The RIS applies phase
shifts to the incident signals through a diagonal matrix Θ ∈ CNM×NM , where
the diagonal element θm = ejϕm , represents the phase shift, ϕm ∈ [0, 2π) applied
by the mth RIS element.

Fig. 1. System model of the RIS-aided MISO system with partial CSI.

The received signal vector y ∈ CNK×1 at the users can be represented as
follows:

y =
(
HRIS-UserΘHBS-RIS +HDirect

)
Vx+ n, (1)

where V ∈ CNT×NK is the precoding matrix, x ∈ CNK×1 is the transmitted
signal, and n ∈ CNK×1 is the thermal noise.

In practical implementations, obtaining the full CSI for all RIS elements
poses substantial overhead. Therefore, this paper considers partial CSI instead
of full CSI. Specifically, we consider a system where only NS ≪ NM elements are
equipped with RF chains for channel estimation, yielding partial CSI, HPartial ∈
CNK×NS . To effectively process this partial CSI, we define channel features that
capture both amplitude and phase information. For user k and reflecting element
m, we construct a feature vector fk,m as:

fk,m =

[
|HPartial,k,m|

arg(HPartial,k,m)

]
∈ R2×1, (2)
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where |·| represents the amplitude and arg(·) represents the phase of the complex
channel gain from the mth reflecting element to user k. The partial channel
feature X ∈ R2×NK×NS forms a three-dimensional tensor containing all fk,m
features.

To handle the direct channel component, we define Γ = HDirectH
′
BS-RIS de-

notes the pseudo-inverse of the BS-RIS channel H′
BS-RIS . For each user k and

reflecting element m, we construct a feature vector δk,m as:

δk,m =

[
|Γk,m|

arg(Γk,m)

]
∈ R2×1. (3)

The complete direct channel feature ∆ ∈ R2×NK×NS contains all δk,m fea-
tures. The channel matrix H is then estimated using the DSRNet model as:

Ĥ = FDSR(X). (4)

So, Eq. 1 becomes:
y =

(
ĤΘHBS-RIS + Γ

)
Vx+ n. (5)

The combined channel matrixC = ĤΘHBS-RIS+Γ captures the overall effect
of both direct and RIS-assisted paths. The signal-to-noise-plus-interference ratio
(SNIR) is:

SINRn,k =
|Ckvk|2∑

n ̸=k |Ckvn|2 + σ2
, (6)

where vk is the kth column of V, σ2 is the noise power, and Ck represents the
kth row of the combined channel matrix C. The system aims to maximize the
weighted sum-rate subject to transmit power and RIS phase shift constraints:

WSR =

NK∑
k=1

ωk log2(1 + SINRk), (7)

where ωk is a weight for user k, with the constraint:

tr(VHV) ≤ ETr. (8)

The weighted minimum mean squared error precoder is considered for the pre-
coding at the BS and RISnet is used to predict Θ from the full CSI.

3 Structure of the Proposed Model

This section introduces the architecture of the proposed DSRnet model for
CSI estimation. The network employs a dual-network design, divided into two
primary components: the super-resolution sub-network and the denoising sub-
network. Both components will be elaborated on in the following subsections.

3.1 Super Resolution Sub-Network

The super-resolution sub-network (see Fig. 3(a)) is designed to estimate full CSI
from partial CSI data by leveraging a series of convolutional (conv) blocks with
varying kernel sizes and upsampling layers. This architecture enables the gen-
eration of high-resolution CSI from lower-resolution inputs. Initially, the partial
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Fig. 2. Architecture of the proposed DSRnet for CSI estimation.

CSI input, with dimensions of 4×4, passes through the first conv block, featuring
a kernel size of 9 × 9, followed by a Leaky ReLU (LReLU) activation function.
The LReLU is defined as:

LReLU(z) =

{
z, if z > 0,

βz, otherwise.
(9)

where β is a hyper-parameter that scales the negative values of z. This initial
layer captures a broad spatial context. The resulting feature map is then upsam-
pled to a resolution of 12 × 12. Following this, a 1 × 1 conv layer is applied to
refine the upsampled features without increasing the spatial dimensions. Subse-
quently, the output undergoes an additional upsampling step to achieve a 36×36
resolution. The final step involves a conv block with a 5×5 kernel, which refines
and accurately reconstructs the high-resolution CSI output to match the original
full-resolution dimension.

Fig. 3. (a) Super-resolution sub-network, (b) Spatial feature extraction block, (c) Local
residual block, (d) Channel attention block.

3.2 Denoising Sub-Network

The denoising sub-network is designed to refine the estimated full CSI. This
sub-network consists of two sequential spatial attention modules (SAM). The
output from the super-resolution sub-network is first passed through the ini-
tial SAM, which enhances critical spatial features while suppressing noise. This
refined output is then additively combined with the original output of the super-
resolution sub-network, forming an intermediate representation. This combined
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representation is subsequently fed into the second SAM for further refinement.
The detailed architecture of each SAM is described as follows:

The SAM consists of a spatial feature extraction block (SFEB), two local
residual blocks (LRB) a channel attention block (CAB). Fig. 3(b), 3(c), and 3(d)
depicts the detailed architectures of SFEB, LRBs and CAB, respectively. The
SFEB includes multiple parallel conv blocks with 3× 3 kernels, each configured
with different dilation rates to capture varying spatial details. Specifically, a 3×3
conv kernel with a dilation rate (d) of 2 acts as an effective 5×5 kernel; similarly,
for d = 3 and d = 4, the effective kernel sizes are 7 × 7 and 9 × 9, respectively.
These varied kernel sizes allow the module to extract a broad range of spatially
denoised features from the reconstructed CSI provided by the SR sub-network.

The spatial features extracted across different channels are concatenated with
the super-resolution CSI and passed to subsequent layers. This concatenated
feature map is further processed through two LRBs, enhancing feature learning.
Global average pooling (GAP) is applied to incorporate global contextual infor-
mation. A gating mechanism further refines this process by capturing channel
dependencies: the GAP output is first downsampled using a convolutional layer
and then processed through a sigmoid activation function (σ), producing soft
attention weights ranging between 0 and 1. These weights adaptively rescale the
input to the SAM module, enhancing feature selectivity.

The SAM also utilizes multiple long and short residual connections to retain
previously extracted features, which help effectively mitigate gradient vanish-
ing and explosion issues. The output from the two successive SAMs undergoes
upsampling via a convolutional block, which is combined with the input and
further processed through a final convolutional block. This output is then fed to
the RISNet model for phase shift prediction, ensuring optimized performance.

4 Result and Discussion
4.1 Dataset and Training Strategy

The training and evaluation datasets are generated using the DeepMIMO ray-
tracing simulator [1], which provides realistic CSI for RIS-aided communication
scenarios. The dataset consists of channel data between a base station equipped
with 9 antennas, a 36×36 RIS array (1296 elements), and multiple user terminals.
For training purposes, we use 20, 480 samples while reserving 1, 024 samples for
testing. In the partial CSI scenario, only 16 RIS elements (4 × 4) are used for
channel estimation, representing approximately 1.2% of the total RIS elements.
The network is trained using Adam Optimizer with an initial learning rate of
9 × 10−4. As our objective is jointly optimizing the CSI estimation as well as
the WSR, we employ a hybrid loss function that dynamically balances between
channel reconstruction accuracy and system throughput optimization:

L =

{
α · Lrec + (1− α) · Lwsr for 0 ≤ epoch < T

Lwsr for epoch ≥ T
(10)

where, Lrec is the reconstruction loss and Lwsr is the WSR loss. α and T are
the weighting factor and transition epoch, respectively. In our experiments we
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have considered α = 0.5 and T = 200. These values were chosen via extensive
hyper-parameter tuning. The (Lrec) can be represented as: Lrec = ∥Ĥ − H∥22.
The Lwsr can be defined as: Lwsr = − log2(1+SINR), where SINR is the signal-
to-interference-plus-noise ratio.

4.2 Evaluation Metrics

In order to evaluate the performance of the proposed CSI estimation model and
facilitate meaningful comparisons, we employ three metrics that capture dis-
tinct aspects of CSI estimation quality. They are normalized mean square error
(NMSE), peak signal-to-noise ratio (PSNR), and complex correlation coefficient
(ρ). The NMSE measures the normalized difference between the estimated chan-
nel matrix and the ground truth, defined as:

NMSE (dB) = 10 log10

(
E

[
∥Ĥ−H∥22

∥H∥22

])
, (11)

where E denotes the values of expectation. PSNR quantifies the noise level sen-
sitivity of the CSI estimation model and can be defined as:

PSNR (dB) = 10 log10

(
max(H)

MSE2

)
, (12)

where MSE is the cumulative squared error between Ĥ and H. The complex cor-
relation coefficient ρ represents the similarity between the actual and estimated
channels in both magnitude and phase:

ρ =
E
[
(H− H̄) · (Ĥ− ¯̂H)

∗]√
E
[
|H− H̄|2

]
· E
[
|Ĥ− ¯̂H|2

] , (13)

where H̄ and ¯̂H represent the mean values of the actual and the estimated
channel matrices and (·)∗ denotes the complex conjugate.

4.3 Ablation Study

To understand the effectiveness of our proposed DSRnet architecture and inves-
tigate the impact of the model depth, we conducted an ablation study focusing
on the number of SAMs. Table 1 presents the comparative analysis of mod-
els with one, two, and three SAM configurations. The results demonstrate that
increasing the number of SAM modules generally improves the estimation per-
formance. The model with one SAM achieves an NMSE of −11.19 dB and a
PSNR of 23.08 dB with 44, 692 parameters. Adding a second SAM significantly
improves performance, reaching an NMSE of −13.14 dB and a PSNR of 25.75
dB, while requiring 80, 916 parameters. This represents an improvement of ap-
proximately 2 dB in NMSE and 2.67 dB in PSNR. Further increasing to three
SAM modules yields marginal improvements, with NMSE reaching −13.65 dB
and PSNR improving to 26.01 dB. However, this configuration requires 117, 140
parameters, representing a significant increase in model complexity. Moreover,
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the ρ saturates at 0.934 for both two and three SAM configurations, which means
that, two modules are sufficient for capturing the complex channel characteris-
tics. Based on these results, we selected the double-SAM configuration as our
final architecture, as it provides an optimal balance between performance and
computational efficiency for practical RIS deployments.

Table 1. Ablation Study

Method NMSE (dB) PSNR ρ Number of Parameters

Single SAM −11.19 23.08 0.91 44, 692

double SAM −13.77 26.39 0.934 80, 916

Triple SAM −13.80 26.38 0.934 117, 140

Fig. 4. Comparison between training and testing loss of DSRnet with SRCNN and
DnCNN

4.4 Chanel Estimation Performance

In order to evaluate our proposed DSRnet architecture regarding CSI estimation
performance, we compare it with two baseline methods: super-resolution convo-
lutional neural network (SRCNN)[3] and denoising convolutional neural network
(DnCNN)[18]. The training and testing loss curves (see Fig. 4) demonstrate that
DSRnet and DnCNN achieve a similar convergence performance with reconstruc-
tion loss values of approximately 0.23, significantly outperforming SRCNN which
converges to a higher loss of 0.48. This highlights DSRnet’s remarkable stability
and generalization capabilities, exhibiting minimal fluctuations in both training
and testing phases compared to DnCNN. As shown in Table 2, our proposed
model outperforms across all evaluation metrics while maintaining a compact
and efficient model size. The DSRnet achieves an NMSE of −13.14 dB, an im-
provement of approximately 2.9 dB over DnCNN (−10.24 dB) and nearly 11
dB over SRCNN (−2.41 dB). This reduction in NMSE indicates that our model
demonstrates superior accuracy in reconstructing the CSI from partial obser-
vations. Regarding PSNR, DSRnet achieves 25.75 dB, outperforming DnCNN
(25.02 dB) and SRCNN (15.01 dB) by considerable margins. The higher PSNR
value indicates that our model generates reconstructions with superior signal
quality and reduced distortion compared to the baseline methods. Furthermore,
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the ρ of 0.934 achieved by our model verifies superior accuracy in reconstruct-
ing both amplitude and phase information of the complex-valued channel states,
surpassing both DnCNN (0.930) and SRCNN (0.664). This high complex cor-
relation demonstrates that our model better preserves complex-valued channel
characteristics, which is crucial for accurate CSI estimation in wireless commu-
nications.

Moreover, our proposed model achieves these superior results with only 80,916
parameters, significantly outperforming DnCNN (121, 792) and striking a bet-
ter balance of performance and complexity compared to the simpler SRCNN
(7, 874). This parameter efficiency is important for practical deployment in resource-
constrained environments and real-time applications in RIS-aided communica-
tion systems.

Table 2. Comparison of the Methods

Method NMSE (dB) PSNR ρ Number of Parameters

SRCNN −2.41 15.01 0.664 7,874

DnCNN −12.40 25.02 0.930 121, 792

Proposed Model -13.77 26.39 0.934 80, 916

4.5 Comparison with RISnet Model

Fig. 5. (a) Comparison between training and testing performance of DSRnet hybrid
optimization with RISnet partial and full CSI, (b) The comparison of test results for
different methods

The ultimate objective of this work is to optimize phase shift configurations
for a large-scale RIS through joint channel estimation and WSR maximization.
Therefore, we compare our proposed DSRnet-enhanced hybrid model with the
RISnet models in terms of WSR maximization. Note that here we consider two
RISnet variants, one with partial CSI and another with pre-known full CSI. In
the DSRnet-enhanced hybrid model, the reconstructed full CSI from the DSRnet
was fed into RISnet. The training and testing curves of the hybrid model shown
in Fig. 5 (a), exhibit minimal overfitting compared to RISnet, highlighting the
superior generalization capability of the proposed approach. Moreover, Fig. 5(b)
shows that the proposed hybrid approach achieves considerably higher WSR
performance than the original RISnet approach. The DSRnet-enhanced hybrid
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model shows a WSR of 3.51 bits/s, approximately 15% improvement, when com-
pared to the RISnet model with partial CSI. The improved performance of the
hybrid model can be attributed to its superior channel estimation capabilities,
which effectively utilize limited CSI information to generate more accurate and
reliable channel information. The exceptional performance of the hybrid model
compared to the RISnet with full CSI can be attributed to the denoising effect of
the DSRnet model. By reconstructing channel information from fewer but more
reliable measurements, DSRnet can filter out noise while preserving the essential
channel characteristics, leading to a more robust RIS phase configuration.

5 Conclusion

This paper presents a novel two-stage architecture named DSRnet to reconstruct
full CSI from partial CSI for RIS-aided wireless communication. DSRNet incor-
porates a super-resolution sub-network for coarse estimation and a denoising
sub-network enhanced with advanced spatial attention mechanisms, delivering
superior CSI estimation accuracy while maintaining parameter efficiency. Specif-
ically, it is efficient while requiring CSI from only 1.2% of the RIS elements. This
makes it particularly suitable for practical large-scale RIS deployments. We have
conducted extensive simulations, and the results demonstrated that DSRnet suc-
cessfully reconstructs full CSI from minimal partial measurements of a large RIS
array, achieving strong performance metrics (NMSE: −13.14 dB, PSNR: 25.75
dB, ρ: 0.934) while maintaining computational efficiency with only 80, 916 pa-
rameters. More importantly, when the reconstructed CSI is fed into the phase
shift prediction network RISnet, it demonstrates a WSR of 3.51 bits/s, which is
approximately 15% improvement compared to the RISnet with partial CSI. This
substantial WSR improvement, combined with minimal CSI overhead and effi-
cient scaling to large RIS arrays, verifies DSRnet’s practical value for real-world
deployments.
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