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Abstract 
This study demonstrates effective data mining tool under severe limitations of data availability. We 

present a soft computing method for evaluating economic performance. To avoid computational 

explosion, we utilize intervals. This will reduce the number attributes in the dataset. Utilizing intervals 

allows us to overcome difficult modeling problems such as large quantity of missing data, substantial 

outliers, etc. Finally, case study of evaluating economic performance of the Soviet led East European 

bloc is presented. In spite of highly unreliable and inaccurate data provided by the officials of the bloc, 

the method presented here allows to reach solid and reliable conclusions. 
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1. Introduction 
 

In this study we present a method to evaluate economic performance of either individual countries or groups 

of countries, based on data mining/soft computing tools. The method involves modeling of the general factors 

facilitating economic performance. The factors facilitating economic performance essentially represent the constraints 

that either facilitate or limit long-term economic growth.  

As a case study, we evaluated economic performance of the Soviet-led East European bloc, which is a 

particularly challenging task due to a biased data published by the official sources of these countries.  The study is 

based mostly on cross-national data originated from the World Bank databases and hard copy publications and covers 

the period from 1960 to 1992. More specifically, we constructed a cross-national model for the years 1960, 1970, 

1978, 1985 and 1992. We presented results for the year 1992 – to illustrate the situation following the collapse of the 

Eastern Bloc, because some conclusions can be reached in retrospect. Thus, we followed the performance and 

illustrated the constraints of the Soviet led alliance till its end. 

 In order to assure reliability and robustness of the results, the idea was to build a general model based on the 

data from over 120 countries and then to apply the results specifically to the countries of the East European Bloc. The 

generality of the model (rather than building a specific model for the East European countries) is one of the points of 

strength in this study.  

The modeling method, “Soft Regression” (SR) [2], is a Soft Computing tool, based on fuzzy logic[7,8,11]. 

Utilizing SR rather than traditional econometric tools makes it possible to overcome some technical difficulties 

associated with the traditional modeling tools and allows us to build more reliable and robust model, as will be 

explained below.  

The methodology introduced in this study can be applied to any country or group of countries to evaluate 

where they stand in comparison to the leading performers at any given point of time 

              Thus, the method presented in this study can generate important information necessary for designing 

effective long-term policies to "contain" the challengers and it can generate important information for the lagging 

countries to identify their basic weaknesses. Hence, the method can be a useful tool for economic policy makers as 

well as for foreign policy strategists. 
 

2. Soft Regression 
  

 SR is a modeling tool based on soft computing concepts (such as Fuzzy Logic – Zadeh (1965 [12])). The 

technical details of the SR method are described in [8], [11], [10]. Previous works leading to the development of Soft 

Regression are: [5], [2], [6]. 
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We will briefly describe several of the important features of the SR that are preferable in comparison to the 

traditional Multi-Variate Regression (MVR) when constructing a model characterized by highly interrelated 

explanatory variables. These features are: 

1. Soft regression does not require precise model specification.  

2. The significance of the explanatory variables and the relative importance of those variables among themselves 

are not affected by adding additional variables to the model or removing some variables from it.  

3. Explanatory variables are not required to be independent of each other.  

 

2.1 Standard Soft regression  
 

Recall the definition of the fuzzy set: if 𝑋 is a collection of objects denoted generically by 𝑥, then a fuzzy set 

Ã in 𝑋 is a set of ordered pairs:  

Ã = {(𝑥, �̃�): 𝑥 ∈ 𝑋} where �̃� = 𝜇Ã(𝑥)                                             (1) 

𝜇Ã is called the membership function (for computing grade of membership of 𝒙 in Ã  ( that maps 𝑋 to [0,1].                                  

Let 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) be the 𝑛-dimensional vector of dependent variable to be explained, and let {𝑋𝑗}𝑗=1
𝑚  be the 

corresponding 𝑛-dimensional vectors of explanatory variables when 𝑋𝑗 = (𝑥𝑗,1, 𝑥𝑗,2, . . . , 𝑥𝑗,𝑛). Based on (1), the fuzzy 

numerical sets of {𝑋𝑗}𝑗=1
𝑚   and 𝑌 are  

                   �̃�𝑗 = {(𝑥𝑗,𝑘, �̃�𝑗,𝑘}𝑘=1
𝑛 , for all 𝑗 = 1,2, … ,𝑚 and  �̃� = {(𝑦k, �̃�k}, respectively                (2) 

where 

 �̃�𝑗,𝑘 = 𝜇�̃�𝑗(𝑥𝑗,𝑘), �̃�k = 𝜇�̃�(𝑦k) and 𝜇�̃�𝑗, 𝜇�̃� are a membership functions of �̃�𝑗, �̃�, respectively.     (3) 

We compute the similarity between the dependent variable 𝑌  and every explanatory variable {𝑋𝑗}𝑗=1
𝑚  in the following 

way:  

We define distance for direct relation between variables:    

𝑑𝑌,𝑋𝑗
𝑑𝑖𝑟𝑒𝑐𝑡(𝑘) = |�̃�k − �̃�𝑗,𝑘 | for all 𝑗 = 1,2, … ,𝑚                                  (4) 

and distance for inverse relation between variables: 

 𝑑𝑌,𝑋𝑗
𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑘) = |�̃�k − (1 − �̃�𝑗,𝑘) | for all  𝑗 = 1,2,… ,𝑚                     (5) 

If ∑ 𝑑𝑌,𝑋𝑗
𝑑𝑖𝑟𝑒𝑐𝑡(𝑘) < ∑ 𝑑𝑌,𝑋𝑗

𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑘)𝑛
𝑘=1

𝑛
𝑘=1  then 𝑑𝑌,𝑋𝑗(𝑘) = 𝑑𝑌,𝑋𝑗

𝑑𝑖𝑟𝑒𝑐𝑡(𝑘)  for all 𝑘 = 1, . . . , 𝑛 and sign𝑗 = +1, else 

𝑑𝑌,𝑋𝑗(𝑘) = 𝑑𝑌,𝑋𝑗
𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑘)  for all 𝑘 = 1, . . . , 𝑛 and sign𝑗 = −1. 

The similarity or closeness (denoted by 𝑆𝑌,𝑋𝑗) of each explanatory variable 𝑋𝑗 to 𝑌 is then computed as:        

                 𝑆𝑌,𝑋𝑗 = 1 −
1

𝑛
∑ 𝑑𝑌,𝑋𝑗(𝑘)
𝑛
𝑘=1   for all 𝑗 = 1,2, … ,𝑚                   (6)  

The measure of similarity indicates the degree to which explanatory variable behaves in a similar pattern (direct or 

inverse) in comparison to dependent variable. Therefore, the measure of similarity 𝑆𝑌,𝑋𝑗is an equivalent to the 

traditional statistical measures of significance (t-tests or sig.).  However, in addition to a significant relation (similarity 

of  𝑆𝑌,𝑋𝑗 ≥ 0.8), there is an option of partial significance   0.7 < 𝑆𝑌,𝑋𝑗 < 0.8, so that as 𝑆𝑌,𝑋𝑗is approaching closer to 

0.7, it is closer to insignificance.  The gradual transition from being fully significant to being fully insignificant adds 

additional element of stability to the modeling process when utilizing soft regression.   

Once similarity measures are computed for all the explanatory variables, the next step is to calculate 

collective contribution of all the explanatory variables combined in explaining the behavior of dependent variable.  

For every observation, we select the element from one (or more) of the explanatory variables, that is the most similar 

(has the shortest distance) to the dependent variable, thus creating the vector of minimum distances: 

      𝑑𝑌,𝑋1,...,𝑋𝑚
𝑀𝑖𝑛 (𝑘) = min

1≤𝑗≤𝑚
𝑑𝑌,𝑋𝑗(𝑘)  for all 𝑘 = 1,2, . . . , 𝑛.                               (7) 

A combined similarity of all the explanatory variables to the dependent variable is  

                                     𝑆𝑌,𝑋1,...,𝑋𝑚
𝐶𝑜𝑚𝑏 = 1 −

1

𝑛
∑ 𝑑𝑌,𝑋1,...,𝑋𝑚

𝑀𝑖𝑛 (𝑘)𝑛
𝑘=1                                                          (8) 

𝑆𝑌,𝑋1,...,𝑋𝑛
𝐶𝑜𝑚𝑏   explains, to what degree all the explanatory variables combined – explain the behavior of the dependent 

variable, and in this respect, it is parallel to 𝑅2  (in conventional regression methods). One important difference 

between the two measurements is that in 𝑆𝑌,𝑋1,...,𝑋𝑛
𝐶𝑜𝑚𝑏  we allow for overlap of explanatory variables in their relations with 

the dependent variable (which is, of course, more reasonable and more in line with the “real world” behavior), and 

therefore explanatory variables are not required to be independent of each other.  

The way to compute relative importance of the explanatory variables is to find out how much each of them 

contributes to the vector of minimum distances (7) (that was used to compute 𝑆𝑌,𝑋1,...,𝑋𝑛
𝐶𝑜𝑚𝑏 ). This is done by finding the 



difference between the vector of minimum distances 𝑑𝑌,𝑋1,...,𝑋𝑚
𝑀𝑖𝑛 (𝑖) (overall closeness of all the explanatory variables 

combined to the dependent variable) and the distance of each explanatory variable from the dependent variable (𝑑𝑌,𝑋𝑗)  

(see [4]). Therefore, relative importance in the SR (in contrast to traditional regression methods) is not affected by 

correlation with other explanatory variables, and is determined solely by the contribution of a given explanatory 

variable to explaining the behavior of the dependent variable. 

We can calculate relative weight or relative importance (denoted by Relimp) of each explanatory variable in 

explaining the behavior of the dependent variable based on the following principles  (for more details [8]): 

Relimp𝑗 =
𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑗−0.7

∑ (𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑟−0.7)
𝑚
𝑟=1

 for all 𝑗 = 1,2, … ,𝑚,                                            (9) 

where the contribution of each explanatory variable (𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑗) is :  

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑗 = 1 −
1

𝑛
∑ |𝑑𝑌,𝑋1,...,𝑋𝑚

𝑀𝑖𝑛 (𝑘) −𝑛
𝑘=1 𝑑𝑌,𝑋𝑗(𝑘)| for all 𝑗 = 1,2, … ,𝑚.        (10) 

 

2.2 Soft Regression using Intervals (see [9]) 

 

When preparing data for modeling, every variable is treated as a numerical vector. In other words, it is a column of 

numbers. In the case when several numerical vectors supposedly represent the same thing, we can construct a matrix, 

such that each numerical vector is a column in that matrix. When the matrix of k columns (numerical vectors) is 

converted into the matrix of intervals, it will become a matrix of two columns: column of minimum values and column 

of maximum values.  

 There is a very important issue that must be addressed when constructing intervals of values: it is critical to 

make sure that before we construct the intervals, all variables are converted into the same scale, otherwise the interval 

is distorted and meaningless. In general, bringing all the different numerical vectors into the same scale is possible by 

recalculating all of them based on the same reference point. Selected reference point should be reasonable and reliable. 

When utilizing method based on fuzzy logic (such as Soft Regression), defining all the numerical vectors in terms of 

membership in the same fuzzy set is an additional (and very effective) way to address the scale problem. 

 Another important issue to consider when constructing intervals is the potential presence of outliers and their 

implications. The outliers that are expected to appear in various data series can substantially widen the intervals to a 

degree that is detrimental for successful modeling. The cut-off points applied in membership functions by their nature 

tend to alleviate, at least to some extend the problem of outliers. In other words, when different measurements are full 

members of the fuzzy set, they all are assigned the value of 1, no matter how much their original values differ. The 

same holds for measurements that are definitely not members of the fuzzy set – all of them are assigned the value of 

0, no matter how much their original values differ. 

 Once all the values of the matrix are converted into the grades of membership, then we can sort values in 

each row from the smallest to the largest since now they are all members of the same fuzzy set. This way, for every 

row (in our case – for each country), we construct intervals consisting of grades of membership. 

 We utilized the Range Reduction Algorithm (RRA), which is explained in detail in [9]. RRA is applied to 

reduce the range of intervals by deleting outliers. RRA also identifies cases where interval reduction is not working, 

and the length of the interval is such, as to seriously question the reliability of the data. In such cases the data for that 

specific country are deleted. 

 

Range Reduction Algorithm (RRA) (see [9]) 

 
The algorithm of range reduction consists of the following main components: 

1. Preparation Stage 

2. Identifying and eliminating outlying identical (or almost identical) vectors. 

3. Reducing range: Deleting outlying elements  

4. Additional reduction of the range and deletion of over-extended intervals (optional) 

 
1. Preparation Stage:  

Let’s assume that we have 𝑐 numerical vectors, each consisting of 𝑛 elements (In other words, we have a matrix                   

𝐀 = (𝑥𝑘,𝑙)𝑛×𝑐 where 𝑛 is a number of rows and 𝑐 is a number of columns). First, we normalize all the numerical 

vectors by applying relevant membership function, such that the resulting elements of the numerical vectors will 

consist of values [0,1], which represent degree of membership in the same fuzzy set, i.e.,  

A fuzzy matrix of 𝐀 is a matrix:   



�̃� = (�̃�𝑘,𝑙)𝑛×𝑐                                                                                  (11) 

where �̃�𝑘,𝑙 = 𝜇𝑙(𝑥𝑘,𝑙) for all 𝑘 = 1,2, … , 𝑛 and 𝜇𝑙 is a membership function for all 𝑙 = 1,2, … , 𝑐. Sort each row of the 

matrix from the lowest value on the left side to the highest value on the right side.  

Note: Following the preparation stage, the new matrix loses its original structure by its initial vectors. Now we have 

a matrix, such that in each row, the first element on the left side is the minimum value for that row, the next one is the 

second smallest value and so on until we reach the last value on the right side, which is the maximum for that row.  
 
2. Identifying and eliminating outlying identical (or almost identical) vectors: 

The idea behind this part of the algorithm is to correct possible distortion, when due to unique methodology, 

conversion methods, etc., some vectors become outliers for all or most of their elements. If only one such numerical 

vector appears in our data, the interval reduction procedure presented in stage 3 will handle it. However, if two or 

more vectors like that appear, and they are identical or almost identical, then the method presented in stage 3 will not 

perform effectively.  This problem might arise when collecting data series that are having different names, but are 

essentially the same mathematically. They might differ in scale, which makes it difficult to detect the similarity among 

them. However, once these data series are normalized, they might become almost identical. In other words, the 

problem arises not when such situation is encountered in just several rows, but when we are talking about identical 

vectors for almost all their rows. Thus our objective at this stage is to locate possible outlying pairs or groups of vectors 

that are identical or almost identical and delete the redundant elements. We should note that having identical or almost 

identical vectors does not constitute a problem as long as they are confined mostly to the internal portion of the interval. 

However, if they are located on the edges, they will imperil our ability to reduce the interval.  

Another important point to consider: when deleting elements from the matrix, we must keep in mind that 

some rows (in our case: data for some countries) might consist of very few measurements. No element should be 

deleted from the matrix, if in that row, there are only four measurements or less. The reason for that is: our objective 

is to attain better representation of the central tendency, but we want to achieve it without possible loss of information. 

When amount of elements in a given interval is large, then deleting several outlying elements only brings us closer to 

the core of the “central tendency”. However, when the amount of elements is small (four or less), then deleting a single 

element can potentially lead to a loss of important information and distort our view of central tendency. In this case it 

is preferable to keep the whole original interval. 

 
3.   Reducing range: Deleting outlying elements: 

      The interval reduction rules are applied for each row (interval) separately, depending on the specific characteristics 

of that interval. If there are four elements or less in a specific row, leave the raw as is. If there are five elements in that 

row, one outlying element can be deleted. If there are 6 to 10 elements in the row, two outlying elements can be 

deleted. For any additional 5 elements in the row, one additional outlying element can be deleted, etc. For example: 

in the interval of 11-15 elements we delete 3 elements, in the interval 16-20 elements we delete 4, etc. Thus at this 

stage we determine the amount of elements to be deleted in a given row. The deleted elements can be located either 

on the left side of that row, or on the right side or both. Obviously, no element located in the middle of row can be 

deleted. The idea is to select elements for deletion so as to achieve maximum range reduction of a given interval. 

 
4.  Additional reduction of the interval (optional): 

     Following the range reduction process described above, if the new range is still >0.25 then if the interval greatly 

exceeds 0.25, the user might consider deleting that row from the matrix. The user may leave the new interval as is, if 

it exceeds 0.25 only to a minor degree. This portion is optional and involves individual reasoning by a modeling 

professional, and could differ based on circumstances and constrains. In our case study we decided at this stage to 

delete rows where the interval exceeded 0.30.  

Note: the very wide range (above 0.25 – which is a large portion of the entire numerical domain [0,1]) means that 

there must be some very serious problem of measurement or error associated with that particular row in the matrix.  

In our case study, for each of the variables, we deleted only few cases out of over 125 rows (see Table 1) – which did 

not affect final results. 

 

The matrix created as a result of applying RRA procedure presented above, is denoted as 

�̃�𝐑𝐑𝐀 = (�̃�𝑘,𝑙
𝑅𝑅𝐴)

𝑛∗×𝑐∗
                                                                        (12) 

where 𝑐∗, 𝑛∗ are a number of rows and columns that remain following the RRA process. 

Following the range reduction by applying RRA algorithm, we define two vectors on matrix �̃�𝐑𝐑𝐀 : 

�̃�𝑚𝑖𝑛
𝐑𝐑𝐀 = (�̃�1

𝑚𝑖𝑛 , �̃�2
𝑚𝑖𝑛 , … , �̃�𝑛∗

𝑚𝑖𝑛) and �̃�𝑚𝑎𝑥
𝐑𝐑𝐀 = (�̃�1

𝑚𝑎𝑥 , �̃�2
𝑚𝑎𝑥 , … , �̃�𝑛∗

𝑚𝑎𝑥)                     (13) 



where �̃�𝑘
𝑚𝑖𝑛 = min𝑙=1,2,..,𝑐∗{�̃�𝑘,𝑙

𝑅𝑅𝐴} and �̃�𝑘
𝑚𝑎𝑥 = max𝑙=1,2,..,𝑐∗{�̃�𝑘,𝑙

𝑅𝑅𝐴} (In other words, �̃�𝑘
𝑚𝑖𝑛  is the minimum value for 

each row and �̃�𝑘
𝑚𝑎𝑥is the maximum value for each row). 

Let 𝐘 = (𝑦𝑘,𝑙)𝑛×𝑐𝑦
 be the matrix of dependent variable to be explained, and let {𝐗𝑗}𝑗=1

𝑚  be the corresponding matrices 

of explanatory variables when 𝐗𝑗 = (𝑥𝑘,𝑙
𝑗
)𝑛×𝑐𝑗 for all  𝑗 = 1,2, … ,𝑚 , where 𝑐𝑦 , 𝑐𝑗 are a numbers of columns of 

matrices 𝐘,  𝐗𝑗, respectively. Based on (11), the fuzzy matrices of {𝐗𝑗}𝑗=1
𝑚   and 𝐘 are  

                                            �̃�𝑗 = (�̃�𝑘,𝑙
𝑗
)𝑛×𝑐𝑗 for all 𝑗 = 1,2, … ,𝑚 and  𝐘 = (�̃�𝑘,𝑙)𝑛×𝑐𝑦

 , respectively. 

After applying RRA and based on (12) we have: 𝐘𝐑𝐑𝐀 = (�̃�𝑘,𝑙
𝑅𝑅𝐴)

𝑛∗×𝑐𝑦
∗  is a dependent fuzzy matrix and    𝐗𝑗

RRA =

(�̃�𝑖,𝑘
𝑗,𝑅𝑅𝐴

)𝑛∗×𝑐𝑗
∗ are explanatory fuzzy matrices for all 𝑗 = 1,2, … ,𝑚.  

Based on (13) we have vectors (fuzzy sets): 𝐘𝑚𝑖𝑛
𝐑𝐑𝐀, 𝐘𝑚𝑎𝑥

𝐑𝐑𝐀  and �̃�𝑗,𝑚𝑖𝑛
𝐑𝐑𝐀 , 𝐗𝑗,𝑚𝑎𝑥

𝐑𝐑𝐀   , for all 𝑗 = 1,2, … ,𝑚. 

 
The following example illustrates effectiveness of the method based on intervals vs. conventional regression 

analysis using traditional regression methods such as MVR: In our case study, just for the year 1985, we ended up 

with 17 different data series representing our dependent variable. In addition, one of our explanatory variables: exports 

per capita had 12 data series. Therefore, just to test our model for the year 1985, it would be necessary to perform over 

200 regression runs, when trying all possible combinations of those two variables. And what if we decide to test the 

model for more than one year (in order to have higher degree of confidence in results)? The problem is not only the 

amount of work, but also the question of how to summarize so many results and to reach meaningful conclusion?  

In contrast to the 200 regression runs that would be required by conventional regression methods to cover all 

possible outcomes, (for the cross national study – year 1985), when using the method presented here, the amount of 

regression runs drops to 4 (and still covers all the possible outcomes):  

1. Regression using only Minimum values 

2. Regression using only Maximum values 

3. Regression of Minimum for dependent variable vs. Maximum of explanatory variables 

4. Regression of Maximum for dependent variable vs. Minimum of explanatory variables  

In mathematical terms, the four regression runs are as follows: 

When we have dependent variable (𝐘𝑚𝑖𝑛
𝐑𝐑𝐀, 𝐘𝑚𝑎𝑥

𝐑𝐑𝐀) and explanatory variables (�̃�𝑗,𝑚𝑖𝑛
𝐑𝐑𝐀 , 𝐗𝑗,𝑚𝑎𝑥

𝐑𝐑𝐀   , for all 𝑗 = 1,2, … ,𝑚) 

expressed as vectors, the SR process, as explained above, will have to be repeated four times: 

1. Vector of min. values of dependent variable (𝐘𝑚𝑖𝑛
𝐑𝐑𝐀) vs. vectors of min. values of explanatory variables 

( 𝐗𝑗,𝑚𝑖𝑛
𝐑𝐑𝐀 ) (i.e., set in (2), �̃� = 𝐘𝑚𝑖𝑛

𝐑𝐑𝐀,  �̃�𝑗 = 𝐗𝑗,𝑚𝑖𝑛
𝐑𝐑𝐀  for all 𝑗 = 1,2,… ,𝑚). 

2.  Vector of max. values of dependent variable (𝐘𝑚𝑎𝑥
𝐑𝐑𝐀) vs. vectors of max. values of explanatory variables 

( 𝐗𝑗,𝑚𝑎𝑥
𝐑𝐑𝐀 ) (i.e., set in (2), �̃� = 𝐘𝑚𝑎𝑥

𝐑𝐑𝐀,  �̃�𝑗 = 𝐗𝑗,𝑚𝑎𝑥
𝐑𝐑𝐀  for all 𝑗 = 1,2, … ,𝑚). 

3.  Vector of min. values of dependent variable (𝐘𝑚𝑖𝑛
𝐑𝐑𝐀) vs. vectors of max. values of explanatory variables 

(�̃�𝑗,𝑚𝑎𝑥
𝐑𝐑𝐀 ) (i.e., set in (2), �̃� = 𝐘𝑚𝑖𝑛

𝐑𝐑𝐀,  �̃�𝑗 = �̃�𝑗,𝑚𝑎𝑥
𝐑𝐑𝐀  for all 𝑗 = 1,2, … ,𝑚).  

4. Vector of max. values of dependent variable (𝐘𝑚𝑎𝑥
𝐑𝐑𝐀) vs. vectors of min. values of explanatory variables 

( 𝐗𝑗,𝑚𝑖𝑛
𝐑𝐑𝐀 ) (i.e., set in (2), �̃� = 𝐘𝑚𝑎𝑥

𝐑𝐑𝐀,  �̃�𝑗 = 𝐗𝑗,𝑚𝑖𝑛
𝐑𝐑𝐀  for all 𝑗 = 1,2,… ,𝑚).  

The four regression runs generate four results of: similarity (𝑆𝑌,𝑋𝑗), combined similarity (𝑆𝑌,𝑋1,...,𝑋𝑚
𝐶𝑜𝑚𝑏 ) and relative 

importance (Relimp𝑗), which are aggregated as ranges between the lowest result and the highest results (see Table 1 

and Table 2). 

Note: It does not matter how many explanatory variables are expressed in terms of intervals, the method will still 

require only four regression runs for a specific year.  

 

Case Study: Evaluating Economic Prospects of the Soviet led Bloc 

 

3. Model 
  
 The model of factors facilitating economic performance was first introduced in [3] and consists of three broad 

factors that can be considered as facilitating factors (or constraints) for successful long-term economic performance:  

1. International Competitiveness 

2. Human Capital 



3. Degree of Social Progress 

 

1. International competitiveness: The term “international competitiveness” reflects the ability of a given country 

to produce products and services in a competitive manner within international markets. The combination of factors 

such as product price, quality, reliability, type of warranty, customer support, durability, etc., reflect the various 

aspects of being competitive. The degree of international competitiveness of an economy at any given time period 

is a cumulative result of multiple long-term processes. 

2. Human Capital: Human capital includes factors such as education, knowledge, skills, experience, and tradition. 

It is reflected by features such as development of new technologies and products, research and development 

capabilities, advanced technology infrastructure, education and research facilities, organizational and 

management skills, etc. Human capital is an important factor in determining international competitiveness of the 

economy, as well as economic efficiency. 

3. Degree of Social Progress:  We characterize socially advanced countries by: Degree of social sophistication and 

flexibility required for effective functioning of modern and internationally competitive economy, social 

environment facilitating growth and retention of human capital, higher degree of personal and economic freedom, 

etc.  

There is a definite relation expected between the degree of social progress and the previously defined factor 

“human capital”. In addition, we expect substantial inter-relation between human capital (technology, knowhow) and 

international competitiveness. Hence, the factors included in this model are not independent of each other. This fact 

constitutes a severe limitation for modeling tools based upon assumption that all explanatory variables are independent 

(conventional regression methods such as MVR). Therefore, conventional regression methods would not be 

appropriate modeling tools for this study. 

 When advancing from the initial stage of theoretical definition of the model to practical implementation, it 

became apparent that there are no data available in the World Bank databases for the three factors discussed above 

(international competitiveness, human capital and the degree of social progress). Thus, it was necessary to define 

proxy variables instead. In order to capture various aspects in the behavior of the original variables, sometimes more 

than one proxy variable was needed to substitute for the original broad variable, as seen in the section below. 

 
3.1 Proxy Variables 

  
We utilized the following variables as proxies for the three explanatory factors of our model: international 

competitiveness, human capital and social progress. 

1. Exports per capita (Exports)- being a proxy for the degree of international competitiveness of a given economy 

in global markets (adjusted for population size). This variable indicates the bottom line: How much revenue (per 

capita) was earned by any given country in international markets, no matter what is the mix of factors creating 

competitive advantages or disadvantages.  

2. Tertiary education enrollment (Tertiary)- Percentage of the relevant population group that attends tertiary 

education institutions. Percentage of population attending academic studies can be viewed as a good quantitative 

proxy for the degree of social progress. It can also be considered as an indicator of investment in human capital 

– at least from the quantitative view point.  

3. High technology per capita (High-Tech)- refers to exports (per capita) of products associated with advanced 

technologies. This variable is an important proxy variable of international competitiveness, representing activities 

where technologies and human skills are dominant components of competitive advantage. In addition, this 

variable can supplement “Tertiary Education” variable by illustrating to what extent the skills generated by higher 

education help to improve competitiveness in the Technology-intensive markets. 

4. Secondary education enrollment (Secondary)- Percentage of the relevant population group that attends 

secondary education institutions. This variable represents different aspect of human capital (in comparison to 

“Tertiary education”). In addition, Secondary Education is also important in influencing social progress based on 

its unique mix of covered topics, depth of studies and the final outcome of shaping the social characteristics of 

young generation just entering adulthood.  

5. Birth Rate - This is a proxy representing a degree of social progress. Large families are in general associated 

with agrarian economies, where the agricultural sector is usually characterized by traditional (and technologically 



backward) methods of production. On the other hand, smaller families are usually associated with the aspiration 

to be part of the middle class (or above), and to acquire education and skills needed for a successful career.  

 

 Therefore, as stated above, there is no one-to-one relation between the proxy variables and the variables they 

supposedly represent: 

a. International Competitiveness is represented by: Exports and High Tech. 

b. Human Capital is represented by: High Tech, Tertiary and Secondary. 

c. Degree of Social Progress is represented by: Tertiary, Secondary and Birth Rate. 

It seems that the combinations of proxy variables reflect fairly well the various aspects of variables they supposedly 

represent. However, it is also clear that the proxy variables are not independent of each other. Therefore, modeling 

tools assuming independence of explanatory variables cannot be applied successfully in this project. This is additional 

argument for using SR, which does not require independence of explanatory variables. This way the integrity and the 

common sense of the original model have been maintained. 

 As a dependent variable representing successful long term economic performance we selected various 

measures of income/output per capita, such as GDP per capita, GNP per capita and GNI per capita. 

 

3.2 Normalizing Data 

 

We normalize data (see (11) above) by introducing the heuristically determined maximum and minimum 

thresholds. Data normalizing requires projection of the values from every numerical vector into equivalent normalized 

numerical vector having values between zero and one, based on predefined function which is expected logically to 

reflect common sense in projecting such values, while maintaining the integrity of the data. In this study, for every 

variable we define a group of best economic performers: “High Income Economies”. During the normalizing process 

we assign value of 1 to all the data points which are equal to or greater than the average value for the group of “High 

Income Economies  

The first step in the normalizing process is: we define 𝑚𝑎𝑥𝑙  as the value in a given vector such that all 

elements equal to or greater than 𝑚𝑎𝑥𝑙  are assigned the value of one. For example, if  𝑚𝑎𝑥𝑙  represents a value of GDP 

per capita which logically belongs to a category of “High Income Countries”, then any country having higher value – 

will definitely be considered a “High Income Country” as well. We selected “Average of High-Income Economies” 

as our 𝑚𝑎𝑥𝑙  for the dependent variable as well as for all the explanatory variables.  Such average values appear in the 

data bases and hard copy publications of the World Bank for all variables. By turning all the numbers above 𝑚𝑎𝑥𝑙 into 

1, we neutralize the negative effect of the outliers having excessively high values without deleting these data points.    

Similarly, we define 𝑚𝑖𝑛𝑙 as the value in that vector such that all elements equal to or smaller than 𝑚𝑖𝑛𝑙  are 

assigned value of zero, which means they definitely do not belong to the category of “High Income Countries”.  

We emphasize again: 𝑚𝑎𝑥𝑙  and 𝑚𝑖𝑛𝑙  must be determined based on logic and common sense for each domain 

(for every variable), so as not to distort the data (for more detailed explanation and example see [3]).  

Note: in the cases of several numerical vectors which essentially represent the same variable (see discussion above), 

the data normalizing procedure explained above brings all these vectors into the same scale, thus helping to express 

all of them in terms of undistorted intervals (ranges) of values.  

In this case, a membership functions in (11) are: 

   

𝜇𝑙(𝑥𝑘,𝑙) =

{
 

 
0   , 𝑥𝑘,𝑙 ≤ 𝑚𝑖𝑛𝑙

𝑥𝑘,𝑙 − 𝑚𝑖𝑛𝑙
𝑚𝑎𝑥𝑙 − 𝑚𝑖𝑛𝑙

, 𝑚𝑖𝑛𝑙 < 𝑥𝑘,𝑙 < 𝑚𝑎𝑥𝑙

1   , 𝑚𝑎𝑥𝑙 ≤ 𝑥𝑘,𝑙

 

where 𝐀 = (𝑥𝑘,𝑙)𝑛×𝑐 is a matrix and 𝑚𝑖𝑛𝑙 , 𝑚𝑎𝑥𝑙  are the Maximum cut-off point and Minimum cut-off point as 

explained above. 

 

3.3 Data Preparation 

  
 We utilized cross-national data obtained mostly from the World Bank data bases and hard copy reports. We 

excluded from the study all the countries having small populations (half a million or less) because small (by 

population) countries are characterized by different features (such as less diverse and small domestic market, etc.) in 

comparison to large countries. In particular, when the purpose of the model is to investigate Communist East-European 

bloc, the exclusion of small countries seems reasonable.  Additional countries such as Taiwan and North Korea were 



excluded due to missing data. The total of over 120 countries were included for the years: 1960, 1970, 1978, 1985 and 

1992. We supplemented missing data for individual countries (where it was possible) from adjacent years (this 

procedure was also used in the world bank hard copy publications). The above-mentioned data supplementing 

procedure is reasonable in the case of cross section analysis of variables, usually characterized by relatively small 

annual changes, and in the context of the inherent imprecision of the data in the first place. 

There were very few countries in this study, that were deleted by RRA algorithm because of severely 

unreliable and inconsistent data. This of course had very little influence on the results of a general model where the 

data for over 120 countries were used. However, one of the problematic countries as far as inconsistency of the data 

was Bulgaria, which was one of the countries of the Soviet-led bloc, and we excluded it from our study. East Germany 

was excluded due to excessive amount of missing data.  

  

4. The results 
  

 This section consists of the two subsections. The first subsection (“evaluation of the model results”) consists 

of the analysis of the general model, involving its consistency over the years covered under this study, stability, 

reliability and general conclusions regarding the relative importance of the explanatory variables. The second 

subsection (“evaluation of the East-European bloc”) consists specifically of the analysis of the East-European bloc by 

its individual countries, based on the results of the model and in comparison to the “High-Income Economies”. 

 

4.1 Evaluation of the model results 

 

 
Similarity results (Table 1) show that the first three proxy variables (Export, High-Tech, Tertiary) are 

significant every year throughout the period of study (See graphs 1-3). On the other hand, variables Secondary and 

Birth Rate were significant during 1960 and 1970, but in the following years the lower end of the interval drops into 

partial significance, and the whole range of the results is gradually declining.  In other words, we can see that for both 

variables higher part of the range is significant (for 1978 and 1985), but the lower part of the range is only partially 

significant for the same years. It can be interpreted as follows: as more and more countries experienced decrease of 

their birth rate, as well as managed to enroll increasingly larger percentage of the relevant age group into secondary 

education, those two variables gradually lost their explanatory power to distinguish between the rich and the poor 

countries. These two variables are the only proxies used in this study, where the Soviet-led bloc came close to, or 

actually reached the performance comparable to the “High Income economies”. However, the importance of these 

variables continuously declined towards the end of the period under study, thus undermining these achievements of 

the communist bloc. (Graphs 4 – 5). 

 

Table 1: Cross-National model of factors facilitating economic performance 

  1960 1970 1978 1985 1992 

 
 

𝑆𝑌,𝑋𝑗           

 

 

Export 

High Tech 

Tertiary 

Secondary      

Birth Rate* 

[0.822,0.874] 

[0.856,0.888] 

[0.853,0.878] 

[0.872,0.891] 

[0.823,0.836] 

[0.836,0.894] 

[0.820,0.896] 

[0.816,0.898] 

[0.867,0.870] 

[0.813,0.845] 

[0.791,0.936] 

[0.858,0.897] 

[0.860,0.863] 

[0.784,0.819] 

[0.784,0.815] 

[0.881,0.922] 

[0.886,0.922] 

[0.845,0.847] 

[0.776,0.819] 

[0.751,0.805] 

[0.886,0.924] 

[0.831,0.882] 

[0.811,0.832] 

[0.701,0.750] 

[0.702,0.739] 

 
 

Relimp𝑗  

 

 

Export 

High Tech 

Tertiary 

Secondary 

Birth Rate* 

[0.163,0.210] 

[0.196,0.227] 

[0.193,0.215] 

[0.220,0.229] 

[0.123,0.181] 

[0.173,0.240] 

[0.170,0.224] 

[0.169,0.236] 

[0.200,0.222] 

[0.146,0.199] 

[0.154,0.288] 

[0.199,0.281] 

[0.204,0.238] 

[0.135,0.188] 

[0.135,0.186] 

[0.251,0.277] 

[0.230,0.292] 

[0.189,0.213] 

[0.128,0.163] 

[0.100,0.148] 

[0.312,0.379] 

[0.225,0.325] 

[0.218,0.231] 

[0.058,0.124] 

[0.043,0.109] 

 

𝑺𝑌,𝑋1,…,𝑋𝑛
𝑪𝒐𝒎𝒃  

   

[0.959,0.964] 

 

[0.950,0.960] 

 

[0.957,0.985] 

 

[0.956,0.964] 

 

[0.949,0.965] 

*Inverse relation 

Note: The dependent variable consisted of the various measurements of income/output per capita  

 

When looking at Relimp𝑗 , we can see that Tertiary Education variable more or less maintains the same 

relative importance, while Export and High-Tech (which are persistently among the most important variables), having 

their relative importance gradually increasing due to relative decline of Secondary Education and Birth Rate 

(Secondary declined continuously since 1970, Birth Rate declined continuously since 1978). By 1985, Export and 

High-Tech became the two most important variables (both are proxies for “International Competitiveness”). In 



addition, High-Tech and Tertiary Education, both continuously significant variables are major components of the 

“Human Capital” factor.  Hence, we can summarize Table 1 as follows: the empirical evidence based on cross-national 

model definitely supports International Competitiveness as well as Human Capital as the major factors facilitating 

successful economic performance. Since Tertiary education is also a proxy for Social Progress” factor, we can 

conclude, that based on proxy variables used in this model, Social Progress is also important factor facilitating 

economic performance, even-though some of its proxy variables became less successful indicators for the later part 

of the study.  

Note: We must keep in mind that the relevant period to evaluate Soviet-led bloc is 1960-1985. The year 1992 

represents the situation after the collapse of the bloc. The year is presented because it helps to identify some trends 

that continued and accelerated after the bloc disintegrated. 

 

 Table 1 also displays 𝑺𝑌,𝑋1,…,𝑋𝑛
𝑪𝒐𝒎𝒃  measurements: to what extend all the variables combined explain the behavior 

of the dependent variable. We can see that all the measurements are above 0.949 on the scale between 0 and 1. The 

high value of 𝑺𝒀,𝑿𝟏,…,𝑿𝒏
𝑪𝒐𝒎𝒃  means that the model is highly successful in explaining the behavior of the dependent variable.  

In addition, the consistency of the results throughout the years under study should be noted.  

The consistency and stability of the model between 1960 to 1985 as well as the significance of similarity 

relations of explanatory variables are important factors determining confidence in the conclusions. 

 Graphs 1 through 5 display visually the results of the Table 1. In particular, it is important to note that 

despite the inclusiveness of the study and utilization of all the data series that we could find for every variable, the 

ranges appear to be fairly narrow except very few cases , and the vast majority of similarity measures are above 

𝑺𝑌,𝑋𝑗 = 0.8 (which is the lower limit of the significant range). In addition, the graphs show the decline of Secondary 

Education and Birth Rate in the later years of the study, but still being above 0.7 limit of insignificance – even for 

the lower end of their range (for the years 1960-1985).    
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4.2 Evaluation of the East-European bloc 

 

Table 2 displays normalized data for individual countries of the Soviet-led bloc. In the cases we had more 

than one data series for a given variable – we present range of values. If there was only one numerical vector per 

variable, there is only a single value. The fact that results are normalized makes it easier to compare the status of each 

Eastern-Bloc country to the average performance of the High-Income developed economies, which have a value of 1 

 
Table 2: Normalized data for the East-European bloc 

       USSR 

 

Poland        Czechoslovakia 

 

Hungary 

 

Romania 

 

 

 

GDP  

 

1960 

1970 

1978 

1985 

1992 

[0.391,0.442] 

0.475 

[0.427,0.444] 

0.388 

[0.155,0.363] 

[0.286,0.330] 

0.363 

[0.390,0.441] 

[0.148,0.310] 

[0.122,0.251] 

[0.509,0.620] 

0.563 

[0.531,0.574] 

0.510 

0.398 

[0.120,0.397] 

[0.142,0.421] 

[0.171,0.466] 

[0.145,0.376] 

[0.190,0.382] 

[0.060,0.120] 

0.208 

[0.096,0.218] 

[0.159,0.380] 

[0.057,0.220] 

 

 

Export 

 

1960 

1970 

1978 

1985 

1992 

0.121 

0.189 

0.144 

0.201 

[0.063,0.181] 

[0.292,0.333] 

[0.329,0.385] 

[0.209,0.281] 

[0.124,0.166] 

[0.086,0.200] 

0.958 

0.890 

0.613 

0.762 

0.295 

0.768 

[0.321,0.520] 

[0.452,0.499] 

[0.346,0.520] 

[0.245,0.373] 

[0.246,0.274] 

[0.270,0.312] 

[0.217,0.287] 

[0.178,0.250] 

[0.031,0.085] 

 

 

High-Tech 

 

1960 

1970 

1978 

1985 

1992 

0.154 

NA 

0.083 

NA 

NA 

0.292 

0.495 

0.346 

0.196 

0.020 

1 

1 

0.865 

NA 

0.213 

1 

0.802 

0.435 

0.481 

0.082 

NA 

0.291 

0.188 

NA 

0.005 

 

 

Tertiary 

 

1960 

1970 

1978 

1985 

1992 

0.600 

NA 

0.587 

0.510 

1 

0.466 

0.437 

0.486 

0.383 

0.428 

0.600 

0.601 

0.432 

0.366 

0.312 

0.33 

0.269 

0.320 

0.367 

0.271 

0.200 

0.264 

0.217 

0.350 

0.154 

 

 

Secondary 

 

1960 

1970 

1978 

1985 

1992 

0.648 

NA 

0.807 

1 

0.986 

0.666 

0.773 

0.945 

0.911 

0.901 

0.204 

0.231 

0.344 

0.255 

0.756 

0.592 

0.797 

0.915 

0.939 

0.850 

0.185 

0.467 

0.980 

1 

0.860 

 

 

Birth Rate* 

1960 

1970 

1978 

1985 

1992 

0.888 

NA 

0.931 

0.876 

1 

0.984 

1 

0.894 

0.899 

1 

1 

1 

0.931 

1 

0.995 

1 

1 

1 

1 

1 

1 

0.901 

0.898 

0.982 

1 

NA-Not Available 
*Inverse relation 

   

International Competitiveness (represented by proxies Export and High-Tech): We can see a general trend in all 

the countries of the bloc: a major decline in performance by both, Exports and High-Tech variables. Table 2 implies 

that international competitiveness was one of the major weaknesses of the Soviet-led bloc. We can summarize the 

performance of the Soviet-led East European bloc regarding international competitiveness as follows: The 

performance of the bloc was not at its best in 1960, and thereafter continuously deteriorated throughout the period 

under study. Instead of closing the gap vs. High-Income Developed Economies, the gap continuously widened, thus 

making the possibility of catching up with the performance level of the leading economies - unattainable. 

 

Human Capital (represented by proxies: High-Tech, Tertiary and Secondary): Based on Table 2, the performance 

of Eastern bloc related to Human Capital was far from successful.  

High-Tech: As indicated above (in relation to international competitiveness), the performance regarding the 

High-Tech variable is indicative of a major failure of the Eastern bloc characterized by widening gap vs High Income 

economies.   

Tertiary enrollment is another major proxy variable for the “Human Capital” factor. Soviet Union began in 

1960 at value of 0.6, and from that point on continuously declined. All other countries of the bloc did not do any better 



regarding this variable: Czechoslovakia also started at 0.6, but then continuously declined. Poland, Hungary and 

Romania began in 1960 below 0.5, and remained there throughout the time frame of this study, moving up and down. 

 Secondary Enrollment: This is the only component of “Human Capital” factor, where East-European bloc 

was successful. However, the relative importance of the proxy variable “Secondary Education”, has been continuously 

declining. Thus, the success of the bloc in terms of Secondary Education enrollment had continuously declining impact 

on the overall performance of the bloc in comparison to the High-Income economies.  Hence, the “Human Capital” 

factor became increasingly determined by the performance in terms of the two other proxy variables having 

substantially higher relative importance towards the end of the time frame of this study: High-Tech and Tertiary 

Education, and in terms of those two parameters, the Soviet-led bloc failed to close the gap vs. High Income economies 

(in fact the gap widened over time). 

 

Degree of Social Progress (represented by proxies: Tertiary, Secondary and Birth Rate): Already in 1960, the 

performance of the bloc was compatible with the High-Income economies and remained more or less at the same level 

throughout the years under study. However, as in the case of Secondary - the relative importance of the proxy variable 

“Birth Rate”, has been continuously declining since 1970. Combined with the continuous decline in the relative 

importance of proxy variable “Secondary”, this left Tertiary Enrollment as gradually becoming more dominant proxy 

variable representing the degree of social progress.  This is also the variable where Soviet-led bloc failed to improve 

(see above), while the two other proxies where the bloc was successful, continuously lost their importance by gradually 

moving from fully significant variables to partially significant variables. 

 

To summarize: based on the method presented in this study for the evaluation of economic performance, the Soviet-

led bloc totally failed in the area of International Competitiveness, mostly failed in the area of Human Capital (success 

in only one proxy variable which continuously declined in its relative importance), and had mixed results in the area 

of Degree of Social Progress (failure in a major proxy variable, success in two proxy variables which continuously 

declined in their relative importance). Overall results point overwhelmingly towards the conclusion that the failure of 

East-European communist bloc to catch-up with the performance of “High-Income Economies” was predictable, based 

on the data (biased according to the CIA estimates [1]) provided by the government agencies of those countries 

themselves.  

The effectiveness of the method presented in this study is based on the fact that there are certain fundamentals 

(“Factors Facilitating Economic Performance”) which must be satisfied (more or less) for any country to be able to 

reach and maintain the level of the best performers (High Income Economies). Those fundamentals actually represent 

constraints that the lagging countries must overcome to reach the level of the best performers, and the Soviet-led 

countries of Eastern Europe definitely failed to do so. 

 

5. Summary and Conclusions 
  

In this study we presented a Soft Computing/Data Mining method to evaluate economic performance of 

individual countries or group of countries. As a case study we presented the evaluation of economic performance of 

the East-European bloc during the period of 1960 – 1985. 

We utilized cross-national data to build a general world-wide model of factors facilitating economic 

performance. We applied the model’s results to evaluate the countries of East-European bloc. All the available data 

series were utilized, including the cases where there were more than one data series for a given variable, which resulted 

in the application of intervals. Advantages of including all the available data series and applying intervals in the 

modeling process were discussed. Soft Regression technique was utilized to build the model. The process, analysis 

and conclusions are straight-forward and in line with human-logic and common sense. Another important advantage 

of utilizing Soft Regression in this study was that it allowed successful integration of highly correlated (among 

themselves) explanatory variables into the same model without being affected by multicollinearity. 

  The method applied in this study displayed high degree of robustness: the data used for the East-European 

bloc came mostly from the hard copy publications, published before the disintegration of the bloc. Despite complains 

(see [1]) regarding the biases and the lack of accuracy of the data provided by the East-European government agencies, 

the method used in this study managed to identify broadly but accurately, the true standing and prospects of the bloc 

by its individual countries.  
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