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Abstract—With the advent of Neural Network, Fully-
supervised salient object detection achieves great success.
However, it takes plenty of efforts to obtain precise pixel-level
annotations. In order to reduce human labeling efforts, some
research adapt weak form annotations, but they still fall short
of the fully-supervised. In this paper, we propose a novel
weakly-supervised salient object detection framework, which
can reduce labeling efforts by using scribble annotations. In the
meantime, we also incorporate Deep Convolutional Network to
achieve high performance. To this end, we utilize high-quality
region hierarchies, which are generated by Convolutional
Oriented Boundary (COB) network, to select optimal level
for object segmentation. We build initial saliency maps and
thoroughly annotate the images during the initialization
phase by spreading labels information from scribbles to other
regions. During the training phase, the salient object detection
convolutional network is trained using the initial saliency maps.
Then, we utilize Conditional Random Field (CRF) to refine
saliency maps, which will then be used to retrain the network.
To achieve quality saliency maps, we iteratively optimize the
training process. Extensive experiments on six benchmarks
demonstrate that our proposed method outperforms previous
weakly-supervised algorithms.

Index Terms—Salient object detection, Scribble annotations,
Weakly-supervised, Hierarchical segmentation.

I. INTRODUCTION

Salient object detection (SOD) is to identify the most
appealing parts in an image based on human perception.
To extract saliency, traditional techniques [1] [2] employ
low-level characteristics such as colors and textures. Those
hand-crafted features or human experience only work well
in simple context, but fail in complex ones. Recently,
the development of Deep Convolutional Neural Networks
has boosted salient object detection [3] [4] [5]. However,
the performance of these Convolutional Neural Networks
based approaches come at the expense of large pixel-level
annotations. It is tedious and often takes several minutes for
an expert annotator to label one image. To reduce human
efforts and keep high performance at the same time, several
semi-supervised, weakly-supervised or unsupervised methods
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[6] [7] [8] [9] have been introduced. Those approaches have
propensities for interpreting from sparse data [6] [7], or
learning from noise data [8] [9].

On the other hand, recent research has looked into splitting
an image into a multi-scale structure to capture objects at
all scales. Hierarchical segmentation increases the likelihood
of locating a whole or a portion of an object at a certain
hierarchy level. Hierarchical algorithms suffer from instability
as well. Since low-level features are used to build hierarchy
algorithms, results are vulnerable to space and feature
parameters selection (edges, colors, etc.). As a result, the
object’s scale is not enforced to be cohesive. In this paper, we
select the best segmentation level based on the boundary maps
predicted by the hierarchical image segmentation algorithm.

Even though some semi-supervised and unsupervised
methods in literature can address the human efforts problems
in some way, the performance is still far behind fully-
supervised approaches. In order to achieve high performance,
the optimal object segmentation level is selected from
boundary maps predicted by Convolutional Oriented
Boundary (COB) [10]. We also build a mapping model which
use scribbles [5] over the object segmentation. In doing so, we
can capture precise local structure while maintaining object
contour. By mapping foreground scribbles on the contour
map, the initial saliency annotations can be generated. The
initial saliency maps are then used to train a convolutional
network for SOD. The framework is updated by alternately
training, predicting and upgrading the prediction maps. We
apply Conditional Random Field [11] to refine prediction
maps during the alternately iteration process to correct errors.
After it converges, we choose the one with the minimum loss
to predict benchmarks.

The following are the three main contributions of this
paper: (1) We propose a novel weakly-supervised salient map
generation framework; (2) We design an approach to apply
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Fig. 1. Illustration of our framework. Two phases are included. Phase(a) uses contour maps to convey scribbles to initial saliency map. Phase(b) is an updating

process to fine-tune the network.

hierarchical boundaries to propagate scribble to larger region;
(3) In the experiments, our framework outperforms other state-
of-the-art models on five benchmarks.

II. RELATED WORK
A. Weak Annotations to Saliency

To achieve remarkable results, salient object detection
(SOD) necessitates a large number of pixel-level annotations.
Several recent researches seek to relieve the efforts of precise
annotations and presented a variety of deep neural network
based weakly supervised methods. Bounding box [12], and
image-level labels [13] [6] are a few such weak annotation
examples. Wang et al. [13] introduced a new way to extract
salient objects with image-level annotation by combining
Foreground Inference Network and an image classification net-
work. Li et al. [6] leveraged coarse activation map generated
from the unsupervised method in order to correct noise and
generate better results. Fully connected CRF [14] used as a
post-processing method in many studies [13] [6]. Zhang et al.
[15] used “generating by fusing”, which means to fuse the
unsupervised outputs to guide the training. In this paper, we
leveraged scribbles as weakly-guiding information for training
process.

B. Hierarchical Image Segmentation

The bottom-up merging technique has been utilized by a
huge number of algorithms to generate segmentation [16] [17]
[18]. Arbelaze et al. [16] used spectral clustering to combine

different local cues to generate global contour. They reduced
the problem of image segmentation to contour detection. Pont-
Tuset et al. [17] combined multi-scale information to generate
proposals. They also proposed a one-scale approach, which ran
faster since it only took one scale. To convey information from
deep cues to unmarked regions, Al-Huda et al. [18] employed
high-quality region hierarchies. In this paper, we use COB
to generate contour maps, based on which initial maps were
generated by growing information from scribbles to unknown
areas.

III. PROPOSED METHOD

To take the advantages of both low efforts requirement from
scribble and high performance from deep network, we propose
a framework as is shown in Fig. 1. Two stages are included
in this framework. The first stage focuses on getting initial
saliency maps from scribbles. The second stage uses the initial
saliency maps from the first stage to alternately update the
network by correcting errors.

A. Generating high-quality initial saliency maps

In this section, we discuss three processes involved in the
first phase of our framework. The steps included are shown
in Fig. 1 (a): We generate contour hierarchy by applying
COB on training dataset; then we choose the optimal contour
level from generated hierarchy; finally, in order to generate
high-quality initial saliency annotations as the supervision on
network training, we grow scribble in the optimal contour
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Fig. 2. Top left: Original Image. Top right: Over-Segmentation. Bottom left:
Optimal Level. Bottom right: Under-Segmentation.

level.

1) Generate object segmentation hierarchy: In order to
generate accurate initial annotations, we apply hierarchical
objection segmentation method for good performance.
Considering higher accuracy and clearer boundaries as COB
shows in [19] [20] [21], in this work we also use COB [10]
to generate Ultrametric Contour Map (UCM). It applied deep
neural network to guide the generation process, which means
it has better performance in objection detection, which can in
turn contribute to saliency map generation.

2) Optimal scale selection process: How to choose
the candidate contour level will directly influence initial
annotation results. As it is shown in Fig. 2 (top right), the
low level contour map can capture more details, but with too
much noise, not to mention the cost of computation. However,
in high levels, such as (bottom right), even if it curbs the
noise from the background, foreground parts merges too. So
that vital information gets lost. Neither being too high nor too
low a level is a good candidate, whereas middle levels can
be a good balance. As it is shown in (bottom left), middle
levels tend to curb noise whilst keeping enough information.

In this paper we choose the 30% level from the bottom. The
equation used to calculate the number of regions is given as
below:

N(p) = t(i)’ (1)

1

n

3=

(3

where (i) is the numbers of regions in one contour map
in a specific level p. n is the total image numbers in the
training data set. Our goal is to find out the suitable level
which satisfies:

I<N(p) <h. 2

Fig. 3. A illustration of extracting foreground scribble. The first row shows
when both fore-scribble and back-scribble exist. The second row shows result
after extracting fore-scribble.

Empirically, we set [ = 30 and h = 40. By applying Eq. (1)
and Eq. (2) in the boundary hierarchy, we find the 30% level
from the bottom would be the best.

3) Scribble-guided object region growing process:
Salience detection is to distinguish the foreground from the
background - it is mutual-exclusive. A pixel could be either
the foreground or the background. However, in an image, the
most intriguing part (foreground) should be highlighted. In
the proposed framework, we extract the foreground scribble
from both fore-scribble and back-scribble. The result of
choosing foreground is shown in Fig.3. The extracted the
foreground scribble will be used to guide the region selection
process.

Algorithm 1 Map foreground scribble to UCM

Input: UCM set U = [uq, uz, ..., u]and Foreground scribble
set I' = [f1, fa, e, ful
Output: Initial saliency annotation
1: while i # n do
2:  Pick up one pair (u;, f;)
Find out all regions R = [ry,72, ..., 7] in ;.
while j £ m do
Check intersection In =r; N f;
if In > 6 then
Mark 7; as salience
else
Mark r; as background
10 end if
11:  end while
12: end while

R A

After obtaining the foreground scribble, we need to map
fore-scribble to the UCM map for the initial saliency annota-
tions. In this process, we need to find out all the closed regions
in UCM. For regions which overlap with the fore-scribble,
they will be assigned as the foreground. After scanning all
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Fig. 4. An illustration of extracting foreground scribble. Then map the fore
ground on superpixels to generate initial saliency annotation.

regions and marking all possible foreground regions, the rest
regions will be assigned as the background. The process is
illustrated in Algorithm 1. Empirically we set 6 to be 50 pixels
as a threshold to filter out errors in scribbles. The process of
mapping the scribble to UCM is shown in Fig. 4.

B. Network Training And Updating

In this section, we discuss the second phase in our
framework. This phase includes three steps, as is shown
in Fig. 1(b). We use initial saliency annotations from first
phase(Fig. 1(a)) to train a salient object detection network
several epochs till it converges; then, we use the trained
network to predict training saliency maps. We then apply
CREF [11] to update the predicted saliency maps. Finally, we
iterate the two steps mentioned before, until the network
finally converges.

We adapt VGG16 [22] as our back bone network to generate
saliency map. We train this 2D prediction network based on
initial annotations obtained from phase(a) in Fig.1. Here the
loss function is defined as:

1
loss = - Z(yi*1Dxi+(1—yi)*ln(1—$i)), 3

where y,,, T, % and n denote ground truth, prediction, current
pixel and total pixel numbers in an image. The training stops
when loss < v, where v = 0.0001, or over-fitting appears -
loss starting to bounce back. We use VGG16 [22] pretrained
on ImageNet [23] to initialize our network, and set base
learning rate as le-4. It took for average 50 epochs to converge.
After one iteration completed, we use the model with the
lowest loss to predict on training dataset, and then use fully-
connected CRF [11] to refine the new predicted result [24].
The whole process iterated several times until the network
finally converges. After the whole training stops, we use
pretrained network to predict on five benchmarks.

IV. EXPERIMENTAL RESULTS
A. Setup

Competing methods: Six state-of-the-art weakly-
supervised/unsupervised and eight fully-supervised methods
are used for comparison.

Dataset: For training, the dataset we use is DUTS-TR
[25]. The scribbles come from S-DUTS [5]. For testing, five
common benchmarks are used:(1)ESSED [26]; (2)DUT [27];
(3)PASCAL-S [28]; (4)HKU-IS [29]; (5)DUTS testing dataset
[25].

Metrics: Four commonly used metrics are utilized to
evaluate the results: Mean Absolute Error(MAE), F-measure,
PR-curve, and F-curve.

Mean Absolute Error(MAE) [30] - which is represented in
our paper as M - calculates the absolute per-pixel difference
between prediction map and ground truth map. It is defined
as:

1 —_— —
M=u~a > Waei Yy Hyi|S(z,y) — Gla,y)l, @)

where S and G is prediction and ground truth, respectively.
W and H mean the width and the height of an image. x and y
denote the coordination of a pixel. For a dataset, MAE means
the average of whole saliency maps over the whole dataset.

PR-curve, as a widely-accepted method to evaluate the
saliency map, shows precision and call in a visual and
intuitive way. Each pair of precision and recall is calculated
by taking threshold in both prediction and ground truth. By
varying threshold from the min value of the map to max of
the map, we got a sequence of PR values, which then is used
to plot PR curves.

To balance and get a comprehensive view of both precision
and recall, F3 is defined in Eq. (5). It can be calculated based
on each pair of precision and recall values.

(14 %) Precision x Recall
B2 Precision + Recall

Fy= 5)
where 2 is set to be 0.3 according to [31]. The F-curve offers

a direct visual way to show how Fj changes with different
thresholds.

B. State-of-the-art Comparison

Quantitative Comparison: We compare our method
with other state-of-the-art weakly-supervised/unsupervised
methods in Table I and Fig. 6. As it is shown in Table I,
our framework outperforms all the state-of-the-art weakly-
supervised methods on F-measure. Compared with the
state-of-the-art weakly-supervised method (WSA) about
F-measure, we get 2.1% improvement on average on all
test datasets. The highest F gain(2.7%) comes from dataset
ECSSD. Images in ECSSD not only often contain multiple
objects, but also have complex object structures, which in
some way proved that our framework can better detect several
objects with complex structures. The lowest F gain-1.7% is
on dataset DUT-OMRON, which contains low image contrast
and irregular object boundaries like a swimming pool, a
road or a fence. These objects in the image often don’t



TABLE I
RESULTS ON 5 BENCHMARKS DATASETS. THE BEST RESULTS ARE IN BOLD.

Fully Sup. Models weakly Sup./Unsup. Models
Metric | PiCANet NLDF MSNet CPD  AFNet PFAN PAGRN BASNet | SBF WSI WSS MNL MSW WSA  Ours
[32] [33] [34] [35] [36] [37] [38] [3] [15] (6] [13] 91 [7] (5]

ECSSD Fg T 8715 .8709 .8856 9076  .9008 .8592 8718 9128 7823 7621 7672 8098 7606  .8650  .8929
M .0543 .0656 .0479 0434 0450  .0467 0644 .0399 .0955 .0681 .1081 .0902 .0980 .0610 .0599

DUT Fg 1 7105 .6825 7095 7385 7425 7009 6754 7668 6120 6408 5895 5966 5970 7015  .7210
M| .0722 .0796 .0636 .0567  .0574  .0615 .0709 .0565 1076 .0999 1102 .1028  .1087  .0684  .0683

PASCAL-S Fg T 7985 7933 8129 8220 .8241 7544 71656 .8212 7351 6532 6975 7476 6850 7884  .8054
ML .1284 1454 1193 1215 .1155 1372 1516 1217 1669 2055 1843 1576  .1780  .1399  .0995

HKU-IS Fg 1 .8543 8711 .8780 .8948 .8877 8717 .8638 .9025 7825 7625 7734 8196 7337 8576  .8747
M| .0464 .0477 .0387 .0333 .0358 .0424 0475 .0322 .0753  .0885 .0787 .0650 .0843 .0470 .0490

DUTS Fg 1t 7565 1567 7917 .8246 8123 7648 7781 .8226 6223 5687  .6330 7249 6479 7467 7731
ML .0621 .0652 .0490  .0428  .0457 .0609 .0555 .0476 L1069 1156 1000 .0749 0912 .0622  .0642
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Fig. 5. Saliency maps comparison of the proposed framework with seven other weakly-supervised/unsupervised or fully-supervised methods.

have clear boundary or clear semantic meanings. In that
case, our framework tends to predict the most salient part of
those un-salient object(not complete), which in turn leads to
relatively low F gains.

As for MAE(M), Table I shows that - compared to
the second best method - our framework performs better
on 3 out of the total 5 datasets. On ECSSD, DUT and
PASCAL-S, we achieved 1.2% improvements on average,
which means our framework can reduce disparities between
the ground truth and the prediction. Even though, we do
not gain the better results on HKU-IS and DUTS-TEST,
the absolute difference(0.002) is tiny. In other words, we
achieved comparable results on this two datasets, compared
to the best method so far. In contrast to F-measure, MAE is
harder to improve for several reasons: First, the calibrations
are different. F-measure tends to focus on precision, so the

more foreground the better. It makes sense, because saliency
results are often used in the following image processing
applications, so it is better not to miss salient information.
In contrast, MAE mainly cares about the difference without
considering the importance of precision or foreground, nor
the semantic information like integrity, complexity and etc.
Second, since our framework is based on scribbles — only 5%
of the pixels on average are marked — the sparse information
can definitely cause a loss in object structure and details. In
such cases, minor thin things like hair, antenna, distal ends
along side with low contrast like an animal with camouflage
make the weakly-supervised method worse in MAE. So it
is acceptable to have minor but comparable results with MAE.

In Fig. 6, we also compared with other competing methods
in 3 benchmarks: ECSSD, DUT, HKU-IS. We will compare
from perspectives of methods, metrics and then benchmarks.
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Fig. 7. An illustration of how UCM and scribbles used to generate initial input contributes to the final prediction. Five rows in the figure are: Input image
(1st. row); Scribbles on input images; GT (3nd. row); (3rd row); UCM (4th. row) and Our prediction (5th. row).

Fig. 6 shows that our method surpasses other weakly-
supervised/unsupervised approaches in both F-measure and
PR-curves, which demonstrates robustness of our framework.
In particular, our method gains by a large margin when it
compares to weakly-supervised methods like MSW and SBF.
Moreover, our method is even comparable to some fully
supervised methods. Particularly in dataset DUT-OMRON, it
is better than fully supervised NLDF. However, if we check
metrics separately, for F-measure, our framework tends to
obtain high scores. Since it focuses on extracting foreground
so that pixel with low scores are more likely to be marked as

background by the framework. Precision tends to get the best
point when the threshold is 0.5, which also suggests pixels
with scores less than threshold are prone to be background.
When we compare different benchmarks, it shows that
methods are more likely to achieve better performance on
ECSSD and PASCAL-S, but lower on DUT-OMRON. It also
suggests that different benchmarks could have different data
composition, and using various datasets can better evaluate
methods’ performance.

Qualitative Comparison: To further illustrate superior
performance of our framework, we visualize three aspects:
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Fig. 8. A demonstration of how iterations help with fine-tuning the network, Iter in the figure means Iteration.

how different methods works, the role of UCM in our
framework, and the influence of iteration.

In Fig. 5, we randomly pick out five images from test
dataset to show our strengths compared to other weakly-
supervised/unsupervised or fully supervised methods. As
is shown in Fig.5 (Ist row), thanks to boundary correcting
post-processing iterations, our method tends to have clearer
and more complete object limbs. It still holds when it is small
target (2nd row). The alternate post-processing can suppress
noise during iteration. Those weakly-supervised/unsupervised
methods used for comparison are either miss parts or predict
noise when it comes to small objects. Fully supervised
methods tend to predict more facing small objects, since over-
fitting often comes after training too much. Our framework
can do a better job when targets take up most of the image
and is composed of high contrast parts(complex structure)
like zebra in 3rd row. Even facing human-made highly-
semantically-meaningful targets — which other methods don’t
interpret complete, our method can still pull it off (4th row).
Our framework still holds its ground when it’s about small
objects and multiple ones like it is in the Sth row.

To illustrate how UCM contribute to our superior
performance, we randomly pick up a few images from
training data set to show how the result becomes after the
network converges, as is shown in Fig. 7. Thanks to COB
[10] and UCM level choosing process in Algorithm 1, we
can achieve a lot in the following complex scenarios: object
composed with high contrast parts — complex structure; highly
semantic-related mirror; small targets in similar environment;
multiple small objects; many objects; saliency in several
un-salient noise objects; object with irregular boundaries; and
strong semantic-related targets, as shown in Fig. 7, columns
Ist, 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th, respectively.

We also illustrate how iterations contribute to our supe-

rior performance in Fig. 8. In general, as is shown, with
iterations(Here the iteration is not epoch; One iteration con-
tains many epochs) alternately going, the network converges
towards a finer result. After each iteration, CRF is applied
to retouch prediction, and it takes about four iterations to
converge. The benefits of our alternately iteration can be
summarized as follows: When more than one salient object
exists and initial input do not catch them completely in Fig. 8
(1st and 2nd row), iteration can fix the missing parts gradually;
as is shown in 3rd row, if the salience exists in a environment
with similar color and texture patterns(unclear boundary), even
though CRF can usher in errors, the iteration can still filter it
out; In the 4th row, alternate iterations also partially solved
one of the biggest problems in weakly supervised saliency —
missing details; Moreover, in 5th row, the iteration process
also shows its ability to catch high level semantic meanings
and suppress errors.

V. CONCLUSION

In this paper, we proposed a weakly-supervised salient
object detection (SOD) framework with supervision from
information-sparse scribble annotations. To overcome the low
information density with scribble, we introduced contour
generation method COB as guidance to generate saliency
map as initial input. With more information-dense initial
saliency map as input, we alternately trained a network. After
applying CRF on predicted saliency maps at each iteration,
our network corrected errors and optimized gradually on
training dataset. Extensive experiments show that on metrics
F-measure, our framework outperforms all the other weakly-
supervised/unsupervised methods. Our method also achieve
the best result on most benchmarks about MAE. The PR-
curves also show robustness of our approach. Furthermore, our
framework is even on par with some fully-supervised methods.
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