
EasyChair Preprint
№ 13521

Building Performance Simulation of MyBox
Energy Lab in Norway: Investigating the Human
Dimension in Energy Use Analysis

Helleik Syse and Homam Nikpey

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 3, 2024



  
Paper ID: 612, Page 1 

 

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE 

 
BUILDING PERFORMANCE SIMULATION OF MYBOX ENERGY 

LAB IN NORWAY: INVESTIGATING THE HUMAN DIMENSION IN 
ENERGY USE ANALYSIS 

 
Helleik Rosenvinge Syse1*, Homam Nikpey Somehsaraei1 

 
1University of Stavanger, Department of Energy and Petroleum Engineering, Norway 

 
*Corresponding Author: helleik.l.syse@uis.no  

 
ABSTRACT 

The MyBox energy lab at the University of Stavanger presents an innovative integration of living and 
research spaces housed within six repurposed shipping containers, where energy consumption data has 
been logged hourly over the past five years. Employing Building Performance Simulation (BPS), this 
study investigates the human dimension of energy use within the facility. Focusing on modelling 
human-related energy use, the research explores the customisation of occupant, equipment, and lighting 
schedules using BPS, revealing substantial day-to-day variability in energy consumption attributed to 
human factors such as presence, heating preferences, and cooking habits. While validation against 
actual data demonstrates a reasonable correlation on yearly and monthly scales, the study highlights the 
limitations of BPS in capturing finer temporal resolutions, emphasising the need for enhanced 
methodologies in simulating human behaviour within energy models. 
 

1 INTRODUCTION 
Since the pre-industrial era, the global average temperature has increased by 1.2°C (Lindsey & 
Dahlman, 2021). There is an overwhelming scientific consensus that this is caused by humanity's 
emission of greenhouse gases (IEA, 2021; IPCC, 2021). The problem has been well understood and 
high on the political agenda for more than 30 years (IEA, 2021; United Nations 1992). Greenhouse gas 
emission comes from numerous sources; however, around 73% of the global emissions are attributed 
to Energy in the form of electricity, heat and transport (World Resources institute, 2020). Breaking 
down the energy use by sector, the operations of buildings account for 30% of global final energy 
consumption and 26% of global energy-related emissions, according to IEA (IEA, 2023). The numbers 
are even higher in Europe; in 2021, 42% of the energy consumed in the EU was used in buildings 
(European Comission, 2023). 
 
Because of this, it is crucial to focus on the energy use and emissions from buildings to reduce overall 
greenhouse gas emissions (IEA, 2021). Buildings today are continuously becoming more energy 
efficient. However, 85% of EU buildings were built before 2000, and among those, 75% have poor 
energy performance. Significant improvements will, therefore, have to be made to achieve a fully 
decarbonised building stock by 2050 in line with the targets of the European Union (European 
Comission, 2023).  
 
Historically, the focus on energy efficiency in buildings has been targeted at minimising the energy use 
of a building through the emphasis on building materials and technical systems (Ionescu et al., 2015). 
However, several studies (D’Oca et al., 2018; O'Brien et al., 2020; Yoshino et al., 2017) argues that the 
research in "building energy efficiency" has down-prioritised the focus on energy use related to 
occupant behaviour (OB) to the advantage of technical solutions in buildings. This down prioritisation 
is problematic because the human dimensions play a significant role in energy savings in buildings. 
Also, this factor is poorly understood, so stakeholders often ignore or simplify human dimensions 
(D’Oca et al., 2018). A poor understanding of OB in buildings likely results in inadequate tools to 
address the energy efficiency potential of better addressing human dimensions of energy usage. 
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Various tools can aid engineers and researchers in predicting the performance of both planned and 
existing buildings (Nguyen et al., 2014). Still, the industry standard of computer tools is a class called 
BPS, which utilise computer-based models founded on physical principles to quantify relevant aspects 
of building performance for design, construction, and operation purposes (Wilde, 2018). By utilising 
BPS, one can predict a range of factors for a building; however, energy consumption will be the focus 
of this paper. 
 
However, in BPS research, the term “Performance Gap” is a commonly known factor influencing 
modelling. The performance gap of buildings is frequently defined as the difference between the 
performance value predicted in the design stage and that measured in the post-occupancy stage (Shi et 
al., 2019). The “Energy Performance gap” is a more specified term describing the discrepancy between 
predicted and measured energy use of a building (van Dronkelaar et al., 2016). According to research 
by (Menezes et al., 2012), the measured energy use of a building can be as much as 2.5 times greater 
than the simulated or predicted energy use. The causes of the performance gap are linked to causes 
rooted in the design, construction and operational stages of a building (de Wilde, 2014). Some 
researchers, like (D’Oca et al., 2018), attribute a significant portion of the energy performance gap to 
OB, while others, like Field (Mahdavi et al., 2021), argue that occupants as significant or exclusive 
contributors to the energy performance gap are not sufficiently substantiated by evidence. 
 
Nevertheless, human behaviour does not necessarily adhere to standard physical principles, and 
predicting OB using BPS could lead to inaccurate models and, therefore, imprecise energy calculations 
for a building. The mismatch between a building model is also reflected in the research comparing 
building energy standards and actual energy use of buildings. The American Society of Heat, 
Refrigerating and Air-Conditioning Engineers (ASHRAE) publish standard energy consumption 
profiles for different buildings. However, this is quite a simplified view, and studies show that the actual 
energy demand profile varies significantly from this standard (typically 20-30% both ways) (Annaqeeb 
et al., 2020), which OB could explain to a large degree. 
 
Utilising the MyBox energy lab at the University of Stavanger—a complex of six insulated shipping 
containers serving living and research purposes—we've collected hourly energy consumption data over 
five years. These data serves as the basis for our study, which employs the BPS tool IDA ICE1 to create 
a virtual model of the MyBox lab and compare simulated energy use with historical data. 
 
Our study focuses on the human aspect of energy use, given the sector's significant global energy 
consumption and the impact of OB on usage patterns. Modelling this dimension presents challenges 
due to its variability.  We explore the feasibility of incorporating human-related energy use into BPS 
tools, allowing for customised schedules for occupants, equipment, and lighting. This paper comprises 
four sections: an introduction to building energy use and the role of BPS, a description of the MyBox 
energy lab, a detailed model description using IDA ICE, and a discussion comparing simulation results 
with measured data. Ultimately, the MyBox living lab aims to provide open access to energy datasets, 
facilitating a deeper understanding of the human dimension in building energy usage. 
 

2 SYSTEM DESCRIPTION 
The MyBox energy lab is a living energy laboratory at the University of Stavanger in Norway. It 
comprises six retrofitted 40-foot shipping containers insulated with vacuum insulation panels and made 
into five student apartments. The two shipping containers on the top floor are connected by a door, 
making the apartment twice as large as the four others. The MyBox building was constructed at the 
University of Stavanger in 2014 as a student-driven pilot project to solve the campus housing problem 
(MacDougall, 2014).  
 

 
1 IDA ICE is a dynamic simulation software used for detailed analysis of building energy performance, indoor 
climate, and HVAC systems. 
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In 2019, upgrades to the MyBox building were made to facilitate energy research in a living lab. Eight 
photovoltaic (PV) panels were installed on the roof and four on the east and west-facing walls. In 
addition, a vertical axis wind turbine (VAWT) was installed to investigate the potential for wind energy 
production in urban settings. Energy consumption has been logged continuously for the whole building 
hourly since 2018. The energy production from PV and the VAWT has also been logged since 
installation; however, intermittently due to partly faulty logging equipment. The six shipping containers 
in the lab are stacked two side by side and three in height (Figure 1). Each apartment has a combined 
kitchen and living room, a bathroom, and a bedroom/office. Students at the University of Stavanger can 
apply to live in the apartments for free in return for sharing their energy data, being part of energy 
interventions, and doing student projects linked to the lab. The following sections describe the 
construction and systems of the MyBox living energy lab. 
 

 
Figure 1: A) A photo of the exterior of the MyBox lab. Towards the right of the building, there are four east-facing PV 

panels. On the right side is a 3kW VAWT (Photo by H. Syse). B) A building information model (BIM) model used to create 
the BPS model. C): Overview of the interior of the apartments. BIM model and figure by (Sørstrønen, 2013).  

2.1 Building Construction Description 
The load-bearing structure of the MyBox lab is six steel shipping containers. The long sides of the 
shipping containers are not modified, but the short sides are cut out on both sides to make room for 
windows and doors. The corners of the containers have been reinforced to make up for the missing steel 
walls on the short side (Sørstrønen, 2013). The primary insulation of the walls is vacuum insulation 
panels (VIP), a material that provides low U-values without adding a lot of thickness to the wall. The 
windows and doors are double-glazed. Table 1 delivers an overview of the dimensions of each container 
unit. Table 2 shows the build-up of the walls, with thickness of each element and corresponding u-
values, taken from (Sørstrønen, 2013) and (Shen et al., 2019): 
 

Table 1: Dimension of each of the six living modules of the MyBox living lab (Sørstrønen, 2013) 

Specifications Outside Inside 
Area 29,74 m2 26,18 m2 

Length 12,19 m 11,64 m 
With 2,44 2,25 m 

Height 2,90 2,50 m 
 

Table 2: Overview of the wall materials, their thickness, and corresponding U-values. 

Material Thickness (mm) R-Value (W/m2K) 
Gypsum 12 0,22 

Light insulation 50 0,04 
Steel shipping container 27 42,00 

Air gap 30 0,16 
VIP 30 0,01 

Tricoya (composite wood) 12 0,14 
Total 131 0,13 
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2.2 Overview of MyBox Energy Lab's Integrated Energy Systems 
The MyBox energy lab comprises several systems that contribute to the building's overall energy 
system. The heating system is direct electric heating in the form of two standalone electric smart IoT-
enabled heaters in the bedroom/office and kitchen/living room area. The occupant can set the room 
temperature by adjusting the smart heaters. The IoT-enabled heaters allow for remote management and 
optimisation of the heating. The occupants can program the heaters to lower the night temperature or 
remotely control the heating through a phone app. The ventilation system is a constant air volume fan 
with a reheater. The apartments are in Norway, where heatwaves are infrequent, so there is no dedicated 
cooling system, as is common in northern European countries (Ruuhela et al., 2021). 
 
Each apartment also has a 28-litre electric hot water tank used for showers and tap water. The flats have 
natural lighting from the windows on the north and south sides of the building. In addition, there are 
LEDs on each room's ceiling. Each apartment has several fixed electric appliances: a dishwasher, 
washing machine, oven, cooking hob, fridge, and TV. In addition, the occupants living there can have 
other appliances drawing power, like a computer, phone, etc. All these electrical components contribute 
to the load profile throughout the day for these apartments. Some loads, like the ventilation system, run 
continuously without being influenced by the occupants. Other components, such as heating, are 
influenced by the occupant changing the indoor temperature. 
 
For power generation, the lab is connected to the regional electricity grid and supplemented by 
renewable energy sources, namely 16 270W PV and a VAWT with a capacity of 3200W. The 
photovoltaic panels are strategically installed—four mounted vertically on east and west-facing walls, 
and eight positioned at a 10° inclination to the south on the flat roof. In 2021, the lab's total energy 
consumption was documented at 34,816 kWh, with the PV array contributing 2,408 kWh, accounting 
for 6.9% of the total consumption. The wind turbine's yield was notably lower at 11 kWh, representing 
a mere 0.5% of total yearly consumption, an inefficiency attributed to suboptimal siting characterised 
by low and variable wind conditions. 
 
Though the energy generation aspect of the MyBox Energy Lab provides a crucial context for the 
building's operational dynamics, the primary focus of this paper is on the demand side of the energy 
equation. Table 3 describes the components constituting the lab's energy system, serving as a basis for 
analysing consumption patterns and modelling the building. The table lists the components for each of 
the apartments inside the building. 
Table 3: Overview of the MyBox apartment´s components that form the basis for the lab's energy consumption 

and production. The peak power for each component is obtained from the relevant datasheet. 

System component Description Peak power 
Heating 2 x smart electric heater 2x 1500W 

Ventilation Constant air volume fan with re-heater Fan: 172W 
Re-heater: 500W 

Hot water 
 

Electric hot water tank, 28 litre capacity 
 

1950W 

Lighting 10 x 5W LED spots in ceiling, 3W bed lamp, 8W 
office lamp 61 W total 

Dishwasher Dishwasher from IKEA 2200W 
Washing machine Washing machine from Electrolux 2200W 

Oven Electric oven from IKEA 2600W 
Cooking hob Induction hob from Matsui 3500W 

Fridge 147l fridge from IKEA 132W 
TV 32-inch TV from IKEA 70W 

Miscellaneous chargers and 
devices 

Computer, phone charger, etc. N/A 

 
Power production 

Grid connection 
16 PV modules (270Wp each) 

3200Wp VAWT 

 
PV 4320Wp  

VAWT 3200Wp 
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2.3 Energy data and logging equipment 
The MyBox lab has a smart meter that has logged the energy consumption for the whole building 
consisting of 6 container units since 2018. This dataset provides the benchmarking data for the BPS 
model. The day with the lowest consumption (18.08.2023) sees a consumption of 31 kWh, and the day 
with the highest (27.01.2021) has a total consumption of 241 kWh. The main driver for electricity 
consumption is the outdoor temperature, with the coldest days having the highest consumption and the 
warmest days having the lowest. The average daily energy consumption across the dataset is 91 kWh 
per day. Table 4 provides an overview of the energy consumption data collected: 
 

Table 4: Electricity consumption data logged for the MyBox lab 

Description Hourly energy data MyBox 
energy lab 

Time start 01.08.2018 
Time end Continuous monitoring 

Resolution 1 hour 
Unit kWh 

 
In addition to the smart meter data capturing the whole building, a new logging system was installed in 
the two ground-floor apartments in September 2023. This system logs the power load for each circuit 
with a 10-second resolution. This means that data will separately be available for fridges, lights, 
ventilation and power outlets, hot water boilers, washing machines, cooking hob, dishwashers, power 
outlets for heating, indoor temperature, outdoor temperature, wind speed and electricity price. The 
system is still being tested and calibrated; however, in future work, the data from this system will be 
used to get better insight into the OB impact on energy consumption. 
 

3  MODEL DESCRIPTION  
3.1 Choice of BPS tool 
The software used to create a BPS model of the MyBox was IDA Indoor Climate and Energy (ICE), 
which EQUA Simulation AB developed. The software was chosen after reviewing available BPS 
software, which has the potential to simulate OB. In a review paper by (Hong et al., 2018), programs 
that can represent and implement OB are critically reviewed. In the paper by (Hong et al., 2018), IDA 
ICE is highlighted as a tool that provides flexibility for users via the input of predefined and customised 
occupant schedules. Previous research investigating the simulation of OB in buildings and its relation 
to energy use has employed IDA ICE (Buso et al., 2015; D’Oca et al., 2014; Tuniki et al., 2020). 
 
3.2 The physics of BPS  
The software performs calculations using the input data through its simulation engine. The key 
processes include: 
Heat Transfer Calculations: The foundation of BPS software is calculating heat transfer through the 
building envelope (walls, roof, floors, windows) using thermodynamic principles. It considers 
conduction, convection, and radiation mechanisms between the building and the external environment 
and within the building's elements. 
System Simulations: HVAC and other systems are simulated to determine how they respond to internal 
and external heat loads. This involves simulating the operation of heating, air handling units, and other 
equipment based on heat transfer calculations while considering the set control logic to meet the thermal 
demands. 
Energy Balances: The software calculates the energy balance for each zone in the building, considering 
the heat gains and losses and the energy used by the HVAC systems to maintain the desired indoor 
conditions. 
Thermal Comfort and Indoor Air Quality: The models also assess parameters like CO2 
concentration, humidity, and temperature to ensure that indoor environmental quality is within 
acceptable comfort ranges. 
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3.3 Steps taken to build a BPS model of the MyBox lab 
This section outlines the steps taken to build a BPS model in IDA ICE of the MyBox lab. The first step 
is to create the geometry of the building, the second step involves putting all relevant data, the third step 
is to simulate, and the final step is to analyse and verify the results obtained from the simulation. 
 
Geometry 
The first step of the modelling involved importing the SketchUp-3D model of the MyBox lab into IDA 
ICE. Afterwards, the six modelling zones that make up the living quarters of the living lab were created. 
The 3D model was imported to consider the shading objects, which consisted of balconies and stairs 
outside the building. 
 
Each apartment has been modelled as a single thermal zone with the same geometry for all apartments. 
The windows and doors have been added to correspond to the correct placement within the building. It 
was decided to model each apartment as a single zone, even though each apartment/shipping container 
has three rooms. It is assumed that the doors between the different rooms are usually kept open, so for 
practical purposes, each unit functions as a single zone, simplifying the modelling. 

 
Input data 
The input parameters for the modelling were derived from the building's BIM model, measurements, 
and literature sources, specifically (Andersen et al., 2020; Sørstrønen, 2013). Where available, product 
datasheets provided specific values; otherwise, the most applicable Norwegian Standards (NS) were 
applied. Table 5 lists the input parameters and corresponding values or descriptions. 
 

Table 5: Overview of input parameters used for modelling each identical zone of the building. 

Parameter Value/description 
Apartment area 26,18 m2 
Ceiling height 2,50 m 

Occupants 1 per apartment 
CO2 emission per person IDA ICE default equation 

Lights 61 W 
Equipment 260 W (NS 3031:2014) 

Occupancy schedule (Monday-Friday) Figure 2 
Occupancy schedule (Saturday-Sunday) Figure 2 

Solar shading Manually operated internal blinds 
Ventilation operation time 24 hours 

Ventilation airflow rate 2 L/s m 
Heat exchanger efficiency 80% 

Window area 8,5 m2 
U-Value external wall 0,125 W/m2 K 

U-Value windows and glass door 0,8 W/m2 K 
 
The next modelling step involves setting the correct building materials and corresponding u-values in 
the computer model. Energy loads were added according to Table 3 and Table 5. When available, the 
data sheet for the specific equipment was used, and when not available, the best-fitting generic 
equipment from the IDA ICE database was used. The heating set point was 20°C, and the ventilation 
was set to 2 L/s m2 with a heat exchanger on the exhaust air. The apartment has no cooling unit, but 
window opening is set as a possible response to reduce high indoor temperatures in the software. Hot 
water usage was set to 45 l/occupant per day following average data from a study by (Fuentes et al., 
2018). The ASHRAE 2021 “typical” weather file for Stavanger was used for weather data, and the wind 
profile was set to “default urban”. Lastly, the occupancy schedules for the apartments were set to be 
able to consider the OB influence on energy in the modelling. The schedules were set based on talks 
with the students living in the apartments and aimed to represent a “typical” student day. Figure 3 shows 
the occupancy, equipment and lighting schedules that were used. 
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Figure 2: The occupancy, equipment and lighting schedules used in the model to consider the OB influence on 

energy consumption. 

Simulation 
A simulation is run according to the processes outlined in 3.2. In IDA ICE, running Energy, Power, 
Comfort and Daylight simulations in the software is possible. In this case, all the different simulations 
were run. The energy and power simulations are of primary interest in this study. However, the comfort 
and daylight simulations were run to evaluate the relevant comfort metrics, given the modelling set-up, 
and serve as an extra validation point by checking that the indoor temperature stayed within normal 
boundaries. The first simulation run revealed a lower simulated energy use than the measured data. 
Previous thermal scans of the outside of the building have shown a potential leakage in the vacuum 
insulation panels, leading to a lower overall u-value than the building design criteria. This was 
accounted for by adjusting the thermal bridge setting in IDA ICE. This setting lets the user adjust the 
thermal bridges of different building sections from “good”, “typical”, “poor”, and “very poor”. 
Adjusting the thermal bridges to match the actual building envelope obtained a close fit with the 
measured data.  
 
Analysing and Verifying results  
The last step in the modelling involves analysing and verifying the results. In this case, the modelled 
building has already been built, and the energy data has been logged for the previous five years to verify 
the energy simulation against the data. It is common to benchmark simulated and measured data on a 
monthly or hourly scale or both (Coakley et al., 2014; Maile et al., 2012). For this study, we decided 
that the benchmark was to get the monthly simulated energy consumption data as close as possible to 
the measured monthly energy data. We used the appropriate validations to match building energy 
simulation data with measured data, as outlined by (Coakley et al., 2014). The first rounds of results 
from the simulation revealed a poor fit between the measured and simulated energy consumption data. 
Monthly deviations between 20-40% between measured and simulated data were observed. Additional 
input parameters and changes to the model were then made, as described in the previous sections, to 
address the observed energy performance gap. 
 

4 Results and Discussion 
4.1 Comparing measured and simulated energy data 
The benchmarking for the BPS model was to obtain an as close as possible correlation between the 
measured energy consumption data and the simulated energy data on a monthly basis. The results show 
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a good match between the monthly measured and simulated energy data, as seen in Figure 3. For most 
of the months (January, March, April, May, June, July, August, September and December), the 
simulated data are within 10% of the measured data. For some months (February, October, and 
November), the match between simulated and measured data is slightly higher but still within 20%. 
Correlation analysis shows that the correlation coefficient between the measured and simulated data 
sets is approximately 0.975. This indicates a very high positive correlation on a month-to-month basis, 
suggesting that the simulated data closely follows the trends of the measured data.  
 

 
Figure 3: Monthly comparison of the simulated and measured energy consumption data 

The next step after comparing the monthly data was to investigate further the BPS tool's ability to 
simulate the hourly energy values from day to day. Given our system input, we examined the BPS tool 
energy demand simulation on an hourly scale. An example of the typical correlation seen daily has been 
highlighted in Figure 4. After comparing the hourly values for each day over a year, the month of 
January was chosen to highlight in Figure 4. The reason January was selected is that it is the month with 
the highest overall energy consumption, and the month with the highest hourly peaks. This makes it 
easier to see the characteristics of the plots, and provides more variation between days. To improve 
readability three different days was chosen. In Figure 4, we can see that on day 1, there is a reasonable 
fit between the measured and simulated data; the same is true for day 15. However, on day 31, we see 
a substantial divergence between the measured and simulated data.  
 
There are several reasons for the poor fit on the hourly scale. One issue is that the MyBox lab only has 
five occupants. BPS tools' occupant modelling is more tailored towards modelling buildings with a 
larger number of occupants. A larger number of occupants would naturally lead to occupant schedules 
averaging out and becoming more aligned with the profiles used. Our work highlights the challenge of 
accurately simulating energy consumption influenced by human behaviour in energy models for small 
buildings with few occupants. 
 

 
Figure 4: Hourly energy consumption profiles for the 1st, 15th and 31st day of January 
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Analysis of measured data from MyBox shows substantial day-to-day variability in energy use. While 
climatic conditions explain some variations, a significant portion is attributed to human factors such as 
presence, heating preferences, hot water use, and cooking habits. Understanding these human influences 
is crucial for accurately dimensioning building systems like heating, cooling, ventilation, and local 
renewable energy generation. Another reason why accurately predicting daily consumption has become 
more important is due to the changing nature of energy production. Predicting demand at monthly and 
annual scales is normally sufficient when considering fuel-based heating systems. However, with higher 
shares of intermittent renewable energy, a better understanding of occupant behaviour, and how to 
capture it in building performance simulation, would provide additional insight into the utilisation of 
renewable energy sources, as well as improved evaluation of the demand-shifting potential to increase 
self-consumption. 
 
 Validation of our model against actual data from MyBox reveals interesting preliminary findings. 
While our current BPS model provides a reasonable correlation between modelled and actual energy 
use yearly and monthly, its reliability could improve at finer temporal resolutions like weeks, days, or 
hours. It remains to be seen if this is due to software limitations or model calibration issues.  
 
4.2 Study limitations 
The present study has certain limitations that must be acknowledged. Foremost among these is the 
aggregation of energy data from the MyBox laboratory, which encompasses the collective consumption 
of the entire building. This approach inherently introduces uncertainties in discerning the unique energy 
profiles of the five individual apartments within the building. Consequently, each apartment's 
differential consumption patterns, which may be attributed to varied OB or distinct physical attributes 
(like varying degrees of insulation), are not distinctly quantified. 
 
Further limitations stem from ambiguities inherent in the input data. While efforts have been made to 
ensure the accuracy of the energy consumption records, the very nature of such data collection can be 
subject to inconsistencies and measurement errors. 
 
Another methodological consideration is the treatment of temperature control within the modelling 
framework. In the real-world scenario, occupants can control the indoor temperature, potentially leading 
to a broad spectrum of thermal conditions. However, for simulation, the indoor temperature is assumed 
to be a constant 21°C. This assumption does not encapsulate the dynamic and self-regulatory behaviour 
of the occupants in managing their thermal environment, thereby introducing a deviation from the actual 
energy consumption that would result from varying temperature preferences. 
 
Occupancy variance presents another challenge to the integrity of the simulation. There are intervals 
when one or more apartments may be unoccupied—due to occupants being on vacation or during the 
transition period between tenants. These fluctuations in occupancy are not directly accounted for in the 
model, which assumes a consistent occupancy pattern. Additionally, the daily occupancy schedules are 
extrapolated from what is deemed a 'typical' day. However, as evidenced in the comparative analysis of 
measured versus simulated data, the stochastic nature of human behaviour renders a perfect match 
elusive. The figure illustrating the disparities between measured and simulated data underpins the 
profound impact of human unpredictability on energy consumption. This variable remains challenging 
to capture accurately in any simulated environment. 
 
While these limitations delineate the scope of the study's accuracy, they also open avenues for future 
research. Subsequent investigations could focus on enhancing data granularity, incorporating adaptive 
thermal comfort models, and integrating occupancy sensors to understand better and predict energy 
usage patterns. The findings of this study must be interpreted within the context of these stated 
constraints. 
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4.3 Future Work 
The present study has laid a foundational understanding of energy consumption patterns within the 
MyBox energy lab. To enhance the granularity and precision of our energy consumption data, the 
following avenues are proposed for future research: 

1. Enhanced Data Granularity with In-depth Energy Logging: We plan to implement an 
advanced energy logging system to acquire high-resolution data. This system will enable us to 
identify and attribute the energy consumption to specific systems within each apartment. By 
discerning which systems contribute to energy usage at particular times, we can create a more 
detailed consumption profile for at least two flats within the building complex. 

2. Refined Modeling and Benchmarking: With the acquisition of more detailed consumption 
data, subsequent research efforts will focus on refining our existing energy consumption 
models. These improved models will be benchmarked against this enhanced dataset to validate 
their predictive accuracy and reliability. 

3. Innovative Approaches for OB in BPS: Given human behaviour's dynamic and stochastic 
nature, alternative methods for accounting for OB within BPS must be explored. To this end, 
we will investigate the application of cutting-edge methodologies such as AI and machine 
learning algorithms. This approach offers promising prospects for capturing the complex and 
variable patterns of occupant interactions with energy systems. 

4. Mixed Methods Approach for Deeper Behavioural Insights: Future research will adopt a 
mixed-methods approach to supplement quantitative data with qualitative insights. By 
conducting questionnaires and interviews with the building's occupants, we aim to understand 
the determinants of energy-related behaviours better. This comprehensive approach will add to 
the empirical data and enrich the interpretation of energy usage patterns, potentially revealing 
opportunities for behavioural interventions and energy efficiency improvements. 
 

Through these initiatives, we anticipate significantly contributing to the body of knowledge in energy 
consumption analysis and sustainability in building design. Our commitment is to develop more robust 
models that depict actual consumption, facilitate the design of more efficient energy systems, and 
promote the adoption of energy-saving behaviours among occupants. 
 

5 CONCLUSIONS 
This study, conducted at the MyBox Energy Lab, University of Stavanger, has provided insight into 
integrating human factors within BPS. The research highlights the impact of OB on energy 
consumption, as evidenced by the variability in energy use attributed to human activities such as 
presence, heating preferences, and appliance usage. By comparing the BPS results with actual energy 
consumption data, the current study has revealed a strong yearly and monthly correlation, validating the 
BPS approach and identifying the limitations of BPS tools in capturing the stochastic nature of human 
behaviour at finer temporal resolutions, given the outlined limitations. 
 
Our research emphasises the performance gap observed between predicted and actual energy usage. We 
recognise that this gap is due, in part, to the simplification of OB within simulation models, which 
typically need to account for the dynamic and adaptive nature of human interactions with building 
systems. While the research has successfully utilised IDA ICE software to model energy consumption 
and has adjusted for thermal bridging discrepancies, it also acknowledges that precise modelling of OB 
remains a significant challenge, especially for buildings with few occupants. 
 
The MyBox Energy Lab's data, enriched with new logging systems, presents a pathway for future 
research to delve deeper into the nuances of OB and its implications on energy use. The enhanced 
granularity of data, further refinement of the model and the application of innovative methodologies, 
such as machine learning, promise to yield more accurate simulations of OB, thus bridging the 
performance gap further. 
 
This research is a stepping stone towards a more occupant-centric approach to building performance 
analysis. Future research directions, armed with higher-resolution data and a mixed-methods approach, 
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will aim to refine the predictive accuracy of BPS tools. Through such endeavours, we hope to contribute 
meaningfully to the field of energy consumption analysis and, ultimately, to the design of more energy-
efficient buildings that are responsive to the human dimension. 
 

NOMENCLATURE 
ASHRAE American Society of Heat, Refrigerating and Air-Conditioning Engineers 
BPS  Building Performance Simulator 
BIM  Building Information Model 
VAWT  Vertical Axis Wind Turbine 
PV  Photovoltaic 
OB  Occupant Behaviour 
kW  kilowatt 
kWp  kilowatt-peak 
KWh  kilowatt-hour  
PV  Photovoltaic 
VIP  Vacuum insulation panels 
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