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Abstract— Automatic speech recognition (ASR) performance 

in mobile communications degrades significantly when the 

environment contains many sources of variability. For example, 

when the test environment differs from the training 

environment, and when the acoustic environment contains 

disturbances such as noise, channel distortion, speaker 

differences, and mobile codecs. In this work, we have used two 

mobile network speech recognition architectures. The first one is 

Distributed Speech Recognition based on the DSR codec, and the 

second architecture is based on the Adaptive Multi-Rate 

Narrow-Band (AMR-NB) codec. We propose a novel robust 

feature extraction (Front-End) technique to improve speech 

recognition performance in noisy mobile communications. This 

technique utilizes special parameters such as Gabor features, 

Power Normalized Spectrum Gabor filter (PNS-Gabor), and 

Power Standardized Cepstral Coefficients (PNCC). These 

features consider psychoacoustic effects like the temporal 

masking effect and have different distributions of filter banks 

and filter forms to better model human perception. In the back 

end, we investigated speech classification systems using 

Continuous Hidden Markov Models (CHMM) and Deep Neural 

Networks (DNN). Based on the results obtained in noisy mobile 

communications, the proposed features PNS-Gabor and PNCC 

show significant improvements over conventional acoustic 

features such as Mel frequency cepstral coefficients (MFCC) 

Keywords—ASR, DSR, AMR-NB, PN-Gabor, PNCC, 

MFCC, HMM, DNN 

I. INTRODUCTION  

The goal of automatic speech recognition (ASR) is to 

accurately convert human speech, including sentences, words, 

or phonemes, into written text. However, speech recognition 

on mobile devices can be influenced by various factors that 

can affect its accuracy, such as codecs, channel transmission, 

and background noise. These factors can create challenges 

and hinder the performance of the speech recognition engine. 

 

To overcome these challenges, mobile devices often employ 

noise-reduction algorithms and specialized microphones. 

These technologies work together to eliminate unwanted 

noise and enhance the quality of the captured speech, thereby 

improving the accuracy of the speech recognition system. 

Additionally, users can play a role in improving speech 

recognition accuracy on their mobile devices by speaking 

clearly and utilizing robust front-end features for speech 

recognition. Furthermore, minimizing background noise as 

much as possible can also contribute to achieving better 

results in speech recognition on mobile devices. [1][2]. 

The European Telecommunications Standards Institute 

(ETSI) [3] has developed a specific standard for automatic 

speech recognition in mobile communications, leading to 

client-server communication. Two systems are proposed: 

Network Speech Recognition (NSR) and Distributed Speech 

Recognition (DSR) [3][4]. The ASR system consists of two 

modules: a Front-End and a back-end. Feature extraction in 

the Front-End is inspired by the human auditory system's 

ability to analyze speech under challenging acoustic 

conditions. Principles of auditory signal processing have been 

integrated to improve ASR system performance. 

 

While Mel frequency cepstral coefficients (MFCC) are the 

most popular features for ASR and perform well in ideal 

operating conditions (clean speech), they are not suitable for 

challenging conditions. In this study, our goal is to improve 

the Front-End by extracting spectro-temporal features with 

independent spectral and temporal processing. Physiological 

and psychoacoustic studies have shown that primary neurons 

in the auditory cortex are sensitive to spectro-temporal 

modulations, leading us to use Gabor features and power 

standardized cepstral coefficients (PNCC) for improved 

feature extraction in ASR. 

 

Gabor features are applied to a spectro-temporal 

representation of the speech signal, using physiologically 

inspired filters (Gabor filters) [23]. PNCC coefficients aim to 

obtain more robust speech recognition characteristics in the 

presence of acoustic variability. This study aims to evaluate 

and compare the robustness of these proposed features (Front-

End) for speech recognition. 

 

We conducted experiments by transcoding speech using two 

codecs: Adaptive Multi-Rate Narrow-Band (AMR-NB) and 

Advanced Front-End for Distributed Speech Recognition 

(ETSI-AFE). We also introduced noise to the speech at 

different signal-to-noise ratios (SNRs) ranging from 10 dB to 

20 dB to simulate noisy speech. The transcoded speech was 

then processed using the AMR-NB and DSR codecs [22]. For 

the back-end, we employed a continuous hidden Markov 

model (CHMM) [12] and Deep Neural Networks (DNN) [13]. 

Our results indicate that the DSR codec is the most suitable 

for speech recognition over a mobile network in a noisy 
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environment. Additionally, the DNN classification 

outperforms HMM. The remaining sections of this paper are 

organized as follows: Section 2 provides a detailed 

description of the speech codecs DSR and AMR-NB. Section 

3 focuses on the Front-End and proposes two techniques for 

reducing spectral variance. Section 4 presents the back-end 

recognition system utilizing both HMM and DNN 

technologies. Experimental results are presented in Section 5, 

and finally, the paper concludes with a summary in Section 6. 

II. SPEECH CODEC  

A. Adaptive Multi-Rate Narrow-Band AMR-NB  Codec 

Adaptive Multi-Rate Narrow-Band (AMR-NB) speech 

coding research has progressed substantially in recent years 

and several algorithms are rapidly entering consumer products. 

Several cellular telephone standards adopted the Algebraic 

Code-Excited Linear Prediction (ACELP) algorithms. The 

AMR speech coder consists of a multi-rate speech coder, a 

source-controlled rate scheme including a voice activity 

detector and a comfort noise generation system, and an error 

concealment mechanism to combat transmission errors and 

lost packets. The coder operates at eight different bit rates that 

are referred to as coder modes from 4.75 Kbit/s to 12.2 Kbit/s. 

For each frame of 20 ms with 4 sub-frames the speech signal 

is analyzed and the ACELP parameters are extracted, as linear 

prediction coefficients (LPC) and indices of the adaptive and 

Fixed Codebook. The decoder consists of decoding the 

transmitted ACELP parameters and performing synthesis to 

obtain the reconstructed speech.  

B. Distribution Speech Recognition  DSR 

Mobile networks can degrade speech recognition systems due 

to low bit rate speech coding and channel transmission errors. 

Distributed Speech Recognition eliminates these problems by 

removing the speech channel. Instead of using an error-

protected data channel, sending a parameterized representation 

of the speech, which is suitable for recognition. Speech 

recognition processing is distributed between the terminal and 

the network. The DSR is based on the Mel-Cepstrum 

representation used extensively in speech recognition systems. 

The feature vector consists of 14 coefficients: the log-energy 

coefficient and the 13 cepstral coefficients (C0, .. C12), and 

compressed by split vector quantification (SVQ) and then 

transmitted over a data channel to a remote "back-end" 

recognizer.  

  

Figure 1 Architecture DSR extended front-end (a) blocks 

implemented at the terminal side (b) blocks implemented at the 

server side  

III. FEATURES EXTRACTION (FRONT-END)  

The input speech from a microphone is converted into a 

sequence of fixed-size acoustic vectors (Front-End). The term 

“front-end analysis” refers to the first stage of ASR.  

A. Mel Frequency Cepstral Coefficients Features (Mfcc)  

Mel Frequency Cepstral Coefficients Features (MFCC) 

can be used as a good feature vector to represent human 

speech. The frequency bands in MFCC are equally spaced on 

the mel scale which closely approximates the human auditory 

system response [15]-[3]. MFCC has two types of filters, 

which are spaced linearly at low frequency <1khz and 

logarithmic spacing > 1000Hz. The Mel scale can be 

calculated by Eq.(1) [12]. 
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Where Aj is the output of the j-th filter bank and  N  is the 

number of samples in a basic unit [14]. 

B. Power Normalized Cepstral Coefficient 

The structure of Power Normalized Cepstral Coefficient 

PNCC is similar to MFCC, but this feature extraction system 

is more adapted to representing physiological observations. 

The motive of extraction features PNCC is to obtain a set of 

practical features for speech recognition that is more robust 

concerning acoustical variability in their native form, without 

loss of performance when the speech signal is undistorted, and 

with a degree of computational complexity that is comparable 

to that of MFCC coefficients [9]. 

𝑃[𝑚, 𝑙] = ∑ |𝑋[𝑚, 𝑒𝑗𝑤𝑘]𝐻𝑙(𝑒𝑗𝑤𝑘)|
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Where K is the DFT size m, and l represents the frame and 

channel indices, respectively, and ωk =  2πk/Fs , with Fs 

representing the sampling frequency. X[m, ejwk  ] Is the short-
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time spectrum of the mth frame of the signal and Hl(f) is the 

frequency response of the lth gammatone channel. Structure 

of the PNCC algorithm, the major innovations of PNCC 

processing include the redesigned nonlinear rate-intensity 

function, along with the series of processing elements to 

suppress the effects of background acoustical activity based on 

medium-time analysis. The processing we estimate a quantity 

we refer to as “medium-time power”  Q̃[m, l] by computing the 

running average of  P[m, l], the power observed in a single 

analysis frame, according to the equation: 

Q̃[m, l] =
1

2M+1
∑ P[m′, l]m+M

m′=m−M                    

 

C. Mean Power Normalization 

Mean power normalization is an important part of this 

method when power-law nonlinearity is used. Because 

additive shifts can’t be removed by cepstral mean 

normalization. We normalize the power by a running mean 

power computed from the following equation: 

μ[m] = λμμ[m − 1] +
(1−λμ)

L
∑ T[m, l]L−1

l=0      

 

Where m  and l  are the frame and channel index. In 

addition, L represents the number of frequency channels. We 

set the forgetting factor λμ= 0:999 as in PNCC [15]. Then we 

obtain the normalized power by the following equation: 

U[m, l] = k
T[m, l]

μ[m]
 

 

We use the value 1/15 for the pressure exponent as 

described in PNCC processing to get reasonable accuracy in 

both white noise and clear speech. 

V[m, l] = U[m, l]1/15                   

D. Gabor  Features  

The usage of Gabor filters in speech recognition was driven 

by physiological technology and has been obtained from the 

measurements of so-called spectro-temporal response fields 

(STRF) of primary auditory cortex (AI) cells, which 

summarizes the way neuron cell responds to the stimulus. The 

PNS Gabor features are obtained by convolving two-

dimensional modulation filters and the power-normalized 

cepstral. The PNS-Gabor uses gammatone filters followed by 

power bias subtraction and power nonlinearity. 

The convolution of  the Gabor functions gu,v(t, f) with the 

power spectrum X(t, f) is given by: 

 

Gu,v(t, f)  =  |X(t, f) ∗ gu,v(t, f) |,                     
                                        

The convolution results Gu,v(t, f)  are spectro-temporal 

features with different filter characteristics[11], which 

investigate the multilinear feature space [15][25].  Each Gabor 

filter g(n, k) is a product of a complex sinusoid s(n, k) with a 

Hann envelope function h(n, k). 
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The ωn  and ωk terms represent the complex sinusoid's 

time and frequency modulation frequencies, while 𝜔𝑛 and 𝜔𝑘 

represent time and frequency window lengths of the Hann 

window. 

 

IV. SPEECH RECOGNITION SYSTEM (BACK-END) 

A. Continues Hidden Markov Models 

Speech recognition is a pattern recognition problem. 

Although the most state-of-the-art approach to speech 

recognition is based on HMMs and GMMs, also called 

Continuous Density HMMs (CD-HMMs)[16], these models 

are all dependent on probability estimates and maximization of 

sequence likelihood. While the neural network is based on the 

Maximum A Posteriori criterion[18]. 

HMM has been the dominant ASR technique for at least 

two decades. One of the critical parameters of HMM is the 

state observation probability distribution. Gaussian mixture 

HMMs are typically trained based on maximum likelihood 

criteria. The decoder then attempts to find the sequence of 

words W, which is most likely to have generated Y, and the 

decoder tries to find 

 

W=argwmax{P(w/Y)}              
 

The Y model can be characterized by the transitions Aij 

and emitting matrix probabilities Bj(Xi). We have just defined 

a Continuous Density HMM (CDHMM). The normal 

distribution has only two independently specifiable 

parameters, the mean, k , and k   the covariance matrix.  
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where: k and k are means vector and  the covariance 

matrix respectively:  

k is the determinant of k . t
ko )-(  is the transpose of 

)-( ko  . 

 

B. Deep Neural Networks  

Deep Neural Networks (DNNs) are multi-layer perceptron 

(MLP) with many hidden layers between their inputs and 

outputs[13]. In this section, we review fundamental ideas of 

DNN that can be used as an acoustic model for speech 

recognition. DNNs have achieved tremendous success in 

continuous speech recognition. The pre-training DNNs 

performing backpropagation training from a randomly 

initialized network can result in a poor local optimum, 

especially as the number of layers increases. To solve this 

problem, pre-training methods have been proposed to initialize 

the parameters better before backpropagation. The most well-

(7) 

(6) 

(7) 

(11) 

(12) 

(13) 

(8) 

(9) 

(5) 

(4) 



known method of pre-training is to grow the network layer by 

layer unsupervised. Specifically, each pair of layers in the 

network is considered a restricted Boltzmann machine (RBM) 

that can be trained using an objective criterion referred to as 

contrastive divergence. 

The DNN is typically trained based on posterior 

probability criterion  Eq (14)  of a class S given an observation 

vector X, like a stack of (L +1) layers of log-linear models. 

Each hidden activation hi is computed by multiplying the 

entire input V by weights W in that layer [15]. 
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Where  ` and a` represent the weight matrix and bias vector 

in the l-th layer, respectively.  

 

V. EXPERIMENTS  

A. ARABIC PHONEME 

The Arabic phoneme set used in the corpus corresponds to 
English symbols. The regular Arabic short vowels /AE/, /IH/, 
and /UH/ correspond to the Arabic pronunciations Fatha, 
Damma, and Kasra, respectively. 

The purpose of these experiments is to investigate the 
performance of noise-robust speech recognition systems in 
mobile communications, specifically using AMR-NB/DSR. 

To evaluate the speech recognition performance of HMM 
and DNN, we conducted a series of experiments on an Arabic 
database. The experiments were conducted with 8 kHz multi-
condition data, including speech clean, speech transcoded with 
AMR/DSR, and babble noise, with signal-to-noise ratios 
(SNRs) ranging from 10 dB to 20 dB and denoising by the 
Non-Négative Matrix Factorisation (NMF) techniques 
separation [24]. The training set comprised 360 utterances, 
totaling approximately three hours of continuous speech, with 
an additional hour set aside for testing [24]. 

For the input features, 12-dimensional MFCC features 
were used for speech clean and AMR-transcoded speech 
experiences, while 14-dimensional MFCC features (12 MFCC 
+ C0 + E) were used for DSR-transcoded speech. 

The input layer was constructed using a context window of 

6 frames, resulting in an input layer of either 812 or 814 visible 

units for the MFCC features, and hidden units of 

2000*1300*1500*5000 for each layer, respectively. The final 

softmax output layer consisted of 40 

 

 

 

 

TABLE I.  SYSTEMS RECOGNITION ACCURACY (RA) HMM 

BASED 

TABLE II.  SYSTEMS RECOGNITION ACCURACY (RA) DNN 

BASED 

B. Analysis of results obtained  

This work presents efficient feature extraction techniques 
for robust continuous speech recognition performance in noisy 
mobile communications. Multiple databases were trained and 
decoded using the DNN and HTK toolkit [20]. The databases 
included clean, transcoded, and noisy estimated by NMF. Two 
classification systems, HMM and DNN, were used for a 
continuous ARABIC database that was transcoded and 
corrupted by various noise ratios (SNRs) ranging from 10 dB 
to 20 dB. Table 1 shows the results for different feature sets, 
including MFCC, Mel-Gabor features, GF-MFCC+MFCC, 
PNS-Gabor features, and PNCC. 

In the first system, HMM, the results for clean speech are 
presented in row 2. It was found that the ASR system achieved 
97% accuracy (MFCC + GF-MFCC) with a clean database. 
However, the addition of noise between 10 dB and 20 dB 
resulted in a decrease in recognition accuracy to 66.6% 
(MFCC). 

 SNR MFC

C 

GF-

MFC

C  

 

MFC

C + 

GF-

MFC

C 

PN-

Gabo

r 

 

PNC

C 

 

Speech  

Clean  

clea

n 

95.9 96.21 97 95 95.5 

20 80.8 82 82.7 85 86 

15 72.3 74 75.1 80.4 81 

10 66.6 70 70.9 72 73.2 

Speech 

transcode

d  

DSR 

clea

n 

81.42 86.11 88.52 86.35 83.53 

20 78 69 70.3 71 74 

15 71.6 62 63.05 63 72 

10 62.1 58.8 59.4 60.5 65 

Speech 

transcode

d  

AMR 

clea

n 

80.68 85 89.78 88.5 90.1 

20 75 75.9 78.7 80.8 82 

15 70 72 72 74.6 77 

10 62 66 67 67.8 70.6 

 SNR MFC

C 

GF-

MFC

C  

MFC

C + 

GF-

MFC

C 

PN-

Gabo

r 

PNC

C 

 

Speech  

Clean 

clea

n 

96.5 96.8 98 95.8 95.2 

20 82 82.7 84.1 86.3 86 

15 73.8 74.6 78 80 81 

10 68 67.54 70 74.9 78 

 

Speech 

transcode

d  

DSR 

clea

n 

85.11 86.88 90.55 85.4 84.4 

20 81 72.2 78.85 80.4 80 

15 70.62 68 67.6 69.4 70 

10 61.5 61 63.1 65.8 66 

 

Speech 

transcode

d  

AMR 

clea

n 

85 88 90 92.2 92.5 

20 79 80.5 82.7 83.8 83 

15 70 72 73 74.6 78.5 

10 62 66 67 67.8 74.5 

(14) 

(15) 



The results for transcoded DSR are presented in row 3, 
showing that the ASR system with the clean database 
transcoded achieved 88.52% accuracy (MFCC + GF-MFCC). 
However, the addition of noise between 10 dB and 20 dB led 
to a decrease in recognition accuracy to 58.8 % (GF-MFCC). 

Row 4 presents the results for transcoded AMR-NB. The 
ASR system with the clean database transcoded using AMR-
NB achieved 90.1% accuracy (PNCC). However, with the 
addition of noise between 10 dB and 20 dB, the recognition 
accuracy decreased to 62% (MFCC). 

These results demonstrate that noisy speech, especially 
when transcoded using AMR/DSR, reduces the performance 
of ASR compared to clean speech. They also show that the 
DSR noisy database achieved a higher accuracy rate compared 
to the AMR database rate. 

The degradation in signal quality can be explained by the 
effects of fixed and adaptive quantization on excitation 
codebooks, as well as quantized spectral parameters. It is 
evident that when DSR was transcoded using the 14 
coefficients (12 MFCC, log Energy, and C0), the accuracy rate 
increased compared to transcoding with different noise ratios 
using AMR. The most effective results were obtained with the 
features MFCC + GF-MFCC for AMR and PNCC for 
transcoded DSR. In the second table, when using the DNN 
system, the best result was achieved by the MFCC + GF-
MFCC features, with a classification accuracy of 98% for 
clean speech. For speech transcoded using DSR, the 
classification accuracies were 95.8% (PN-Gabor) and 90.55% 
(MFCC + GF-MFCC). For speech transcoded using AMR-
NB, the classification accuracy was 92.5% (PNCC) and 92.2% 
(MFCC + GF-MFCC). Based on these results, we can 
conclude that the AMR codec is the most suitable for speech 
recognition over a mobile network in a noisy environment. 
Additionally, the DNN classification system outperforms the 
HMM system in terms of accuracy. 

VI. CONCLUSION  

 The primary objective of this paper is to enhance client-

server communication on noisy mobile networks, specifically 

focusing on NSR and DSR, while mitigating the negative 

impact of degraded ASR performance caused by noisy 

environments and the AMR-NB/DSR speech codec. To 

achieve this, we utilized more robust front-end spectro-

temporal representations, namely MFCC + GF-MFCC 

features, and PNCC, and implemented two recognition 

systems (back-end): DNN and HMM. In previous studies, it 

has been observed that MFCCs, which are widely used in 

speech signal processing, are not effective in noisy 

environments or when speech is transcoded. Therefore, we 

sought to explore alternative approaches. Our findings indicate 

that employing the DNN classifier with the AMR coder 

significantly improved ASR performance in noisy 

environments. These results highlight the importance of robust 

feature sets and the utilization of advanced classification 

systems to overcome the challenges posed by noisy mobile 

networks. By adopting these approaches, we can enhance the 

accuracy and reliability of ASR systems in real-world 

scenarios. 
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