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Abstract. The paper proposes an Android malware detection method based on 

convolutional neural network mixed-data model. This data are presented by API 

method calls and a set of permissions for the Android app. Word2vec technolo-

gy was used to represent API calls in a vector space, which creates semantically 

similar feature vectors for related API calls. To represent a set of permissions, 

each unique permission is encoded as a binary feature that determines the pres-

ence / absence of permission in the input sequence. Obtained sequence is then 

broken down into nibbles and the code “8421” is applied with further normali-

zation of the result. Both types of vectorized data are the inputs to the convolu-

tional neural network. The architecture of the proposed neural network consists 

of two separate parallel convolutional branches, each of which processes its 

own type of data, and the fully connected layers. The structure of both branches 

is the same, which involves placing in each branch two consecutive layers of 

convolution, where the first layer maps the simple features that will be used by 

the second layer to represent higher level behavioral patterns. After the convo-

lution layers, there is a pooling layer placed to reduce the dimension of the data. 

The outputs from both branches of the network are combined to form the input 

for fully connected layers, which determine the probabilities of belonging sus-

picious app to one of the classes – malware or benign. 

Keywords: Android malware, API calls, permissions, convolution neural net-

work, word2vec. 

1 Introduction 

In the last decade, humanity has made a significant leap forward in the development 

of the information technology industry and, in particular, mobile devices operated by 

the Android operating system. Mobile features have evolved from just making a 

phone call to supporting the functionality of a full-fledged computer system. Howev-

er, the advent of new mobile devices features has automatically created new vulnera-

bilities for them and has driven an increase in the amount of malware, which are try-

ing to use them. This allows malware to perform a full range of malicious activity, 
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from accessing and stealing private information to displaying undesirable advertise-

ment and spying of the users’ activities. Even today, the Google Play web service is not 

fully protected against the intrusion of malicious software that becomes available for 

download to Android users. According to the Kaspersky Lab, over 100 million users 

downloaded the CamScanner text recognition application in mid-2019, which concealed 

a Trojan program identified as Trojan-Dropper.AndroidOS.Necro.n [1]. There are dif-

ferent reasons for hackers to commit malicious acts. Most often it is obtaining an award, 

self-affirmation, entertaining, or as a kind of weapon [2]. Therefore, developing new 

methods for detecting Android malware remains an important task. 

The main purpose of our study is to increase the accuracy of a malware detection 

process by developing a method that would be based on the involvement of neural 

networks. As a result of ours' research a method for detecting malicious Android 

software based on the use of mixed-data model for convolutional neural network 

(CNN) have been proposed. Involvement of convolution layers creates an analogy 

with the human brain, allowing the identification of local features that are subsequent-

ly fed to the input of fully connected layers to form a membership degree of an input 

object to one of the predicted classes. In the field of pattern recognition, such features 

may be, for example, the presence of inclined lines at a certain angle. Another im-

portant advantage is that the weights in the convolution layer are locally connected 

and move throughout the feature map. This leads to involving much less of a number 

of weights compared to fully connected neural network architectures. 

As an input data for CNN, we used the API method calls and a set of permissions 

for Android app. Application Program Interface (API) is a set of procedures that rep-

resent an intermediate layer for communicating applications between themselves and 

the Android kernel. In fact, no one high-level action doesn't take place without the 

participation of API invocation [3]. Thus, by analyzing them, we could represent the 

behavior of the application through the sequence of API calls. For example, the se-

quence getDeviceId (), loadLibrary (), sendTextMessage () might be determined as 

the behavior of receiving and sending information. The detection process may then be 

defined as a procedure of search the similarity of the program's behavior with the 

knowledge about the typical malware behaviors. 

The process of obtaining program behavior or the sequence of API calls can be 

done in two ways [4]. The first way is to convert the dex file (bytecode) to Java 

source code. This approach involves retrieving class files from the incoming dex file, 

with dex2jar utility [5] for example, and further conversion to java code. However, it 

should be noted that in this approach, decompiled java files do not conform to the 

original code (a reverse operation to obtain a dex file from received java files is not 

possible). Therefore, the behavior of an application derived from decompiled files 

may not match with the actual behavior of the application, and cannot be fully used as 

a feature for Android malware detection. 

In our study another approach was used for representing the behavior of an appli-

cation, which involves the process of disassembling a dex file with apktool utility [6]. 

This process will produce a set of smali files that are a low-level representation of the 

Android application. It should be noted that a reverse converting to a dex file is possi-

ble, which indicates correlation between both operations. 
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Except API calls, no less important attributes that can enhance behavior represen-

tation is a set of app's permissions. The permissions mechanism restricts access to 

certain components or functionalities of the application. All permissions used by the 

application are specified in the AndroidManifest.xml file. According to the results of 

previous studies, the distribution of permissions in malware and benign applications is 

differed [7, 8]. Thus, knowledge of attracting permissions may indicate a set of poten-

tial actions that will need to be granted. 

2 Related works  

Considerable attention today is being paid to the problem of Android malware detec-

tion. Several solutions have been developed using an academic approach, utilizing 

features such as permissions, API calls, opcodes, strings, metadata or intents. 

In [9], authors had proposed an Android malware detection method based on the 

method-level correlation relationship of application's abstracted API calls. First, for 

each Android application's the source code was split into separate function methods 

and kept the abstracted API calls of them to form a set of abstracted API calls transac-

tions. And then, they calculate the confidence of association rules between the ab-

stracted API calls, which forms behavioral semantics to describe an application. Fi-

nally, authors combine machine learning methods to identify the different behavioral 

patterns of malicious and benign apps to build the detection system. 

Another static API-based malware detection system, called MaMaDroid, was in-

troduced in [10]. The MaMaDroid abstracts the API calls performed by an app to their 

class, package, or family, and builds a model from their sequences obtained from the 

call graph of an app as Markov chain.  The sequences of abstracted API calls for the 

app, with the transition probabilities used as the feature vector to classify the app as 

either benign or malware using a machine learning classifier. 

Except API calls, permissions can also be used to distinguish behavior between 

malware and benign Android app. In [11] proposed a permission-based malicious 

code testing tool called APK Auditor. This offers a user client for granting application 

analysis requests, an independent database to store application features, and a central 

server to manage the database and user client. APK Auditor calculates a malware 

score based on the requestedpermissions and then calculates the malware threshold 

limit dynamically using logistic regression. Finally, APK Auditor classifies the appli-

cation as malicious if the calculated application malware score exceeds the malware 

threshold limit. During a set of experiments on more than 10,000 Android applica-

tions, 88% detection accuracy rate was obtained. 

In [8] authors propose DroidVecDeep, an Android malware detection method us-

ing deep learning technique. During conducting static analyze the authors first extract 

features such as permissions, actions, sensitive API calls, and use random forests for 

feature selection. Next they model the extracted features as a document, and then use 

word2vec to analyze the documents and transform the features into K-dimensional 

word vectors. And finally the Deep Belief Networks model had been used to establish 

an optimal detection classifier for Android application classification 
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However, the main drawback of using only Android permissions as features is a 

possibility obtain high false positive rate, that is a benign application can mistakenly 

classified as malicious due to very small difference in permissions sets.  

The use of opcodes and residual network as a model for malware detection is pre-

sented in [12]. Firstly, the model extracts the opcode sequences using the disassem-

bler. To improve the vector’s expressibility of opcodes, Word2Vec strategy was used 

in the representation of opcodes, and word vector representations of opcodes were 

also optimized in the process of training iteration. To reduce the redundancy of in-

formation, a method of downsampling to organize opcode sequences into opcode 

matrix was adopted. In order to improve the classification ability of the model, a clas-

sifier with more layers and cross-layer connection was proposed to match malicious 

code in more dimensions based on ResNet.  

Another possible direction to detect Android malware is a traffic monitoring. In 

particular technique for the mobile malware detection based on the malware’s net-

work features analysis is proposed in [13]. In the process of monitoring there were 

collected groups of features, those include the storage resource consumption features, 

CPU resource consumption features, memory resource consumption features and 

DNS-based features. As the inference engine for malware detection the support vector 

machine was used. But despite on the high overall accuracy of technique, it should be 

noted that not all possible feature vectors, that describe different malware classes, are 

adequately represented in the training set. 

Hybrid technique that involves machine learning is presented in [14]. Authors ex-

tract permission, intent, uses-feature, application and API as the static features, and 

choose the CPU consumption, the battery consumption, the number of running pro-

cesses and the number of short message as the dynamic features. The raw features 

were sent to the feature selection module to select some key features and reduce the 

redundant features based on PCA-RELIEF. Finally, they build a classification model 

by using SVM and evaluate the unknown Android application by classifying it into 

malware or benign. 

In [15] propose MalDozer, an automatic Android malware detection and family at-

tribution framework that relies on sequences classification using deep learning tech-

niques. Starting from the raw sequence of the app's API method calls, MalDozer au-

tomatically extracts and learns the malicious and the benign patterns from the actual 

samples to detect Android malware. MalDozer can serve as a ubiquitous malware 

detection system that is not only deployed on servers, but also on mobile and even 

IoT devices. Malware attribution and detection task is made by using convolution 

neural network.  

3 An Android malware detection method based on CNN mixed-

data model 

The proposed method for detecting Android malware based on the use of mixed data 

for CNN consists of two main steps: creating or training a CNN model and applying 

or deploying the model to detect Android malware. 
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The training phase involves the creation of a CNN model on a set of training data 

and involves three sequential steps: preprocessing, vectorization, and directly CNN 

training. 

Preprocessing stage involves obtaining API calls and a set of permissions. The 

first data are extracted from multiple smali files while the permissions are extracted 

from AndroidManifest.xml. 

The vectorization process uses word2vec technology to represent API calls in vec-

tor space. To vectorize a set of permissions, each unique permission is encoded as a 

binary feature that determines the presence / absence of permission in the input se-

quence.  The sequence is then broken down into nibbles and the code “8421” is ap-

plied with further normalization of the result. Both types of vectorized data are inputs 

to the convolutional neural network. 

Training of the convolutional neural network involves sequentially viewing the en-

tire set of training data presented in vector form and generating for each input object a 

generalization in the likelihood of its belonging to one of two classes. The neural net-

work architecture consists of two separate parallel branches, each of which processes its 

own type of data, and the fully connected layers. The structure of both branches is the 

same, which involves placing in each branch two consecutive layers of convolution, 

where the first layer maps the simple features that will be used by the second layer to 

represent higher level behavioral patterns. After the convolution layers, there is a pool-

ing layer placed to reduce the dimension of the data. The outputs from both branches of 

the network are combined to form the input data for fully connected layers. 

The deployment phase involves preprocessing for a suspicious Android applica-

tion, vectorization of its API calls and permissions, and classification using created a 

neural network model. 

Fig. 1 presents the generalized structure of an Android malware detection method 

based on CNN mixed-data model. Let us take a closer look at each step of the method. 

 

Fig. 1. Generalized structure of an Android malware detection method based on CNN mixed-

data model 

3.1 Preprocessing 

The first step of the proposed method is to extract a list of API calls from smali files 

and the set of permissions specified in the AndroidManifest.xml file. 

Extracting API calls. To get a list of API calls, the dex file is decompiled using 

the apktool utility. This process will return a set of smali files, containing Android app 

representation in form of readable Dalvik opcodes. Next stage require parse each smali 

file and extract the API functions. It should be noted that in the presented method only 

standard API calls are used, while user methods are ignored. Rejecting custom API calls 

is explained by the fact that malware can use a large number of third-party methods, 
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such as some preparatory actions, but standard calls are used to implement the basic 

functionality (sending a message, checking the network connection, etc.). 

The main purpose of getting an API call list is their representation as the behavior 

of the application. Therefore, in the process of obtaining API calls, it is important to 

follow their order, which will allows to consider internal relationships between API 

calls. Because Android applications do not have a single entry point, such as Entry 

Point in Portable Executable, and applications can be launched not only in the tradi-

tional manner by clicking the icon, but in response to intent registered in An-

droidManifest.xml, then to collect the behavior of the application, it is important to 

keep track of all the ways of the application running. To this end, all the services and 

activities contained in AndroidManifest.xml are added to the list of starting points for 

collecting application behavior. Next from every starting point, all the API calls that 

belong to the android, java and javax libraries, that is, calls that interact with the base 

operating system and defined in the Android specification, are added to the resulting 

list. If there is a third-party method call, the name of the smali file in which it is im-

plemented is appended to the list of starting points. The algorithm for collecting API 

calls is shown in fig. 2.  

 

Fig. 2. The algorithm for collecting API calls from smali files 

Extracting permissions. The list of permissions is obtained by simply parsing the 

AndroidManifest.xml file. The parsing process considers all sections starting with 

<uses-permission android… />. 

3.2 Vectorization of API calls and permissions 

Vectorization of API calls. As result of parsing process will be obtain the list of API 

calls for each Android application },...,{ 1 kaaA  . The next step is the vectorization 

process, that is, the presentation of API calls in the form of real numbers. One way to 
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achieve this is to encode each API call as a one-hot vector. With this encoding meth-

od, the length of the features vector that presents each individual API call, is equal to 

the dimension of all API calls presented in the dictionary. All number positions are 

encoded by 0 and the position corresponding to API call is 1. Obviously, with the 

increasing vector dimension, the amount of the number positions with a zero value 

increases rapidly. In addition, any two vectors do not correlate in any way among 

thyself. This situation adversely affects the use of such representation as input for 

artificial intelligence methods. 

In order to obtain a compact vector representation of API calls, the word2vec 

method [16] was used. This method is used to create embedding predictions in natural 

language processing systems. Word2vec collects statistics of word co-occurrence in 

sentences, and then uses neural network methods to solve the task of finding the target 

word in the context of words (skip-gram model) or finding context in the given word 

(Continuous Bag of Words – CBoW model). Both models make it possible to maps 

semantically similar words in close vectors, while distant words in vector space will 

look different. The classic use of the Word2vec method yields a vector at the output 

that containing the probability of each word in the dictionary being "in context" for 

the given word (for the CBoW model). In our study, the word2vec method was used 

to represent API calls in the form of feature vectors by utilizing the CBoW model. 

Let's take a closer look at this process. 

Suppose an input corpus with size n is specified as },...,{ 1 nCCC  , where every 

element of which }{ ііi BMC  defines the sequence of API calls of a benign appli-

cation },...,{ 1
b
n

b
і aaB   or malicious software },...,{ 1

m
n

m
і aaМ  . Let every unique 

API call in corpus С is included in dictionary with size V . Then, represent each API 

call in form of a one-hot vector such as },...,{ 1
ia

V
iaia

rrr  , where some 1ia
lr  

and 

the rest 0
ia

l
r , where ll  .  

Let’s denote the context   for the API call Vai   in corpus C as the sequence of 

API calls that are in the interval ],...,1,1,...,[ siiisi  , where s – is window size. 

In this case, the context defines the interval which determines the relationship API 

call ia  with its s-nearest API calls in training corpus. To generate N dimensional 

feature vectors, a neural network was used that had comprised of input layer neurons 

sxx ,...,1 , where each value is },...,{ 1 Vi xxx  , one hidden layer Nhh ,...,1  
and the 

output layer Vyy ,...,1 . 

Then, given the context, the training set for the neural network in the form of a ma-

trix was formed, each element of which is a one-hot vector: 
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The vectors ],...,,,...,[ 11 siaiaiasia
rrrr 

 
are feed to the input layer of the neural 

network sxx ,...,1  
that ka

j rx  , where sj ,1 , sisik  , . The input layer of the 

neural network is connected to the hidden layer by a weight matrix W of NV   di-

mension, and the hidden layer is combined with the output layer by a matrix W  of 

size VN . 

With the purpose of obtaining embedding for the target API call by context f at first 

the output of the hidden layer h (2) was calculated. This involves computation of the 

average value of the k-rows of the matrix W, which were activated by each group of 

input neurons jx  (i.e. the average for all ARIs calls that represent context s for іа ).  

 )(
1

1





s

i
jxW

s
h  (2) 

Next the computation of the input for each neuron of the output layer was per-

formed: 

 ,hvu
T

gwg   (3) 

where 
gwv is g-th row for output matrix W .  

The last step is to calculate the value of the output layer. The output gy
 
is ob-

tained by calculating the soft-max function for the input gu : 

 

 



V

g g

g
sgyg

u

u
wwwpy

1

1

)exp(
),...,|(  (4) 

Next, to obtain the best vector representation for API calls, the weights of the ma-

trices are adjusted W and W  the backpropagation method is used. 

Thus, as a result of the word2vec method, we will been consider the weighting 

matrix W  as the feature vector for API calls representation.  

Vectorization of permissions. Unlike the incoming list of API calls, in which the 

order of the API calls sets the context for the API call ia , significance of information 

about order of  permissions location is not high. So let's consider a way of represent-

ing Android permissions which based on the encoding of permission depending on its 

presence or absence in the input sequence.  

Therefore, to represent the set of Android permissions Utt  },,...,,{ 21 
 
in 

vector form, let's encode them as bit sequence }z,...,z,z{Z U21 , where U – a dic-

tionary containing all available permissions. Then each bit iz  is set to 1, if for j
 

permission ij  , otherwise 0. The result will be a bit sequence with size U , which 

consists of zeros and ones responsible for the presence or absence of the correspond-

ing permission in  . Next, we have grouped the bit sequence into nibbles and apply-
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ing the 8421 code to each nibble was used. Then the bit sequence have been convert 

to a encoded bit sequence cZ  with size 4/UDp  , in which each value is an integer 

value from 0 to 15. The resulting encoded bit sequence was defined as a vector repre-

sentation of the set of permissions. In order to process the obtained feature vector by 

neural network the normalization of its values to real numbers in the range from 0 to 1 

with using min-max normalization was done: 

In addition, seven critical permissions, most commonly seen in malware, were se-

lected to distinguish more clearly between malware and benign applications. For the 

ranking of critical permissions (not to be confused with the category of dangerous per-

missions defined in the Android specification), the previous studies [17, 18] have been 

considered and our own research has been conducted. As a result we have selected the 

most commonly used permissions in Android malware: CHANGE_WIFI_STATE, 

WRITE_SMS, READ_CONTACTS, ACCESS_NETWORK_STATE, BLUETOOTH, 

INTERNET and READ_PHONE_STATE. 

Each of the selected critical permissions is encoded in one bit and does not form 

as the result of four-bit encoding. Such manner allows to give more weight for the 

most critical permissions. Thus, the resulting feature vector for permissions consist of 

encoded bit sequence and seven more bits, each of which represent one critical per-

mission. The process of obtaining feature vector for an Android app's permission is 

presented in fig. 3. 

 

Fig. 3. The process of obtaining feature vector for an Android app's permission 

3.3 Convolutional neural network 

In order to create a model that will produce a conclusion about the suspicious pro-

gram's behavior, the neural network is trained. The architecture of the proposed con-
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volutional neural network, which uses knowledge about API method calls and set of 

permissions from the Android application to form a conclusion, is presented in Fig. 4. 

The proposed neural network consists of two separate parallel convolutional 

branches, each of which processes its own type of data (API calls or permissions). As 

a result of convolution and max-pooling operations, the input data, i.e. behavioral 

patterns of Android app, is prepared for fully connected layers (FCL). It should be 

noted that the outputs from both sub-branch are merged, creating the first of three 

FCL. In order to produce nonlinear decision making, there is one hidden layer be-

tween the first and third FCL. The result is provided by the last layer consisting of 

two neurons. 

 

Fig. 4. The CNN Architecture for Android malware detecting 

The proposed neural network architecture utilized an approach without convolu-

tional and max-pooling layers alternating. This is due to the fact that after the next 

pair of CONV + POOL layers, the dimension of the data decreases, which leads to the 

loss of some information about the input object [19, 20]. In the proposed architecture, 

in each of the two sub-branch, the two convolution layers 11C
 
and 12C , as well 

21C and 22C , are placed one after the other, where the first convolution layers 11C  

and 21C
 
highlight simple features that will be used by the layers 12C and 22C

 
to 

represent higher-level behavior patterns. The input matrices with size aDK 11  and 
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pDK 21  , respectively, are feed to the convolutional layers 11C  and 21C . For layers 

12C
 
and 22C , the size of the convolution kernel is 112K

 
and 122K , respectively. 

Following each pairs of convolution layers there is placed one aggregation layer, 

which reduce the dimension of each type of feature. In order to transform the data into 

a one-dimensional vector, each sub-branch uses a Flatten layer. After concatenation 

the data of both sub-branches, the resulting vector with size 21 FF 
 
is feeds to FCL. 

The output layer consists of two neurons that accumulate the probability that a suspi-

cious Android application belongs to one of two classes - malware or benign. 

4 Experiments and evaluation 

For the purpose of verifying the effectiveness of the proposed method, a number of 

experiments were conducted. The first experiment involved selecting the optimal 

parameters for a convolutional neural network. We have considered several templates 

for neural network and train each of them. This process allowed us to choose the op-

timal network configuration. After defining the optimal neural network configuration 

we again have built the model and second experiment to verifying the effectiveness of 

Android malware detection have conducted. 

A set of apk files that corresponded to malicious software or benign applications 

were selected as test data to evaluate the effectiveness of the proposed method. Mali-

cious samples were obtained from the AndroZoo collection [21] while benign apps 

from [22]. There are 9198 malware and 7780 benign samples were used for the exper-

iments. Thus, the total number of test data in training corpus C was 16978. 

For each sample from the training corpus, the procedure of extracting API calls 

and a set of permissions was conducted. In order to obtain API calls list, at first apk 

files was decompiled and a set of smali files are obtained. Next, using a script in Py-

thon, an algorithm for extracting API calls from smali files was implemented. The set 

of Android permissions was obtained by simply parsing AndroidManifest.xml. 

In order to create a vector representation of API calls the word2vec method was 

used, which involved training the neural network to obtain weights between the input 

and the hidden layer of neurons. The values for the hyperparameters for word2vec 

were as follows: dictionary for the API calls V =1184 (i.e. the number of unique API 

calls observable in training corpus C), the size of the context window s for obtaining 

embedding of API calls was 6, the dimension of the feature vector for API calls (i.e. 

the dimension of input vectors for CNN) was 64. 

To represent each permission in form of the feature vector we have selected the 

following options: dictionary for permissions U = 168 (the number of unique permis-

sions observable in training corpus C), the dimension pD of the feature vector for 

permissions was 49 ( 74 /UDp ). 

We also unify the length of the API call sequence and set of permissions for each 

sample from the training corpus. If the application has fewer features than the se-

quence length aL
 
or pL , then the sequence of API calls or permissions of the app 
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was padded with zeros. then we pad a sequence of API calls or permissions with ze-

ros. If the sequence length for API calls or set of permissions is greater than the value 

aL
 
or pL , then the first aL

 
or pL

 
permissions or API calls values were selected 

from the given sequence. 

The first experiment involved selecting the most optimal parameters for a convo-

lutional neural network. (fig. 4). To this end, the entire training corpus was divided 

into two groups: the training set 80% and the data for testing (validation) of the model 

20%. The initial value of the number of epochs for training the network was 180 

epochs. However, if during the network training, the performance did not change for 

10 epochs, the training was terminated. To determine the best configuration of CNN 

eight templates of configuration options were considered (Table 1). Also for all tem-

plates the sequences length aL
 
and pL  are set to 200 and 50 respectively, and kernel 

size, padding, stride for 11K , 12K , 21K , 22K  , are set to {3, 1, 1}, {3, 1, 2},{2, 1, 

1},{3, 1, 2} respectively. Each neural network was trained and validated. Based on 

the values of the loss function and accuracy, the optimal values of the network param-

eters were selected. Neural network training was stopped for 150 epochs, with a loss 

function of 0.01954. The accuracy value was 0.915. Thus, a set of parameters in tem-

plate 1 was selected as the optimal neural network configuration. The training and 

validation process for optimal network configuration (template 1) are shown in Fig. 5. 

Table 1. Sets of templates to determine the optimal configuration of the proposed convolution 

network 

№ 11K  12K  11C  12C  1F  21K  22K  21C  22C  2F  

1. 3 3 64 128 64 2 3 64 128 64 

2. 3 3 64 128 64 3 3 64 128 64 

3. 2 2 64 128 64 2 2 64 128 64 

4. 3 2 128 64 64 2 3 128 64 64 

5. 3 3 128 64 64 3 3 128 64 64 

6. 3 3 256 128 64 3 3 256 128 64 

7. 4 4 256 128 64 4 4 256 128 64 

8. 5 5 128 128 64 5 5 128 128 64 

 
a) 
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b) 

Fig. 5. The Process of neural network training and validation with optimal configuration:  

loss function (a); the value of accuracy (b) 

The second experiment provided verifying the effectiveness of Android malware 

detection based on the model of the proposed convolutional neural network. The neu-

ral network weights were initialized with normal distribution. For all layers, except 

last, the ReLu activation function was selected. The neurons of the last layer were 

activated by a softmax function that simulates the probabilities of belonging suspi-

cious app to one of the two classes. The neural network minimized the cross-entropy 

loss function. In order to reduce the impact of overfitting of the neural network be-

tween fully connected layers dropout regularization was used with parameter p = 0.5 

(during testing, the dropout parameter was p = 1.0). The learning rate and the batches 

size were set at 0.001 and 64, respectively. Keras neural network library was used to 

implement the proposed network [23]. 

A 10-fold cross-validation was used to evaluate performance metrics. A 10-fold 

cross-check was used to calculate performance metrics. To this end, 90% of the entire 

set of C test data was used for model training and 10% for testing. This data selection 

procedure was performed ten times, each time selecting a different sequence for train-

ing and testing. This is allows us to simulate a zero-day malware detection situation. 

The overall performance of the method was defined as the average of the performance 

indicators at each of the ten testing stages. After each stage of testing, the values of 

accuracy, precision, recall and Fscore were calculated as: 

 ,
FNFPTNTP

TNTP
Accuracy




  (5) 

 ,
FPTP

TP
precision


  (6) 

 ,
FNTP

TP
recall


  (7) 

 ,
recallprecision

recallprecision
Fscore




 2  (8) 
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where, TP – number of correctly detected malware, FN – the number of malware, 

wrongly classified as the benign programs, FP - the number of benign programs that 

were wrongly classified as the metamorphic viruses, TN – the number of benign pro-

grams that were correctly classified.  

The results of evaluation of the proposed method effectiveness for detecting An-

droid malware are shown in Table 2. During conducting of experiments the maximum 

value of detection accuracy was at 0.9412, while the minimum value was 0.9235.The 

average accuracy was observed at 0.9332 (which is almost the same as the Fscore), 

while the false positive rate was 3.3%. 

Table 2. The results of evaluation of the proposed method effectiveness 

№ 
Observations Metrics 

TP FP TN FN Precision Recall Fscore Accuracy 

1 8679 519 7283 497 0,9436 0,9458 0,9447 0,9402 

2 8636 562 7268 512 0,9389 0,9440 0,9415 0,9367 

3 8605 593 7259 521 0,9355 0,9429 0,9392 0,9344 

4 8696 502 7262 518 0,9454 0,9438 0,9446 0,9399 

5 8055 624 7236 544 0,9281 0,9367 0,9324 0,9290 

6 8586 612 7093 687 0,9335 0,9259 0,9297 0,9235 

7 8687 511 7249 531 0,9444 0,9424 0,9434 0,9386 

8 8624 574 7078 702 0,9376 0,9247 0,9311 0,9248 

9 8683 515 7296 484 0,9440 0,9472 0,9456 0,9412 

10 8586 612 7093 687 0,9335 0,9259 0,9297 0,9235 

Average 8584 562 7212 568 0,9385 0,9379 0,9382 0,9332 

5 Discussion and Future work 

During developing the Android malware detection method, it was very important to 

design and implement not only the neural network architecture, but also to determine 

the values of hyperparameters that directly have impacting to computational complex-

ity and detection accuracy. In the process of choosing hyperparameters, we had pri-

marily guided by the principle of balancing detection accuracy and computational 

complexity. Of course, detection accuracy could be improved by increasing the num-

ber of consecutive convolution layers and the size of the input feature vectors. How-

ever, in this case, the computational complexity of detection method would increase 

significantly, which would not allow been it's used in real-time malware detection.  

In addition, as a disadvantage, it can be noted that the presented method uses static 

analysis, which do not capable to detect obfuscated malware [24, 25]. To address this 

shortcoming and as a future study, we will adapt the convolutional neural network 

architecture to the data that will be obtained during dynamic monitoring of the behav-

ior of the Android application. We are convinced that such combination of data will 

increase the detection efficiency of malicious Android applications.  



15 

6 Conclusion 

The paper presents a method of detection Android malware with using a convolution-

al neural network. The proposed neural network is based on the principle of using 

mixed data, which represent the knowledge about API method calls and a set of per-

missions from the Android application. Word2vec technology was used to represent 

API calls in a vector space, which creates semantically similar feature vectors for 

related API calls. To represent a set of permissions, each unique permission is encod-

ed as a binary feature that determines the presence or absence of permission in the 

input sequence. Obtained sequence is then broken down into nibbles and the code 

“8421” is applied with further normalization of the result. Both types of vectorized 

data are the inputs to the convolutional neural network. 

The architecture of the proposed neural network consists of two separate parallel 

convolutional branches, each of which processes its own type of data. The outputs 

from both branches of the network are combined to form the input for fully connected 

layers, which determine the probabilities of belonging suspicious app to one of the 

classes – malware or benign. 

A number of experiments involving 16978 Android applications were conducted 

to evaluate the effectiveness of the proposed method. According to the results of those 

experiments the optimal configuration of parameters for the convolutional neural 

network was selected and, on the basis of it, the metrics accuracy, recall, precision 

and F1 score had been evaluated. The average accuracy was observed at 93% with 

3.3% of false positives. 
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