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Abstract. The sparsity of gene expression is a well known problem in
single cell RNA-seq data. Known as dropout, the gene expression ob-
served for each cell is only a fraction of the total transcriptome. Several
techniques have been adopted to address this challenge including variable
gene selection and expression imputation. We present an approach for
finding dense vector representations of genes from co-expression that can
be used in place of the sparse expression profile over cells. By leveraging
co-expression across all cells, each gene vector is a meaningful represen-
tation that is independent of missing data from individual cells. Similar
genes, measured by cosine similarity between vectors, are found to cor-
respond to known cell type markers. Using latent space arithmetic, these
gene vectors have the additive capacity to accurately describe each cell
and can be used to generate a low dimensional cell embedding. It is also
possible to decompose and subtract sources of variation including batch
effects. Any feature that can be described as a set of genes can be repre-
sented as a composite of vectors. We demonstrate the application of these
vectors in identification of cell type markers, dimensionality reduction,
and batch correction.

Keywords: Single Cell RNA-Seq - Gene Expression - Vector Represen-
tations - Dimensionality Reduction - Batch Effect Correction.

1 Introduction

Most single cell RNA-seq analysis involves normalization and dimensionality re-
duction of the initial gene-by-cell count matrix using principal component anal-
ysis (PCA). PCA allows for a reduction in sparsity while preserving explanatory
variation in each cell. This is an ideal input for building the nearest neighbor
graph for unsupervised clustering algorithms [11] and visualization techniques
including t-SNE and UMAP [5,6]. To understand the gene expression that is
driving this variation, a secondary step is performed to map the normalized ex-
pression to the identified structure in lower dimensional space. This step is most
often the identification of differentially expressed genes between unsupervised
clusters. The initial normalization may be negatively effected by dropout [9, 3].
Failure to normalize correctly may have consequences on the differential expres-
sion and clustering results. Methods such as sctransform [3] have been developed
to more faithfully perform normalization in the presence of missing data. An al-
ternative to correcting missing values in the sparse expression profile is to define
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a dense representation of each gene that utilizes a more robust feature such as
gene co-expression.

The approach presented in this paper generates vector representations of
genes from co-expressed pairs across a single cell RNA-seq dataset based on the
Word2Vec technique [7]. Within natural language processing, vector represen-
tations of words are used to model the syntactic and semantic similarities in a
corpus of text. These methods have proven remarkably effective at generating
meaningful lower dimensional representations that capture subtle word associa-
tions. Word2Vec learns a distributed embedding of word specific vectors within
a neural network constructed of a single hidden layer with linear activation. The
network can be trained to predict either a target word given a set of context
words or the set of context words given the target word. The later method is de-
scribed as the Skip-Gram architecture and is the chosen model for the approach
described in this paper. For each word in the original text, the associated context
words are found surrounding the target word within a predefined window size.
A sliding window generates pairs of target and context words that are used as
training data. After training, the hidden layer contains a vector of equivalent
size for each word in the original text. In the presented method, the analog of
each word is a gene and a gene’s context is defined as those genes co-expressed
in a single cell.

By sampling input and output gene pairs from each cell’s co-expressed genes,
we apply the word2vec model to single cell RNA-seq and obtain a learned vector
representation for each expressed gene. The similarity of co-expression between
genes can be measured by cosine similarity between vectors. If similar genes
are represented by vectors with roughly equivalent magnitude and direction, the
average vector of any set of genes can be used as a single representation of their
co-expression. It follows that each cell can be represented by an average vector
of the expressed genes each weighted by the normalized expression. An average
weighted vector for each cell can be combined into a single cell embedding.

A similar technique has been previously used to generate vector representa-
tions of genes in bulk RNA-seq [2]. Gene2Vec uses the co-expression of genes
found in 984 human GEO datasets across varied tissues and conditions with
greater than 30 individual samples. In this context, co-expression was defined
as gene pairs with a pearson correlation coefficient greater than 0.9 between
samples within a single dataset. A t-SNE embedding is used to highlight that
functionally related genes in known MSigDB pathways form distinct clusters
in the low dimensional space. Utilizing a similar framework, this approach is
extended to single cell RNA-seq by our approach.

Unsupervised clustering of gene vectors can be used to define groups of ro-
bustly co-expressed genes. We demonstrate that these clusters accurately capture
distinct cell types in benchmark datasets and that the most similar genes de-
fine known cell types with equal specificity of differentially expressed genes. We
demonstrate that when used as input to t-SNE, the visualizations are compara-
ble to those generated with traditional PCA. Finally, we demonstrate that it is
possible to derive an average vector for any feature that can be decomposed into



Vector Representation of Gene Co-expression in Single Cell RNA-Seq 3

a set of genes. By defining an average vector for a known batch, it is possible
to subtract batch effects with results comparable to state of the art methods.
Our approach enables many of the standard analysis performed on single cell
RNA-seq within a single embedding framework.

2 Methods

2.1 Model

To construct the gene pair input to the model, a set of non-zero expression gene
symbols is generated for each cell. A complete list of gene pairs is concatenated
from the length two permutations of each cell’s co-expressed set of genes. By
using permutations, the input enforces the property that the co-expression, and
ultimately the similarity, of any two genes is symmetric. The frequency of a gene
pair in the global list is determined by the number of cells in which that pair is
found to be co-expressed. The final list of pairs is subsequently used as input to
a neural network.

The neural network consists of a single hidden layer with linear activation.
The size of the input and output layers is determined by the total number
of expressed genes across all cells. The number of hidden layer units defines
the length of the learned vector representations. Sub-sampling frequent words
has been previously proposed as a means of training optimization [7]. While
these methods aim to more aggressively sample lower frequency input pairs,
proportionally increasing the sampling of these genes decreases the similarity
between higher frequency and more representative gene pairs. Instead, a uniform
probability of discarding any co-expressed gene pair was used to preserve the
overall frequency distribution and decrease the number of redundant training
examples. The neural network is trained in a feed-forward manner and optimized
using stochastic gradient descent. Figure 1 summarizes the model architecture.
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Fig.1: Neural network constructed with a single hidden layer of linear units
connecting a one hot encoded input to a soft-max output layer. Each training
example maps a pair of co-expressed genes within the dataset.
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2.2 Lower Dimensional Embeddings

The weight matrix connecting the hidden layer to the output layer contains the
lower dimensional gene embedding defined as G. The gene embedding dimensions
are given as j genes and ¢ latent dimensions corresponding to the number of
hidden units in the neural network.
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A representative cell vector can be computed as the average vector of the gene
embedding weighted by the normalized expression of each gene in the given
cell. Equation 1 describes this vector for cell C' where w; is the log-normalized
expression of gene i for cell ;.

C = (01 Co C3 ... ck) where (1)
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Similarly, a representative vector can be defined for any subset of cells. An

average vector can be computed across n cells using Equation 1 where w; is
substituted for the mean expression of the j** gene over the set of n cells.
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3 Results

3.1 Human PBMCs

Peripheral blood mononuclear cells (PBMCs) originally made available by 10x
Genomics are used to demonstrate results from our approach. Gene vectors are
computed and similarities between genes is shown to capture expected marker
gene co-expression. We map unsupervised clustering results to known cell types
using cosine similarity and demonstrate that these clusters can be used to iden-
tify marker genes. Finally, we compute a cell embedding for t-SNE visualization
based on the learned gene vectors. This dataset has been featured in a number
of tutorials demonstrating single cell RNA-seq analysis [10,13] and provides a
well understood platform for comparing the quality of presented results with
standard techniques. The log-normalized count matrix can be downloaded from
the Scanpy API [13]. The dataset consists of 2700 cells and 32,738 genes. Cell
type labels have been generated from leiden clustering using a set of 14 known
gene markers corresponding to the expected cell types. Overall, there are eight
cell types labeled as CD4 and CD8 T cells, NK cells, B cells, FCERG1+ and
CD14+ monocytes, dendritic cells, and megakaryocytes.
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After training the neural network with a hidden layer of 100 units, we obtain
a gene vector for each of the 32,738 genes. The cosine similarity between marker
genes is computed and Figure 3 highlights the similarity between each marker.
Markers of the same cell types are found to be most similar. Markers of similar
cell types, such as T and NK cells, are more similar than distinctly different cell
types. Given the distinct expression of marker genes in the each cell type, this
result demonstrates cosine similarity as a valid measure of gene co-expression.
Cosine similarity can also be computed between any two expressed genes. Figure
2 displays the top 10 most similar genes to each marker in a graph format.
Marker gene nodes are colored by cell type to highlight similarity between like
cell types. T Cell associated genes including CD3D, CD3E, and CD3G can be
found connected to CD4 and CD8 T cell markers.
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Fig.2: Top 10 most cosine similar gene for each marker. Markers are colored by
cell type. Similar cell types such as NK and CD8 T cells are directly connected by
similar marker genes. Known T Cell associated genes CD3E, CD3D, and CD3G
are found similar to both CD4 and CD8 T cells.

Gene co-expression patterns can be identified through unsupervised cluster-
ing of the gene embedding. Using hierarchical agglomerative clustering with a
cosine distance metric [8], 20 clusters were generated with unique gene expression
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Fig.3: Cosine Similarity of marker genes for 2700 PBMCs. Marker genes are
found to be clustered in the heatmap by associated cell type. Markers for NK
cells (NKG7 and GNLY) are found to be more similar to CD8 T cell markers
(CD8A and CD8B). Markers for more transcriptionally distinct cell types, such
as B Cells, are found to be clearly unique.

patterns. For each cluster, the average vector of associated genes is computed.
The cosine similarity of each gene with the average vector of each cell type is
show in Figure 4a. The cosine similarity of each cluster can be mapped to indi-
vidual cells. Figure 4 shows how the similarity of each cluster maps to cells in
the t-SNE embedding.

A cell embedding based on Equation 1 can be computed for each of the
2700 PBMC cells. Figure 5 displays the resulting t-SNE visualization of the
cell embedding compared to the t-SNE computed with PCA in Scanpy [13].
Qualitatively, the results are similar to the previously generated low dimensional
embedding. The cell embedding generated from our approach demonstrates that
our method can be used to generate lower dimensional visualizations with results
comparable to accepted methods. Furthermore, clustering of the gene embedding
can be used as a replacement for differential analysis to identify cell type markers.

3.2 Mouse Cell Atlas

A diverse selection of cells from two mouse cell atlas datasets [1,4] curated for
comparison of batch effect correction methods [12] are used to further demon-
strate batch correction with our method. The dataset has previously undergone
quality control [12] and the resulting normalized count matrices are publicly
available for download. The two datasets were generated on different sequencing
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Fig.4: Gene cluster similarity with cell types and individual cells. (a) Gene clus-
ter similarity with given cell types. (b) t-SNE colored by cosine similarity be-
tween each gene cluster and each cell. Distinct clusters can be visualized for
several cell types.

platforms. The first batch was generated using Microwell-Seq and the second
batch was generated using Smart-Seq2. Batch 1 and Batch 2 will be used re-
spectively to label the sequencing platform. The final datasets includes 6067
cells and 1962 genes.

The cell embedding computed on both batches was clustered by agglomer-
ative hierarchical clustering and the resulting clusters are used as reference for
applying local batch correction using vectors. For each cluster, average vectors
were computed for both batches using Equation 2. Using Batch 1 as a reference,
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Fig.5: Comparison of t-SNE.

a corrective vector was computed by subtracting the Batch 2 vector from the
Batch 1 vector. The corrective vector is then added to each of the cells from
Batch 2 within the cluster. Figure 6 displays the cell embedding colored by
batch before correction and after correction. Cell types found to be distinct in
the same embedding for each batch have been corrected into a single cell type
in the t-SNE visualization.

4 Discussion

The method presented in this paper provides a platform for investigating gene
co-expression in single cell RNA-seq data. The results obtained from this ap-
proach are comparable to accepted methods. The ability to create composite
vectors from any subset of genes provides a novel method for generating low
dimensional embeddings. Through vector arithmetic, these vectors provide a
means to describe and decompose variation in the dataset. Furthermore, the
ability to cluster gene expression patterns and relate these clusters directly to
cells allows the identification of gene expression patterns without traditional dif-
ferential analysis. Importantly, gene vectors are a distributed representation of
co-expression derived from the entire set of cells. If critical genes are co-expressed
in some subset of like cells, this method will be able to capture that relationship
regardless of dropout in the cell population of interest.

Training gene vectors without optimization is computationally intensive. Sev-
eral techniques for decreasing training time and increasing quality of results have
been proposed for word2vec models [7]. Negative sampling can be implemented
to decrease the number of weight updates for each training example given the
sparsity of the input and output vectors. Using previously described parameters,
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training time can be significantly reduced without general loss of results in our
method. The current software library supports this optimization with significant
performance improvements.

This work can be extended to develop vector representations for known path-
ways of interest. By selecting genes to construct an average vector, it is possible
to test the similarity of a given pathway to each cell. The current library supports
the creation of vectors of interest for any subset of genes. Additionally, vectors
can be trained on different features other than co-expression. Some examples
might include the use of known transcription factor targets and gene regulatory
networks to select gene pairs for learning vector representations. The method
presented and the software library developed can be used as an initial platform
for further exploration in developing gene representations that do not rely on
sparse normalized expression results.

5 Software Availability

A python software library using PyTorch is available on Github (github.com/neeglia/compass).
Jupyter notebooks are available for the PBMCs dataset and the two technology
mouse cell atlas dataset.
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