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Abstract

This manuscript investigates a class of nonlocal Hilfer fractional stochastic differential equations
driven by fractional Brownian motion, which is a special case of a self-similar process, Hermite
processes with stationary increments with long-range dependence. The Hermite process of order 1
is fractional Brownian motion and of order 2 is the Rosenblatt process. We establish new sufficient
conditions of exact null controllability for such stochastic settings by using fractional calculus and
fixed point theorem. The derived result in this article is new in the sense that it generalizes many
of the existing results in the literature, more precisely for fractional Brownian motion and Poisson
jumps case of Hilfer fractional stochastic settings. However to reveal the contemporary applicative
feature of null controllability authors have validated illustration of stochastic partial differential
equations.
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1 Introduction

Over the past fewdecades, the theory and applications of the fractional differential equations enjoy
considerable importance in the field of science, signal processing, and many other areas. The systematic
presentation of the applications of fractional differential equations could be seen in the books [28, 29,
30, 31] and the references therein.

The deterministic system often fluctuates due to environmental noise. So, it is important and
necessary for us to deal with stochastic differential equations. As a results of its widespread use, the
stability result of stochastic system has received extensive attention. Hence it is appropriate to move
from deterministic models to stochastic ones. Stochastic differential equations are important as they
have many applications in many disciplines, including science and engineering, etc. For more details
on stochastic differential equations readers may refer to the monographs [24, 32, 33] and the articles
therein [34, 35].

The fractional Brownian motion is the usual candidate to model phenomena due to its self-
similarity of increments and long-range dependence. This fractional Brownian wH is the continuous
centered Gaussian process with covariance function described by

RH(t, s) := E
[
wH(t)wH(s)

]
=

1

2
(t2H + s2H − |t− s|2H).
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The parameter H characterizes all the important properties of the process, when H < 1
2 the increments

are negatively correlated and the correlation decays more slowly than quadratically; when H > 1
2 , the

increments are positively correlated and the correlation decays so slowly that they are not summable,
a situation which is commonly known as the long memory property. Natural candidates are the
Hermite processes, these non-Gaussian stochastic processes appear as limits are called Non-Central
Limit theorem [26]. The fractional Brownian motion can be expresses as a Wiener integral with respect
to the standard Wiener process, i.e. the integral of a deterministic kernel with respect to a standard
Brownian motion, the Hermite process of order 1 is fractional Brownian motion and of order 2 is the
Rosenblatt process.

On the other hand, controllability problems for different kinds of dynamical systems have been
studied by several authors, see [2, 3, 5, 8, 24, 4] and references therein. A weaker condition than exact
controllability is the property of being able to steer all points exactly to the origin. This has important
connections with the concept of stabilizability. Many authors have investigated the null controllability
of various kinds of dynamical systems [3, 6, 8, 11, 12, 7]. The problem of controllability of nonlinear
stochastic or deterministic system has been discussed in [13, 15, 11, 12]. Recently, basic theory of
differential equations involving Caputo and Riemann-Liouville fractional derivatives can be found in
[16, 17, 22] and references therein. Beside Caputo and Riemann-Liouville fractional derivatives, there
exists a new definition of fractional derivative introduced by Hilfer, which generalized the concept of
Riemann-Liouville fractional derivative and has many application, for more details, see [20, 21, 23].

Motivated by the aforementioned research works, in this manuscript we derive the sufficient
conditions for the null controllability of the following class of nonlocal Hilfer fractional stochastic
differential equations driven by Rosenblatt process with Poisson jumps

Dα,β
0+
y(t) = Ay(t) +Bu(t) + f(t, y(t))dt+ g(t, y(t))

dwH(t)

dt

+

∫
Λ
h(t, y(t), ν)Ñ(dt, dν), t ∈ J = [0, a],

I
(1−α)(1−β)
0+

y(0) + q(y) = y0. (1)

Here Dα,β
0+

is the Hilfer fractional derivative, 0 ≤ α ≤ 1, 1
2 ≤ β ≤ 1, A is the infinitesimal generator

of strongly continuous semigroup of bounded linear operators (S(t))t≥0, on a separable Hilbert space
X . Suppose

{
wH(t)

}
t≥0

is a fractional Brownian motion with Hurst parameter H ∈ (1
2 , 1) defined

on (Ω,=, {=t}t≥0 ,P) with values in Hilbert space Y; f : J × X → X , g : J × X → L0
2(Y,X ),

h : J × X × Λ → X and q : C (J,X ) → X appropriate functions, where L0
2(Y,X ) be the space of

all Q-Hilbert Schmidt operators from Y into X and the control function u(·) is given in L2(J,U),
the Hilbert space of admissible control functions with U as a separable Hilbert space. The symbol B
stands for a bounded linear operator from U into X . Also, the initial condition y0 is an =0 measurable
X -valued stochastic process independent of the Rosenblatt process ZH with finite second moment. In
Ñ(dt, dν) = N(dt, dν)−dt(λdν) the Poisson measure Ñ(dt, dν) denotes the Poisson counting measure.

To the best of authors knowledge, there are limited works by considering the controllability
results of the following nonlocal Hilfer fractional stochastic differential equations driven by fractional
Brownian motion with Poisson jumps. The contributions of this manuscript exist in the following
aspects:

(1) New sufficient conditions of exact null controllability of nonlocal Hilfer fractional stochastic
differential equations driven by fractional Brownian motion with Poisson jumps is formulated.

(2) Fractional calculus theory and fixed point theorem is effectively used to derive the sufficient
conditions of exact null controllability for such stochastic system.

(3) An example is proved to illustrate the obtained theoretical results.
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2 Preliminaries

In this section, we recollect basic concepts, definitions and lemmas which will be used in the sequel to
obtain the main results.

Definition 2.1. [28, 29] The Riemann-Liouville fractional integral operator of order β > 0 for a
function f can be defined as

Iβ
0+
f(t) =

1

Γ(β)

∫ t

0

f(s)

(t− s)1−β ds, t > 0

where Γ(·) is the Gamma function.

Definition 2.2. [20] The Hilfer fractional derivative of type 0 ≤ α ≤ 1 and order 0 < β < 1 is defined
as

Dα,β
0+
f(t) = I

α(1−β)
0+

d

dt
I

(1−α)(1−β)
0+

f(t)

Let (Ω,=, {=t}t≥0 ,P) be a complete probability space equipped with a normal filtration (=t),
t ∈ [0, a] and Let X , Y be real separable Hilbert spaces and L(Y,X ) denote the space of all bounded
linear operator from Y into X . Let Q ∈ L(Y,Y) be an operator defined by Qen − λnen with finite
trace tr(Q) =

∑∞
n=1 λn <∞ where λn ≥ 0 (n = 1, 2, ...) are non-negative real numbers and {en} (n =

1, 2, ...) is a complete orthonormal basis in Y.

We define the infiite dimensional fractional Brownian motion on Y with covariance Q as

wH(t) = wH
Q(t) =

∞∑
n=1

√
λnenβ

H
n(t)

where βHn are real, independent fractional Brownian motions.

In order to define Wiener integrals with respect to the Q-fractional Brownian motion, we introduce
the space L0

2 = L0
2(Y,X ) of all Q-Hilbert-Schmidt operators ψ : Y → X . We recall that ψ ∈ L(Y,X )

is called a Q-Hilbert-Schmidt operator, if

‖ψ‖2L02(Y,X ) =
∞∑
n=1

∥∥∥√λnψen∥∥∥2
<∞

and that the space L0
2 equipped with the inner product < υ,ψ >L02=

∑∞
n=1 < υen, ψen > is a separable

Hilbert space. Let φ(s); s ∈ [0, a] be a function with values in L0
2(Y,X ), the Wiener integral of φ with

respect to wH is defined by∫ t

0
φ(s)dwH(s) =

∞∑
n=1

∫ t

0

√
λφ(s)endβ

H
n =

∞∑
n=1

∫ t

0

√
λK∗(φen)(s)dβn(s) (2)

where βn is the standard Brownian motion. Let C (J,L2(Ω,X )) be the Banach space of all continuous
maps from J into L2(Ω,X ) satisfying sup0≤t≤τ E ‖y(t)‖2 <∞.

Define Y =
{
y : t(1−α)(1−β)y(t) ∈ C (J,L2(Ω,X ))

}
, with norm defined by

‖·‖Y =

(
sup
t∈J

E
∥∥∥t(1−α)(1−β)y(t)

∥∥∥2
) 1

2

.

Obviously, Y is a Banach space.

Lemma 2.1. [26] If ψ : [0, a]→ L0
2(Y,X ) satisfies

∫ a
0 ‖ψ(s)‖2L02 <∞ then the above sum in () is well

defined as X -valued random variable and we have

E

∥∥∥∥∫ t

0
ψ(s)dwH(s)

∥∥∥∥2

≤ 2Ht2H−1

∫ t

0
‖ψ(s)‖2L02 ds.

3



To study the exact null controllability of (1) we consider the fractional linear system

Dα,β
0+
y(t) = Ay(t) +Bu(t) + f(t) + g(t)

dwH(t)

dt
, t ∈ J = [0, a],

I
(1−α)(1−β)
0+

y(0) = y0, (3)

associated with the system (1). Define

La0u =

∫ a

0
Pβ(a− s)Bu(s)ds : L2(J,U)→ X ,

where La0u has a bounded inverse operator (L0)−1 with values in L2(J,U/ker(La0)), and

N a
0 (y, f, g) = Sα,β(a)y +

∫ a

0
Pβ(a− s)f(s)ds+

∫ a

0
Pβ(a− s)g(s)dwH(s) : X × L2(J,U)→ X .

Definition 2.3. The system (3) is said to be exactly null controllable on J if ImLa0 ⊃ ImN a
0 .

The system (3) is exactly null controllable if there exists γ > 0 such that

‖(La0)∗y‖2 ≥ γ ‖(N a
0 )∗y‖2 y ∈ X .

Lemma 2.2. [7] Suppose that the linear system (3) is exactly null controllable on J . Then the linear
operator W = (L0)−1N a

0 : X × L2(J,U)→ L2(J,U) is bounded and the control

u(t) = −(L0)−1
[
Sα,β(a)y0 +

∫ a

0
Pβ(a− s)f(s)ds+

∫ a

0
Pβ(a− s)g(s)dwH(s)

]
= −W(y0, f, g)

transfers the system (3) from y0 to 0, where L0 is the restriction of La0 to [kerLa0]

Definition 2.4. If y ∈ C (J,L2(Ω,X )) is a mild solution of (1) ifit satisfies

y(t) = Sα,β(t)[y0 − q(0)] +

∫ t

0
Pβ(t− s) [f(s, y(s)) +Bu(s)] ds+

∫ t

0
Pβ(t− s)g(s, y(s))dwH(s)

+

∫
Λ

∫ t

0
Pβ(t− s)g(r, y(r), ν)Ñ(ds, dν), t ∈ J.

where

Sα,β(t) = I
α(1−β)
0+

Pβ(t),

Pβ(t) = tβ−1Tβ(t),

Tβ(t) =

∫ ∞
0

βθψβ(θ)T (tβθ)dθ,

here

ψβ(θ) =
∞∑
n=1

(−θn−1)

(n− 1)!Γ(1− nβ)sin(nπα)
θ ∈ (0,∞),

is a function of Wright-type defined on (0,∞) and∫ ∞
0

θζψβ(θ)dθ =
Γ(1 + ζ)

Γ(1 + βζ)
, ζ ∈ (−1,∞)

and ‖T (t)‖ ≤M .

Lemma 2.3. [27] The properties of the operators Sα,β and Pβ are given by
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(i) {Pβ(t) : t > 0} is continuous in the uniform operator topology.

(ii) For any fixed t > 0, Sα,β and Pβ are linear and bounded operators, and

‖Pβ(t)x‖ ≤ Mt2(β−1)

Γ(β)2
‖x‖

‖Sα,β(t)x‖ ≤ Mt2(α−1)(β−1)

Γ(α(1− β) + β)2
‖x‖ .

(iii) {Pβ(t) : t > 0} and {Sα,β(t) : t > 0} are strongly continuous.

3 Exact null controllability

In this section, we formulate sufficient conditions for exact null controllability for the system (1) Before
starting and proving our main results, we introduce the following hypotheses:

(H1) The linear system (3) is exactly null controllable on J .

(H2) The function f : J × X → X is locally Lipschitz continuous, for all t ∈ J , y, y1, y2 ∈ X , there
exist constant c1 > 0 such that

‖f(t, y1)− f(t, y2)‖2 ≤ c1 ‖y1 − y2‖2

‖f(t, y)‖2 ≤ c1(1 + ‖y‖2).

(H3) The function g : J × X → L0
2(Y,X ) is locally Lipschitz continuous, for all t ∈ J , y, y1, y2 ∈ X ,

there exist constant c2 > 0 such that

‖g(t, y1)− g(t, y2)‖2 ≤ c2 ‖y1 − y2‖2

‖g(t, y)‖2 ≤ c2(1 + ‖y‖2).

(H4) The function h : J ×X ×Λ→ X is locally Lipschitz continuous, for all t ∈ J , y, y1, y2 ∈ X , there
exist constant c3 > 0 such that∫

Λ
‖h(t, y1, ν)− f(t, y2, ν)‖2 ≤ c3 ‖y1 − y2‖2∫

Λ
‖h(t, y, ν)‖2 ≤ c3(1 + ‖y‖2).

(H5) The function q : C (J,H) → X is continuous, for all t ∈ J , y, y1, y2 ∈ C (J,X ), there exist
constant c4 > 0 such that

‖q(y1)− q(y2)‖2 ≤ c4 ‖y1 − y2‖2

‖q(y)‖2 ≤ c4(1 + ‖y‖2).

Set Ξ1 = 5M2c4
Γ2(α(1−β)+β)

+ 5M2a1+2α(β−1)

(2β−1)Γ2(β)
(c1 + c22HT 2H−1 + c3) and Ξ2 = 1 + 5M2‖B‖2‖W‖2a2β−1

(2β−1)Γ2(β)
.

Theorem 3.1. Assume that (H1)− (H5) hold, then the system (1) is exactly null controllable on J,
provided that

Ξ = Ξ1Ξ2 < 1. (4)
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Proof . Define the operator G on Y as follows:

(Gy)(t) = Sα,β(t) [y0 − q(x)] +

∫ t

0
Pβ(t− s) [f(s, y(s)) +Bu(s)] ds

+

∫ t

0
Pβ(t− s)g(s, y(s))dwH(s) +

∫ t

0

∫
Λ
Pβ(t− s)h(s, y(s), ν)Ñ(ds, dν), t ∈ J, (5)

where

u(t) = W[y0 − q(y), f, g, h](t)

= −(L0)−1
{
Sα,β(t) [y0 − q(x)] +

∫ t

0
Pβ(t− s) [f(s, y(s))] ds

+

∫ t

0
Pβ(t− s)g(s, y(s))dwH(s) +

∫ t

0

∫
Λ
Pβ(t− s)h(s, y(s), ν)Ñ(ds, dν)

}
It will be prove that G on Y into itself has a fixed point.
Step 1: The control function u(·) is bounded on Y Now,

‖u‖2 = sup
t∈J

t2(1−α)(1−β)E ‖u‖2

≤ ‖W‖2
[

M2

Γ2(α(1− β) + β)

{
E ‖y0‖2 + c4(1 + E ‖y‖2)

}
+
M2a1+2α(β−1)

(2β − 1)Γ2(β)
(1 + E ‖y‖2)

(c1 + c22HT 2H−1 + c3)

]
Step 2: G maps Y into itself. for t ∈ J , we have

‖(Gy)(t)‖2Y = sup
t∈J

t2(1−α)(1−β)E ‖(Gy)(t)‖2

≤ 5 sup
t∈J

t2(1−α)(1−β)

[
E ‖Sα,β(t) [y0 − q(x)]‖2

+ 5 sup
t∈J

t2(1−α)(1−β)E

∥∥∥∥∫ t

0
Pβ(t− s) [f(s, y(s))] ds

∥∥∥∥2

+ 5 sup
t∈J

t2(1−α)(1−β)E

∥∥∥∥∫ t

0
Pβ(t− s)Bu(s)ds

∥∥∥∥2

+ 5 sup
t∈J

t2(1−α)(1−β)E

∥∥∥∥∫ t

0
Pβ(t− s)g(s, y(s))dwH(s)

∥∥∥∥2

+ 5 sup
t∈J

t2(1−α)(1−β)E

∥∥∥∥∫ t

0
Pβ(t− s)

∫
Λ
h(s, y(s), ν)Ñ(ds, dν)

∥∥∥∥2 ]
≤

[
5M2

Γ2(α(1− β) + β)

{
E ‖y0‖2 + c4(1 + E ‖y‖2)

}
+

5M2a1+2α(β−1)

(2β − 1)Γ2(β)
(1 + E ‖y‖2)(c1 + c22HT 2H−1 + c3)

]
×

[
1 +

5M2 ‖B‖2 ‖W‖2 a2β−1

(2β − 1)Γ2(β)

]
<∞.

Thus G maps Y into itself.
Step 3: G is continuous on J .
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Let 0 < t ≤ a and ζ > 0 be sufficiently small, then

‖(Gy)(t+ ζ)− (Gy)(t)‖2Y
= sup

t∈J
t2(1−α)(1−β)E ‖(Gy)(t+ ζ)− (Gy)(t)‖2 (6)

≤ 5 sup
t∈J

t2(1−α)(1−β) ×E ‖Sα,β(t+ ζ)− Sα,β(t) [y0 − q(x)]‖2

+ 5 sup
t∈J

t2(1−α)(1−β) ×E

∥∥∥∥∫ t+ζ

0
Pβ(t+ ζ − s)Bu(s)ds−

∫ t

0
Pβ(t− s)Bu(s)ds

∥∥∥∥2

+ 5 sup
t∈J

t2(1−α)(1−β) ×E

∥∥∥∥∫ t+ζ

0
Pβ(t+ ζ − s) [f(s, y(s))] ds−

∫ t

0
Pβ(t− s) [f(s, y(s))] ds

∥∥∥∥2

+ 5 sup
t∈J

t2(1−α)(1−β) ×E

∥∥∥∥∫ t+ζ

0
Pβ(t+ ζ − s) [g(s, y(s))] dwH(s)

−
∫ t

0
Pβ(t− s) [g(s, y(s))] dwH(s)

∥∥∥∥2

+ 5 sup
t∈J

t2(1−α)(1−β) ×E

∥∥∥∥∫ t+ζ

0

∫
Λ
Pβ(t+ ζ − s) [h(s, y(s), ν)] Ñ(ds, dν)

−
∫ t

0

∫
Λ
Pβ(t− s) [h(s, y(s), ν)] Ñ(ds, dν)

∥∥∥∥2

By using Lemma 2.3, (H2) − (H5), the right hand side of (6) tends to zero as ζ → 0. Hence G is
continuous on J .
Step 4: G is contraction on Y.

For any t ∈ J and y1, y2 ∈ Y, we have

‖(Gy1)(t)− (Gy2)(t)‖2Y
= sup

t∈J
t2(1−α)(1−β)E ‖(Gy1)(t)− (Gy2)(t)‖2

≤ 5 sup
t∈J

t2(1−α)(1−β)E

[
‖(Sα,β)(t)[q(y1)− q(y2)]‖2

+

∥∥∥∥∫ t

0
Pβ(t− s)[BW[y0 − q(y1), f, g, h](s)−BW[y0 − q(y2), f, g, h](s)]ds

∥∥∥∥2

+

∥∥∥∥∫ t

0
Pβ(t− s)[f(s, y1(s))− f(s, y2(s))]ds

∥∥∥∥2

+

∥∥∥∥∫ t

0
Pβ(t− s)[g(s, y1(s))− g(s, y2(s))]dwH(s)

∥∥∥∥2

+

∥∥∥∥∫ t

0
Pβ(t− s)

∫
Λ

[h(s, y1(s), ν)− h(s, y2(s), ν)]Ñ(ds, dν)

∥∥∥∥2 ]
≤ ΞE ‖y1 − y2‖2 .

Hence, G is a contraction in Y using (4). From the Banach fixed point theorem, G has a unique fixed
point. Therefore the system (1) is exact null controllable on J .
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4 An example

Consider the following Hilfer fractional stochastic partial differential system driven by Rosenblatt
process with Poisson jumps

D
β, 2

3

0+
y(t, ξ) =

∂2

∂ξ2
y(t, ξ) + u(t, ξ) + f(t, y(t, ξ)) + g(t, y(t, ξ))

dwH(t)

dt

+

∫
Λ
h(t, y(t, ξ), ν)Ñ(dt, dν), t ∈ J, 0 < ξ < 1,

y(t, 0) = y(t, 1) = 0, t ∈ J,

I
1
3

(1−α)

0+
(y(0, ξ)) +

n∑
i=1

kiy(tiξ) = y0(ξ), 0 ≤ ξ ≤ 1, (7)

where D
β, 2

3

0+
is a Hilfer fractional derivative of order 0 ≤ α ≤ 1, β = 2

3 , I
1
3

(1−α) is the Riemann-Liouville
integral of order 2

3(1 − α) and
{
wH(t)

}
t≥0

is a fractional Brownian motion with Hurst parameter

H ∈ (1
2 , 1). Let f(t, y(t, ξ)), g(t, y(t, ξ), ν), h(t, y(t, ξ), ν) are given functions. Also, Let A : X → X be

defined by Ax = ∂2

∂ξ2
x with domain D(A) =

{
x ∈ X : x, ∂x∂ξ are absolutely continuous, and ∂2x

∂ξ2
∈

X , x(0) = x(1) = 0

}
. It is known that A is self-adjoin and has the eigenvalues λn = −n2π2, n ∈ N,

with the corresponding normalized eigen-vectors en(ξ) =
√

2sin(nπξ). Furthermore, A generates a
strongly continuous semigroup of bounded linear operator S(t), t ≥ 0, on a separable Hilbert space X
which is given by

S(t)x =

∞∑
n=1

(xn, en)en =

∞∑
n=1

2e−n
2π2tsin(nπξ)

∫ t

0
sin(nπξ)ξ(ς)dς, x ∈ X .

Define the fractional Brownian motion in Y by

wH(t) =
∞∑
n=1

√
λnβH(t)en,

where H ∈ (1
2 , 1) and

{
βHn
}
n∈N is a sequence of one-dimensional fractional Brownian motions mutually

independent.

If u ∈ L2(J,X ), then B = I, B∗ = I. Now we consider

D
β, 2

3

0+
x(t, ξ) =

∂2

∂ξ2
x(t, ξ) + u(t, ξ) + f(t, ξ)) + g(t, x(t, ξ))

dwH(t)

dt

+

∫
Λ
h(t, y(t)ξ), ν)Ñ(dt, dν), t ∈ J, 0 < ξ < 1,

y(t, 0) = y(t, 1) = 0, t ∈ J,

I
1
3

(1−α)

0+
(y(0, ξ)) +

n∑
i=1

kiy(tiξ) = y0(ξ), 0 ≤ ξ ≤ 1, (8)

The system (9) is exact null controllability if there is a γ > 0, such that∫ a

0

∥∥B∗P ∗β (a− s)x
∥∥2 ≥ γ

[∥∥S∗α,β(a)x
∥∥2

+

∫ a

0

∥∥P ∗β (a− s)x
∥∥2
ds

]
.

or equivalently ∫ a

0
‖Pβ(a− s)x‖2 ≥ γ

[
‖Sα,β(a)x‖2 +

∫ a

0
‖Pβ(a− s)x‖2 ds

]
.
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If f = g = h = 0 in (8), then the fractional linear system is exactly null controllable if∫ a

0
‖Pβ(a− s)x‖2 ds ≥ a ‖Sα,β(a)x‖2 .

Thus, ∫ a

0
‖Pβ(a− s)x‖2 ds ≥ a

1 + a
γ

[
‖Sα,β(a)x‖2 +

∫ a

0
‖Pβ(a− s)x‖2 ds

]
.

Hence, the linear system (8) is exactly null controllable on J .

Clearly, the functions f : J × X → X , g : J × X → L0
2(Y,X ), h : J × X × Λ → X and

q : C (J,X )→ X follows:

f(t, x) = f(t, y(t, ξ)),

g(t, x) = g(t, y(t, ξ)),

h(t, x, ν) = h(t, y(t, ξ), ν),

q(x) =
n∑
i=1

kiy(ti, ξ),

which satisfy (H2)− (H5). By ki, i = 1, 2, ..., n; M, c1, c2, c3, c4 are constant such that Ξ < 1. Hence,
all the hypotheses of Theorem 3.1 are satisfied. Hence the system (8) is exact null controllable on
[0, a].
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