
EasyChair Preprint
№ 14786

Verifying Non-Friendly Formal Verification
Designs: Can We Start Earlier?

Bryan Olmos, Daniel Gerl, Aman Kumar and Djones Lettnin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 10, 2024

1

Verifying Non-friendly Formal Verification

Designs: Can We Start Earlier?

Bryan Olmos, Rheinland-Pfalzische Technische Universität Kaiserslautern-Landau, Infineon

Technologies AG, München, Germany (bryan.olmos@infineon.com)

Daniel Gerl, Infineon Technologies AG, München, Germany (daniel.gerl@infineon.com)

Aman Kumar, Infineon Technologies AG, München, Germany (aman.kumar@infineon.com)

Djones Lettnin, Infineon Technologies AG, München, Germany (djones.lettnin@infineon.com)

Abstract— The design of Systems on Chips (SoCs) is becoming more and more complex due to technological

advancements. Missed bugs can cause drastic failures in safety-critical environments leading to the endangerment of

lives. To overcome these drastic failures, formal property verification (FPV) has been applied in the industry. However,

there exist multiple hardware designs where the results of FPV are not conclusive even for long runtimes of model-

checking tools. For this reason, the use of High-level Equivalence Checking (HLEC) tools has been proposed in the last

few years. However, the procedure for how to use it inside an industrial toolchain has not been defined. For this reason,

we proposed an automated methodology based on metamodeling techniques which consist of two main steps. First, an

untimed algorithmic description written in C++ is verified in an early stage using generated assertions; the advantage

of this step is that the assertions at the software level run in seconds and we can start our analysis with conclusive

results about our algorithm before starting to write the RTL (Register Transfer Level) design. Second, this algorithmic

description is verified against its sequential design using HLEC and the respective metamodel parameters. The results

show that the presented methodology can find bugs early related to the algorithmic description and prepare the setup

for the HLEC verification. This helps to reduce the verification efforts to set up the tool and write the properties

manually which is always error-prone. The proposed framework can help teams working on datapaths to verify and

make decisions in an early stage of the verification flow.

Keywords— Formal Verification; Metamodeling; Equivalence Checking

I. INTRODUCTION

Digital designs, especially those involving complex datapath operations like arithmetic functions, often begin

with a prototype developed in a high-level language such as C, C++ or SystemC [1]. These prototypes serve as a

starting point for exploring various implementations of algorithms during the early stages of design. Engineers use

these prototypes to validate the specification as well as to explore the architecture before to implement the algorithm

at the RTL, making refinements to optimize power, performance, and area.

The former studies have highlighted the applicability of Formal Verification (FV) in critical applications such

as automotive, but it may not scale well to larger designs due to the state explosion problem, especially in non-

friendly formal verification designs such as multipliers, FPU (Floating Point Units), filters and designs

implementing complex algorithms [2]. Furthermore, FPV does not scale well for arithmetic units. Most of the

approaches give up when the bit width increases. One alternative is High-Level Equivalence Checking (HLEC)

which offers a technique to verify the functional equivalence between different design representations. It is more

intuitive for verification engineers as HLEC focuses on comparing two different representations of the same design

instead of proving properties.

However, errors during the concept phase are usually not detected until the verification of the RTL design.

Additionally, each stage of the design process can introduce bugs when a manual approach is used. Other

approaches such as simulation cannot provide enough reliability for safety-critical designs. Furthermore, the

verification time consumes more than 50% time of the total verification process [3]. For these reasons, this paper

introduces a methodology called MetaHLEC which expands the use of FV for exhaustively verifying datapaths,

like arithmetic functions, by reusing C/C++ reference implementations through HLEC. The methodology uses an

automation framework to formalize specifications for use in safety-critical, requirement-driven development flows,

mailto:bryan.olmos@infineon.com
mailto:daniel.gerl@infineon.com
mailto:aman.kumar@infineon.com
mailto:djones.lettnin@infineon.com

2

reducing manual efforts that could cause structural errors. Formalizing specifications using metamodeling

techniques can minimize misinterpretation, enabling automation of parts of the design and verification flow, saving

time and improving the quality of verification results and design. For example, 10 assertions related to the design

of an FPU were proven at the software level within 4.9s and the HLEC yields full proof in 40.9s. This is a big

advantage compared with the consumed time to model equivalent SVA properties that incorporate floating point

multiplication as well as expected state space explosion, where no comparable model checking results could be

obtained. Additionally, other efforts of constrained random simulation cannot prove the absence of bugs for all

input combinations.

The main contributions of this paper include:

• We present MetaHLEC which is a new framework for the automation of HLEC and the metamodeling of data

path designs for the generation of properties for the verification of untimed algorithmic descriptions written in C++,

which is used in combination with commercial formal verification tools.

• Analysis and verification of 6 types of datapath designs such as Unsigned Single-Instruction Multiple Data

(SIMD) Multiplier, Floating Point Multiplier, Quadratic Fractional Polynomial, Pipelined Unsigned Division,

Finite Impulse Response (FIR) Filter, and Error Correcting Codes.

The rest of this paper is organized as follows. In Section II, we introduce the challenges of the designs under

verification (DUVs) and the related work. The proposed methodology and metamodel are described in Section III.

Section IV presents the verification results including a comparison with FPV. At last, we conclude this work in

Section V.

II. BACKGROUND

A. Verification Challenges in Datapath Designs

The verification of datapath designs presents significant challenges due to their inherent complexity and the intricate

mathematical operations they involve. These operations include parallel data processing, precision requirements,

pipelining, and error detection and correction. The process of verifying these circuits and algorithms must account

for various input values, which can be challenging as the number of possible combinations related to the data width.

It can quickly become unmanageable for formal verification. Taking in account the feasibility, scalability and the

resource utilization, a design under verification can be seen as friendly or unfriendly to formal methods [2][4]. On

the one hand, formal friendly datapath designs prioritize high concurrency and low sequential depth, along with

control logic elements and low complexity data transformations. These designs often involve parallel data

processing and are characterized by simplified bus protocols and straightforward data processing. On the other

hand, non-friendly datapath involve designs implementing complex bus protocols, such as AXI (Advanced

eXtensible Interface), OCP 2.1 (Open Core Protocol), PCI (Peripheral Component Interconnect); designs with

complex arithmetic units and designs with a a large state space. In this work, we focused on the challenges related

to following designs:

• Unsigned Single-Instruction Multiple Data (SIMD) Multiplier: Complex data paths and control logic

make time-consuming ensuring the correct behavior across multiple data elements and handle corner

cases and boundary conditions.

• Floating Point Multiplier: The IEEE 754 standard establishes precision requirements, rounding

modes, and exception handling to ensure the correct implementation of floating-point multiplication,

including handling of denormalized numbers such as NaNs and infinities[5]. It requires rigorous

formal reasoning and verification which makes it complex writing properties for the verification.

• Pipelined Unsigned Division: Verifying the correct operation of the pipelined division algorithm

across multiple stages and ensuring precise handling of quotient and remainder calculation is a

challenging task due to the complex pipelining, data hazards, and control logic associated with the

division process.

3

• Quadratic Fractional Polynomial: Formal verification of quadratic fractional polynomials can be

challenging due to the intricate mathematical operations involved, including multiplication, addition,

and division of fractional coefficients.

• Finite Impulse Response (FIR) Filter: Formal verification of FIR filters is challenging due to the

intricate signal processing algorithms, including convolution, coefficient multiplication, and delay

elements.

• Error Correcting Codes (ECC): It is challenging due to the complex encoding and decoding

algorithms, as well as the need to guarantee the correctness of error detection and correction. Its

verification includes properties relates to parity generation, syndrome calculation, and error

correction capability.

B. Related Work

Ludwig et al. is [6], [7] use a simulation-based approach for verifying SystemC models. However, formal

verification of SystemC remains very challenging because of overhead by object-oriented structures and

simulation-specific semantics [8], [9]. Additionally, the approach of property-driven design also does not ease the

verification problem of datapaths. Thus, [11] motivates the usage of C/C++ over SystemC for designing algorithmic

circuits. Another approach for utilizing software verification tools to verify RTL implementations is proposed as

translating RTL into cycle-accurate C. Mukherjee et al. [12] translate Verilog designs into cycle-accurate ANSI-C

programs using their tool V2C [13]. Their analysis shows significant verification speedups especially in datapath-

intensive designs. However, this approach cannot be used in an early stage of the design. Additionally, their tool

V2C is limited to Verilog [14]. Qurat-ul-Ain et al. [15] made improvements to correct translation errors from V2C.

They, however, use the verified C program to perform High-Level Synthesis (HLS) and obtain an optimized RTL

design. However, the HLS design is verified with simulation. The approaches described in [14], [16][17][18] allow

formal proofs between C/C++ references and RTL implementations. However, all of them rely on golden C/C++

reference models without providing means to verify their correctness according to specification.

III. METHODOLOGY AND APPLICATION

The proposed methodology in Figure 1 can be applied once a design specification is finalized. In this work, the

specification is associated into the metamodel of Section III.A . Usually, the design process starts with a design or

concept engineer implementing a C or C++ function that represents the functionality or partial functionality of the

design. As the C and C++ languages do not define any notion of time, the algorithm does not contain information

about the latency or throughput of the implementation. However, it can be used efficiently to provide conclusive

results about our algorithm taking in account that the properties in C can be verified on a few seconds as shown in

Section IV. This first step is called Algorithm Verification and is a precondition to continue the second step called

Implementation Verification. Algorithm Verification takes the C/C++ algorithm reference and assertions generated

from the verification plan to perform BMC — for example the open-source tool CBMC [9]. Successful model

checking proves the correctness of the algorithm exhaustively, thereby qualifying the algorithmic implementation

as a golden reference model. Afterwards, the algorithm is implemented in RTL using the scheduling and throughput

constraints from the specification. In Implementation Verification, the C/C++ reference algorithm verified in the

previous step and the RTL implementation are the main inputs to a commercial HLEC tool. It proves the

equivalence of the DUV to the algorithm with respect to scheduling information from the specification.

4

Figure 1. Overview of the verification methodology

A. Metamodel MetaHLEC

As described in the previous section, the verification process is conducted in two verification cycles which will

be referred to as Algorithm Verification and Implementation Verification. The needed information for these

verification cycles is added into the metamodel of Figure 2. The root node MetaHLEC contains the name of the

DUV as its only attribute. It can have one or multiple Requirement nodes, which represent functional requirements

that the C/C++ algorithm has to fulfill, as well as a Mapping node that contains all information needed to connect

the C/C++ algorithm to the RTL implementation. This Metamodel consists of two main nodes:

• Requirement node: It contains the information for the verification of the algorithmic description and

consists of a description, a name, and an ID for unique identification inside our internal specification

management system. As part of the formalization of our algorithm, it is expressed as a cause-and-effect

behavior, such that an action shall follow if a guarding expression occurs. For example, a guard can define

action to take if a division by 0 occurs in the algorithm implementing the Pipelined Unsigned Division.

Expressions can be seen as a structure consisting of literal, operators, and variable; for example,

input_value != 0 (input_value: literal, operator: !=, variable:0). An operator can be associated with other

operators in case of more complex properties needs to be defined.

• Mapping node: It contains the additional information for the HLEC and specifies the names of the

implementation module (Imp_name) and algorithm function (Spec_name). It contains a Clock and Reset

signal, which are only defined at RTL. Input and Output are the signals that have to be mapped. For a

complete model, at least one input and one output need to be declared. In the inputs and output signals,

it needs to be defined the name, the delay, the port size, and the sign interpretation for the port mapping.

The mapping will be only active if the expression of the Condition is fulfilled. It is necessary for pipelined

designs with variable delays, then the HLEC is verified only in the clock cycles that fulfill the condition.

Additionally, our metamodel also considers a pipeline stalling condition, which can be achieved by

output composition with Stalling. Furthermore, environmental conditions are implemented via

Constraint, which similarly to guards and actions can be mapped to a management system via an ID,

description, and name. Helper specifies the assertions to guide the RTL verification process.

5

Figure 2. Reduced diagram of the metamodel

While the model can be represented as UML-diagram, its instantiation will be stored in structured XML. The

instantiation of the model is guided by a Graphical User Interface (GUI).

B. Automation MetaHLEC

Based on the XML file associated to the introduced metamodel, the automation framework was developed. It

minimizes the user interaction and structural errors. The algorithm specification will be formalized by transforming

into guarding and action expressions that define the combinational behavior. The behavioral description is

transformed into assertions in the target-language C to perform functional verification of the algorithmic design

representation. Information about the design implementation consisting of clocks, resets and ports as well as

operating and stalling conditions are used to generate the verification setup script. The fully automated translation

from model to target code allows quick verification adaption to changes in functional and timing requirements

while minimizing human error during environment setup.

Figure 3 shows the overall generation process where the metamodel information and MAKO templates [23]

are used to generate the verification elements such as a C harness containing the properties, the runscripts and the

SV wrapper used to compare the C code and the RTL design. Figure 4 shows an example of the SVA properties

used for FPV (Formal Property Verification) and its equivalent generated property for C verification considering

a scalable division algorithm for unsigned integers, which adds one stage to the pipeline for every data bit. A

pipeline for a 16-bit division for example, consists of 16 stages and delays calculation of the quotient by 17 clock

cycles. Additionally, the design considers an undefined division by 0 via a flag. If an invalid operation occurs the

quotient shall be set to all ones.

Figure 3. The design specification is captured in a model instance based on the defined parameters of the metamodel

6

Figure 4. Comparison of properties for the verification of the Pipelined Unsigned Division.

IV. RESULTS

Table I shows the main results for three evaluated open-source designs. For the evaluation, the timeout was set

up to 24h. Additionally, due to time-consuming modelling of equivalent SVA-properties that incorporate floating

point multiplication as well as expected state space explosion, no comparable model checking results could be

obtained. The results show that HLEC checking can verify designs which cannot be handle with a Formal Property

Verification (FPV) approach.

Table I. Verification time results for open-source designs

Design Under

Test

Proposed Methodology Normal Approach

CBMC EDA HLEC Tool Total EDA FPV Tool

Unsigned Single-Instruction Multiple Data
(SIMD) Multiplier (16 bits) [19]

1.1 s 194.4 s 195.5 s

Timeout a

Floating Point Multiplication [20] 4.9 s 40.9 s 45.8 s Unknown

Quadratic Fractional Polynomial (Fractional

Width = 7) [21]
0.03 s 138.3 s 138.33s

Timeout

a. 4-bit and 8-bit multiplication: 505.3 s.

Afterwards, a scalable division algorithm for unsigned integers was verified. HLEC is proving the design for

data widths up to 52 bit within the specified timeout of 24 h. While model checking obtained faster results for data

widths lower than 8 bit as visible in Figure 5, the runtime obtained with HLEC rises at a much slower rate than with

property checking indicating better scalability of the proposed methodology.

Figure 5. Proof runtime for scalable data width of the division operators

The results of the verification of a discrete filter FIR that is used in data processing [16] are shown in Figure 6. For

the 8-bit implementation in the range of orders 1 to 31 HLEC showed an average runtime decrease by a factor of

177. The 16-bit implementation could only be proven up to an order of 21 with the property checking setup without

timeout after 24 h.

SVA properties for division

1 // Divisor is 0

2 property div_by_0;

3 ((b_in == '0) |->

4 ##(num_stages +1) divide_by_0_out && quotient_out == '1

5);

6 endproperty: div_by_0

7

8 // Divisor not 0

9 property div_quotient_out;

10 ((b_in != '0) |->

11 ##(num_stages +1) !divide_by_0_out && quotient_out ==

12 ($past(a_in, (num_stages +1))

13 / $past(b_in, (num_stages +1))));

14 endproperty: div_quotient_out

Generated C assertions for division

1 //Requirement 0: Division by zero

2 if((b_i == 0)){

3 __CPROVER_assert((divide_by_0_o == 1), "Flag set");

4

5 __CPROVER_assert(((~ quotient_o) == 0), "Division by zero");

6 }

7

8

9 //Requirement 1: Divisor not 0

10 if((b_i != 0)){

11 __CPROVER_assert((divide_by_0_o == 0), "Flag clear");

12

13 __CPROVER_assert((quotient_o == (a_i / b_i)), "Quotient");

14 }

7

Figure 6. Comparison of HLEC and property checking runtimes for filter with (a) 8-bit and (b) 16-bit precision for data and coefficients

Finally, the implementation of an industrial design of ECC (Error Correcting Codes) was evaluated. As depicted

in Table II an ECC with 32-bit data-input with single-error correction and double-error detection was proven at a

third of the runtime that the linearity approach described achieved with only 5.7 s. For the 64-bit data width with

3/4 correction/detection, CBMC still performed acceptably at 1 second, but the EDA HLEC tool experienced a

timeout, and the Formal Property Verification (FPV) tool took significantly longer at 16016.93 seconds. Other

implementations with larger datawidths and larger error correction capabilities, however, were not verifiable with

the developed methodology. The abstraction level chosen for this IP was too high in order to obtain conclusive

results.

Table II. Verification time results for open-source designs

Datawidth Correction/Detection
Runtime

CBMC

Runtime EDA

HLEC Tool

Runtime

FPV

32 1/2 0.97 s 5.7 s 17.2 s

64 3/4 1 s Timeout 16016.93s

All results shown in this section were obtained EDA tool vendors for C2RTL application for HLEC and FPV

application for property checking, CBMC-5.73.0 [17] and Z3-4.12.0 [18].

V. CONCLUSION

The automation framework generates a script that sets up the verification environment, maps the ports taking

mapping conditions and delays into account, executes the proof, and samples coverage information. Thereby, the

model-based approach allows for optimized input mapping minimizing the additional complexity delay operations

add. The developed methodology was applied to several IPs. The runtime results show the methodology’s potential

within data processing applications over FPV approaches. Its exhaustive proofs make it preferable over dynamic

verification approaches as these can often never achieve full coverage of all states in the design. In combination

with the automation framework that allows integration into requirement-driven flows, the methodology is especially

suited for safety-critical applications. The verification time for Unsigned Single-Instruction Multiple Data (SIMD)

Multiplier with 4 operation modes, a 32 bits floating point multiplication unit with 4 operations modes and

Quadratic Fractional Polynomial were 195.5 s, 45.8s and 138.3s, respectively. Additionally, a scalable division

algorithm for unsigned integers was verified. HLEC is capable to verify designs for data widths up to 52 bits within

the specified timeout of 24 h. While model checking obtained faster results for data widths lower than 8 bits, the

runtime obtained with HLEC shows a better scalability of the proposed methodology. With respect to the

verification of a discrete filter FIR that is used in data processing, for the 8-bit implementation in the range of orders

1 to 31 HLEC showed an average runtime decrease by a factor of 177. The 16-bit implementation could only be

proven up to an order of 21 with the property checking setup without timeout after 24 h, while the proposed

methodology could provide exhaustive proof up to order 31. Additionally, 32-bit implementation could be proven

within 54s up to an order of 64 while FPV remained inconclusive for any order.

8

Finally, the implementation of an industrial design of ECC (Error Correcting Codes) was evaluated. However,

ECCs implementations with larger data widths and larger error correction capabilities were not verifiable with the

developed methodology. The reason is that the abstraction level chosen for this IP was too high in order to obtain

conclusive results.

VI. ACKNOWLEDGMENT

This work has been developed in the project VE-VIDES (project label 16ME0243K) which is partly funded

within the Research Programme ICT 2020 by the German Federal Ministry of Education and Research (BMBF).

REFERENCES

[1] IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005. “IEEE Standard for SystemC Language Reference Manual”, pp. 1–638, 2012.

[2] K. Devarajegowda, L. Servadei, Z. Han, M. Werner, and W. Ecker, “Formal Verification Methodology in an Industrial Setup,” in 2019

22nd Euromicro Conference on Digital System Design (DSD). Kallithea, Greece: IEEE, Aug. 2019, p. 610–614. [Online]. Available:

https://ieeexplore.ieee.org/document/8875108/

[3] H. Foster, “2022 Wilson Research Group Functional Verification Study,” Siemens EDA, Tech. Rep., 2022

[4] H. Foster, L. Loh, B. Rabii, and V. Singhal, “Guidelines for creating a formal verification testplan,” ser. DAC ’06, New York, NY, USA,

2006.

[5] IEEE 754 Standard for Floating-Point Arithmetic, IEEE Computer Society, 2008.

[6] T. Ludwig, J. Urdahl, D. Stoffel, and W. Kunz, “Properties first—correct-by-construction rtl design in system-level design flows,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 3093–3106, 2020.

[7] T. Ludwig, “Doctoral Thesis,” Technische Universität Kaiserslautern, 2021.

[8] A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri, “Verifying systemc: A software model checking approach,” 11 2010, pp. 51 –

59.

[9] https://github.com/diffblue/cbmc, [Online; accessed 19-April-2023].

[10] M. Vardi, “Formal techniques for systemc verification,” pp. 188–192, 01 2007.

[11] Siemens, “Is C++ or SystemC the right language for your next HLS Project? ,” https://webinars.sw.siemens.com/de-DE/is-c-or-systemc-

the-right-language/, 2021, [Online; accessed 19-April-2008].

[12] R. Mukherjee, D. Kroening, and T. Melham, “Hardware Verification Using Software Analyzers,” in 2015 IEEE Computer Society

Annual Symposium on VLSI, 2015, pp. 7–12.

[13] R. Mukherjee, P. Schrammel, D. Kroening, and T. F. Melham, “Unbounded safety verification for hardware using software analyzers,”

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1152–1155, 2016.

[14] M. Abderehman, T. Reddy, and C. Karfa, “Deeq: Data-Driven End-to-End Equivalence Checking of High-Level Synthesis,” 04 2022,

pp. 64–70.

[15] Q. ul Ain, O. Hasan, and K. Saghar, “Automatic Formal Verification of Digital Components of IOTs using CBMC,” in 2018 15th

International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT), 2018, pp. 88–91.

[16] A. K¨ olbl, R. M. Jacoby, H. Jain, and C. Pixley, “Solver Technology for System-Level to RTL Equivalence Checking,” 2009 Design,

Automation & Test in Europe Conference & Exhibition, pp. 196–201, 2009.

[17] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma, “Non-cycle-accurate sequential equivalence checking,” 2009 46th

ACM/IEEE Design Automation Conference, pp. 460–465, 2009.

[18] A. Tiemeyer, T. Melham, D. Kroening, and J. O’Leary, “CREST: Hardware Formal Verification with ANSI-C Reference

Specifications,” 2019.

[19] A. Guha, “ “Arithmetic Units for Embedded AI and DSP Applications,” Master Thesis, Technische Universität Darmstadt, Tech. Rep.,

2021.

[20] J. R. Hauser, “berkeley-softfloat-3.” https://github.com/ucb-bar/berkeley-softfloat-3, 2018, [Online; accessed 19-April-2023].

[21] “Fixed-point Quadratic Polynomial,” https://opencores.org/projects/quadratic func, 2022, [Online; accessed 19-April-2023].

[22] “Generic FIR Filter,” https://opencores.org/projects/quadratic func, 2022, [Online; accessed 19-April-2023].

[23] “Mako Templates,” https://www.makotemplates.org/

https://ieeexplore.ieee.org/document/8875108/
https://webinars.sw.siemens.com/de-DE/is-c-or-systemc-the-right-language/
https://webinars.sw.siemens.com/de-DE/is-c-or-systemc-the-right-language/
https://www.makotemplates.org/

