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Abstract  

I focus on the dynamic control of heating systems, primarily district heating systems in this study. With the dynamic control of the 

heating system we can defined the temperature changing in the wall structure. The control of district heating systems is currently 

static.  We set the primary flow temperature and the circulating hot water volume flow to the heat source with the estimation of the 

average daily temperature. These values are set empirically. The control of the thermal centre is similarly static. The secondary flow 

temperature and the circulating secondary hot water volume flow are set according to the estimated heat demand of the building, 

the control is choked. There is no exact practice currently on how to consider thermal inertia of boundary walls, the amount of heat 

stored in the walls and the damping effect. In our study, we present models in which we consider the damping and delaying effect of 

the walls and the heat storage in the walls. The model is of concentrated parameter and describes development over time regarding 

the air temperature of the habitation and the average wall temperature considering the outside temperature. 
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1 Introduction 
The control of heating systems is still static these days. It is 
based on the calculation of so-called stationary operating 
points assigned to outside temperatures. We describe the 
relationship between interventions and outputs with an 
empirical function, i.e., what input characteristics are 
necessary for the required internal temperature in a 
stationary state at a given outdoor temperature. Previous 
studies have also delved into the question of what internal 
temperature is formed if there is a change or disturbance in 
the inputs compared to the theoretically required values and 
what correction of the inputs is necessary to restore the 
commanded air temperature. In this paper, we describe a 
transient description method that can be applied to model 
the effect of changes in external temperatures over time, the 
thermal storage capacity of walls, and the damping effect. 
Thereby, we can determine the time course of the 
intervention characteristics as precisely as possible by 
which the commanded value of the internal temperature can 
be kept with the smallest deviation. The logic of the control 
is as follows: as a result of the change in outside 
temperature, the change in heat loss occurs only delayed in 
the air of the dwelling, intervention from the primary side, 
increase or decrease in heat input has to reach the air of the 
dwelling by this time. This mode of control obviously and 
demonstrably results in energy savings. Due to this dynamic 

contor we could minimize the temperature fluctuation in the 
wall structure. We can reduce the dilation which can occur 
thermal stresses. 

2 Single and double storage modelling of thermal 
inertia of a wall structure 
The thermal inertia of the wall structure, the description of 
the instationary heat conduction in the wall can be obtained 
most accurately by the Fourier equation for the multilayer 
wall and its numerical solution. One of the graphical 
methods is called Schmidt editing. The temperature 
distribution in the wall is theoretically continuous, we 
disregard to define it. Instead, we apply concentrated 
parameter description. The parameters under study include 
the air temperature and the average wall temperature. If we 
disregard the description of the heat stored in the air and 
study only the change in heat stored in the wall, it is called 
the single-storage model, otherwise a two-storage model. In 
our study, we write the differential equations of both single 
and two-storage modelling. 

2.1 Single-storage model 
We set up a model for the evolution of the average 
temperature of a wall structure and for the calculation of the 
thermal flow through the wall during the cooling of the 
bounded space as a function of time. We defined two tasks: 
- Mark the average wall temperature as tm. Our aim is to 
determine how the thermal flow density through the wall 



 

changes in the event of a sudden change in the outside 
temperature, from tk1 to tk2, i.e., to what extent we need to 
increase the input thermal flow if we intend to keep the air 
temperature at constant value.  
- The outdoor temperature changes according to an arbitrary 
time function, namely decreases in the model. 
Consequently, the average temperature of the wall 
decreases as well, assuming the consistency of the indoor 
air temperature. This decrease in the average temperature of 
the wall is described by Equation (1), which results in the 
increase of the thermal flow through the wall compared to 
the stationary initial state. (Equation 2) As a result of the 
increased thermal flow, the internal air temperature must 
necessarily decrease, for the calculation of which another 
differential equation is set and solved at the end of the 
chapter. 

2.2 Temperature change according to jump funciton 
A further advantage of the control is that we can 

minimize the temperature fluctuations in the boundary 
structures and therefore the degree of dilatation and thermal 
stresses. We can reduce the risk of damage to the building 
structure and increase the lifetime of the building.  

During the research, two tasks were defined as follows: 
- average wall temperature test, and 
- external temperature test 

The geometric model of control is of paramount 
importance. The heated rooms in the building require 
constant internal temperature. In our modelling, we test how 
thermal flow out of the boundary structures changes with 
outside temperature and how much heating power is needed 
to keep the internal temperature constant. The geometric 
model is shown in Figure 1.  

Fig. 1 Test model 
The following equations can be applied for the thermal flow 
density leaving the wall: 
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Afterwards, we write the change in the amount of heat in 
the wall per unit of time, which will be equal to the 
difference in the increased thermal flow densities due to the 
decrease in the initial and outside temperatures, so 
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Introducing constants A and B. 
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Divided by the thermal capacity of the wall and 
introducing constants A * and B * 
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The obtained differential equation is a constant coefficient, 
linear, first order, homogeneous, which is a separable 
variable. After separating the variables, the differential 
equation can be solved by direct integration. 

The ordered form of the differential equation by introducing 
new constants 
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Marking integration, 
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Performing integration, 
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With further order, 
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The value of the integration constant C can be determined 
from the initial condition, according to which the average 
temperature of the wall at the initial time is a given initial 
value, i.e., if 
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Replacing it into Equation (13), we get a formula describing 
the change in the mean wall temperature as a function of 
time: 
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3 Modelling the thermal inertia of a wall structure in 
case of the change of the outdoor temperature 
according to a continuous time function 
The test model corresponds to paragraph 2 and Figure 1, 
however, as a fine-tuning of the model, the external 
temperature tk now does not change sharply, but changes 
according to some time function tk (τ). Discussing the tested 
phenomenon in this way is closer to reality and gives more 
accurate results. 

As above, thermal flow densities can be written. 
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After ordering 
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Introducing notations A, B, and D, it can be written that 
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Divided by the thermal capacity of the wall, 
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Introducing the modified notations A *, B * and D *, we 
obtain a linear, first-order, inhomogeneous differential 
equation with a constant coefficient. 
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The canonical form of the equation, 
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The solution is as follows, 
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After ordering, we get the differential equation describing 
the change of the average temperature of the wall, in case 
of the change of the outdoor temperature according to the 
time function 
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Further simplified, 
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Of which, the change in air temperature can be calculated 
with Equation (18). 

3.1 Considering the combined heat storage and delay of 
air space and wall structure 

In this subsection, we test transient processes in a system 
composed of air and wall structure. Our goal is to write the 
differential equation describing the transient, i.e., to 
determine what happens between two equilibriums. 

The following balance can be written for the thermal 
balance of the air: 
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And the equations describing the thermal balance of the 
wall, 
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From Equation (33): 
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Replace Equation (36) into Equation (35) to obtain the 
differential equation describing the change in tlev (τ). 
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After ordering, we get equation (39), 
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Cases	tested:	

-	qrad	=	const.	

-	qrad	is	a	function	of	𝜏,	therefore	qrad	=	qrad	(𝜏, )	

𝐻𝑎 �̇�;<& = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, for simpler use, we get equation (40) by 
introducing notations a0, a1, a2, a3 and a4: 
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in	which	the	constants	a0,	a1,	a2,	a3,	a4	are	as	follows:	
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The obtained differential equation is constant coefficient, 
linear, second-order, inhomogeneous, which can be solved 
by the method of varying the constants or by the method of 
probe functions. 

The solution of Equation (40) by the method of varying 
the constants in matrix form is as follows: 

We first solve the homogeneous part of the equation: 
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Characteristic equation for the homogeneous part: 
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solution formula of the quadratic equation. 
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Solutions to Equation (43): 
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The homogeneous solutin 
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The constants c1 and c2 can be determined by the initial 
conditions.  

Solving the particular part of the equation then, assuming 
that constants c1 and c2 are also functions of time 
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Using the method of varying the constants, an equation of 
the particular part can be created in matrix form. 
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Writing Equation (47) in a matrix form: 
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When	performing	the	matrix	inversion:	
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By	performing	the	matrix	multiplication	and	expressing	
the	values	of	c1	’and	c2’,	the	constants	c1	and	c2	can	be	
determined	by	integration.	
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The	solution	of	the	initial	equation	(39)	is	the	sum	of	the	
homogeneous	 and	 particular	 partial	 solutions,	
therefore:	

𝑦 = 𝑦! + 𝑦" = 𝑐#𝑒$K% + 𝑐&𝑒$L% + 𝑐#(𝜏)𝑒$K% +
𝑐&(𝜏)𝑒$L%.      (58) 

4 Summary, conclusions 
The description of instationary heat conduction in a wall 

can be obtained most precisely by a numerical solution of a 
system of equations consisting of Fourier equations written 
for a multilayer wall structure. With the models in this 
paper, an approximation with different accuracy can be 
performed. In regular building engineering practice, the 
calculations described here have not used yet, but they may 
open the door to a new, predictive control of district heating 
systems. The mechanism of action of disturbance, which 
means a change in the outside temperature, is slow. The 
change of the thermal loss occurs only with a delay in the 
tested space, the intervention from the primary side, the 
increase or decrease of the heat supply or circulation only 
must arrive in the air of the dwelling by this time. 

The formulas described in Section 2 can be used to 
calculate the time during which, in the event of a sudden 
change in the outside temperature, the change in air 
temperature takes place in addition to the constant heat 
input, which does not have a negative effect on our sense of 
comfort. The equation to be solved is linear, with constant 
coefficient, first order and homogeneous. (Equation 8) The 
problem can be further detailed by calculating the amount 
of excess heat that needs to be introduced so that the 
required internal temperature does not decrease with the 
change of the outdoor temperature. Alternatively, the 
decrease in internal temperature over a given period can be 
calculated. (Equation 38) 

Section 3 discusses the thermal behaviour of the wall 
structure in the event of a change in the outside temperature 
as a function of time. Due to the change as a function of 
time, the equation thus written is already inhomogeneous 
(Equation 46). The equation (53) describing the change in 



 

the average wall temperature is thus much more 
complicated than that described in Section 2. 

The combined behaviour of the system formed by the air 
and the wall structure was tested in Section 4. We have 
written a system of equations that is constant coefficient, 
linear, second order, and inhomogeneous. The system of 
equations can be reduced to a single differential equation by 
transformations. 

We have described the theoretical course of the solution, 
which consists of a general solution of the homogeneous 
part and a particular solution of the inhomogeneous 
equation. 
Whether higher accuracy and solution of this model is 
undoubtedly justifies its application can be decided by 
further studies. Of course, the same applies to the 
application of the Fourier-equation, which gives the most 
accurate description of the transient thermal conduction 
processes and the definition of the temperature field in 
complex wall structures. Regarding the application of the 
Fourier-equation, it is worth mentioning that due to the 
complicated initial and boundary conditions, there is only a 
numerical solution to the problem. In addition, Fourier-
equation with different characteristics must be applied to 
each wall layer, and a quadratic (contact) boundary 
condition to be written for the contact of the layers appears, 
according to which the temperatures at the points of contact 
are the same. 
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List of notations 

m ̇ mass flow  kg/s 

p pressure bar 

c isobar specific temperature kJ/kg°C 

t temperature °C 

q specific heat consumption  - 

y primerenergia felhasználás - 

Q heat energy J 

k heat transfer coefficient W/m2K 

A area m2 

kA heat loss factor W/K 

n air exchange number 1/h 

V volume m3 

Q ̇ heatflow W 

W ̇ heat capacity current W/K 

M radiator indes - 

n performance indes (1+M) - 

ln natural logarithm - 

M mass kg 

ϕ Bosnjakovic coefficient - 

η efficiency - 

τ time s 



 

δ thickness (wallthickness) cm, m 

∆ change - 

λ heat conduction coefficient W/mK 

 

 

 
 


