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IMPLICATIVITY VERSUS FILTRALITY,
DISJUNCTIVITY AND EQUALITY DETERMINANTS

ALEXEJ P. PYNKO

Abstract. Extending the notion of an implicative system for a class of al-
gebras by admitting existential parameters, we come to that of [restricted,

viz., parameter-less] one, {quasi-}varieties with {relatively} subdirectly-irre-

ducibles {[i.e., those generated by subclasses]} with [restricted] implicative
system being called [restricted] implicative. Likewise, a {quasi-}variety is

said to be {relatively} [sub]directly filtral/congruence-distributive, if {relative}
congruences /lattice of any [sub]direct product of its {relatively} subdirectly-
irreducibles are/is filtral/distributive, pre-varieties (viz., abstract hereditary

multiplicative classes) generated by subclasses with 〈finite〉 disjunctive sys-

tem being called 〈finitely〉 disjunctive. The main general results of the work
are that any /{quasi-}equational {pre-}variety is /〈finitely〉 disjunctive iff it is

{relatively} congruence-distributive with {its members isomorphic to subdirect

products of relatively finitely-subdirectly-irreducible ones}/ and the class of its
{relatively} finitely-subdirectly-irreducible members being “a universal /〈first-

order〉 model class”|“hereditary /〈and closed under ultra-products〉”, while
any {quasi-}variety is [restricted] implicative it is {relatively} [sub]directly fil-
tral iff it is {relatively} [〈finitely-〉]semi-simple (i.e., its {relatively} [〈finitely-

〉]subdirectly-irreducibles are {relatively} simple) and [sub]directly congruence-
distributive with the class of {relatively} simple members being “a [univer-

sal] first-order model one”|“[hereditary and] closed under ultra-products” [iff

it is disjunctive and {relatively} finitely-semi-simple] if[f] it is {relatively}
semi-simple and has [R]EDP{R}C. In particular, any finitely-generated /semi-

simple variety of lattice expansions with hereditary class of subdirectly-irre-

ducibles is disjunctive/“restricted implicative” that provides an immediate in-
sight into “disjunctivity but not”/restricted implicativity /“and REDPC” for

the finitely-generated “but not”/ semi-simple variety of “Stone algebras”/“dis-

tributive|De |Morgan lattices|algebras‖lattices”. Finally, we exemplify our
general elaboration by applying it to the disjunctive non-implicative [quasi-

]equational join (viz., the [quasi-]variety generated by the union) of the va-

rieties of Stone algebras and De Morgan algebras/lattices as well as finding
the lattices of its {implicative} sub-varieties {being exactly varieties of De

Morgan algebras/lattices}, all being disjunctive, and merely/“both all and”
disjunctive|implicative sub-quasi-varieties, /“disjunctive|implicative ones” ap-

pearing to be varieties.

1. Introduction

According to [18]/[17], an/a implicative/disjunctive system for a class of alge-
bras is a finite/[finite] set of quaternary equations defining implication/disjunction
of two equations in each member of the class, the quasi-/pre-variety /(viz., abstract
hereditary multiplicative class; cf. [20]) generated by this being called /[finitely]
implicative/disjunctive therein/here. On the other hand, implicative varieties ap-
pear exactly semi-simple ones with REDPC in the sense of [5] proved therein ex-
actly (subdirectly, in our extended terminology) filtral ones, i.e., subdirectly ideal
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ones. And what is more, direct ideality is equivalent to EDPC admitting existential
parameters in definining equations. These points make rather acute the issue of ad-
mitting parameters in implicative systems, those without parameters being called
restricted ones. Then, a [quasi-]variety is said to be (restricted) implicative, if its
[relatively] subdirectly-irreducibles have a common (restricted) implicative system
(i.e., is implicative in the sense of [18]). In this connection, the main result of the
work is equivalence of (restricted) implicativity of a [quasi-]variety Q to its [rel-
ative] (sub)direct filtrality, i.e., filtrality of [Q-relative] congruences of (sub)direct
products of [relatively] subdirectly-irreducibles of Q (in the equational case mean-
ing exactly the filtrality in the sense of [5]). It is remarkable that this is proved
directly {without involving extra links like EDPC and ideality} as well as uniformly
for both the parameterized and restricted case. Such uniformity equally concerns
proving [relative] (sub)direct filtrality of Q in case of both its [relatively] (sub)direct
congruence-distributivity {i.e., distributivity of the lattices of [Q-relative] congru-
ences of (sub)direct products of [relatively] subdirectly-irreducibles of Q (equivalent
to its [relative] congruence-distributivity)}, its [relative] semi-simplicity and (uni-
versal) first-order axiomatizability of the class of [relatively] subdirectly-irreducibles
of Q, but not the converse. More precisely, while the [relative] direct congruence-
distributivity of [relatively] directly filtral [quasi-]varieties ensues from the distribu-
tivity of the filter lattices, the [relative] congruence-distributivity of restricted im-
plicative [quasi-]varieties results from their disjunctivity, being due to [18, Remark
2.4], and the [relative] congruence-distributivity of disjunctive [pre-]varieties proved
here, though both facts are based upon distributivity of closure systems with dis-
junctive bases explored here, the latter one making equally acute the problems of
studying both disjunctivity and its connections with implicativity. A one more pe-
culiarity of the restricted case consists in equivalence of restricted implicativity to
semi-simplicity jointly with REDPC, while EDPC and semi-simplicity just imply
implicativity, whereas the truth of the converse remains an open problem.

In view of the universal first-order axiomatizability of abstract hereditary lo-
cal subclasses of locally-finite quasi-varieties ensuing from [4, Corollary 2.3], any
locally-finite [quasi-]variety is then restricted implicative iff it is [relatively] both
semi-simple and congruence-distributive with hereditary class of its [relatively]
subdirectly-irreducibles. In particular, the variety generated by a finite set of fi-
nite lattice expansions without non-simple non-one-element subalgebras, being thus
restricted implicative, taking [7] into account, has REDPC. This provides an im-
mediate (though far from being constructive) proof/insight to/into REDPC for the
semi-simple finitely-generated variety of distributive|“De Morgan” lattices|algebras,
originally being due to [6]|[19]. On the other hand, a generic constructive approach
to implicative systems for lattice expansions, being underlying algebras of logical
matrices with prime filter truth predicate, equality determinant and equational im-
plication, covering the varieties of [bounded] distributive lattices as well as Kleene
lattices/algebras, has been due to [17, Theorems 10, 12(iii)⇒(i) and Lemma 11]
jointly with [18, Lemma A.2]. However, the varieties of /[Boolean] De Morgan lat-
tices/algebras have proved beyond it because of related negative results of [17] (cf.
the paragraph followed by Example 10 therein). Concluding this work, we propose
a supplementary generic constructive approach, based upon the notion of equality
determinant, equally covering the mentioned three varieties.

Finally, we exemplify our general elaboration by applying it to the disjunctive
non-implicative [quasi-]equational join (viz., the [quasi-]variety generated by the
union) of the varieties of Stone algebras and De Morgan algebras/lattices as well
as finding the lattices of its {implicative} sub-varieties {being exactly varieties of
De Morgan algebras/lattices}, all being disjunctive, and merely/“both all and”
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disjunctive|implicative sub-quasi-varieties, /“disjunctive|implicative ones” appear-
ing to be varieties.

The rest of the work is as follows. Section 2 is a concise summary of basic set-
theoretical and algebraic issues underlying the work. Then, in Section 3 we recall
preliminary issues concerning abstract disjunctivity as well as both finite locality
and local finiteness. Next, Section 4 is a collection of main results of the work.
Further, Section 5 exemplifies our universal elaboration within the framework of
the equational join of De Morgan and Stone algebras uniformly covering both these.
Finally, in Section 6 we briefly discuss principal problems remained open here.

2. General background

2.1. Set-theoretical background. Non-negative integers are identified with the
sets/ordinals of lesser ones, “their set/ordinal”|“the ordinal‖set class” being de-
noted by ω|(∞‖Υ). Unless any confusion is possible, one-element sets are identified
with their elements.

For any sets A, B and D as well as θ ⊆ A2, g : A2 → A, e : A → D and
h : A→ B, let ℘[K]((B, )A) be the set of all subsets ofA (includingB) [of cardinality
in K ⊆ ∞], ((∆A|νθ)‖(A/θ)‖χB

A) , ({〈a, a|θ[{a}]〉 | a ∈ A}‖νθ[A]‖(((A ∩ B) ×
{1}) ∪ ((A \ B) × {0}))), A∗|+ , (

⋃
m∈(ω\(0|1))A

m), g+ : A+ → A, 〈[〈a, b〉, ]c〉 7→
[g]([g+(〈a, b〉), ]c), h|(/−1)

n|℘ : (An|℘(A/B)) → (Bn|℘(B/A)), (f |X) 7→ ((f ◦ h)|h/−1

[X]) with n ∈ ω, (h × e) : A → (B × D), a 7→ 〈h(a), e(a)〉 and εB : (ΥB)2 →
℘(B), 〈d, e〉 7→ {b ∈ B | πb(d) = πb(e)}, A-tuples {viz., functions with domain A}
being written in the sequence form t̄ with ta, where a ∈ A, standing for πa(t̄).
Then, for any (ā|C) ∈ (A∗|℘(A)), by induction on the length (viz., domain) of
any b̄ = 〈[c̄, d]〉 ∈ A∗, put ((ā ∗ b̄)|(b̄(∩/\)C)) , (([〈]ā[∗c̄, d〉])|(〈[c̄(∩/\)C(, d)]〉))
|[(provided d ∈ / 6∈ C)]. Likewise, given any S ∈ ΥA and f̄ ∈

∏
a∈A S

B
a , let

(
∏
f̄) : B → (

∏
a∈A Sa), b 7→ 〈fa(b)〉a∈A, in which case

ker(
∏

f̄) = (B2 ∩ (
⋂
a∈A

(ker fa))),(2.1)

∀a ∈ A : fa = ((
∏

f̄) ◦ πa),(2.2)

f0 × f1 standing for (
∏
f̄), whenever A = 2.

An X ∈ Y ⊆ ℘(A) is said to be [K-]meet-irreducible/maximal in Y [where
K ⊆ ∞]/, if ∀Z ∈ (℘[K]/{1}(Y ) : (((A/X) ∩ (

⋂
Z)) = X) ⇒ (X ∈ Z) with

their set denoted by (MI[K] /max)(Y ), “finitely-” standing for “ω-” within any
related context. Next, a U ⊆ ℘(A) is said to be upward-directed, if ∀S ∈ ℘ω(U) :
∃T ∈ (U ∩ ℘(

⋃
S, A)), subsets of ℘(A) closed under unions of upward directed

subsets being called inductive. Further, a [finitary] closure operator over A is
any unary operation on ℘(A) with ∀X ∈ ℘(A),∀Y ∈ ℘(X) : (X ∪ C(C(X)) ∪
C(Y )) ⊆ C(X)[= (

⋃
C[℘ω(X)])]. Finally, a closure system over A is any C ⊆ ℘(A)

containing A and closed under intersections of subsets containing A, any B ⊆ C

with C = {A ∩ (
⋂

S) | S ⊆ B} being called a (closure) basis of C and determining
the closure operator CB , {〈Z,A ∩ (

⋂
(X ∩ ℘(Z,A)))〉 | Z ∈ ℘(A)} over A with

(imgCB) = C. Conversely, imgC is a closure system over A such that Cimg C = C,
being inductive iff C is finitary, and forming a complete lattice under the partial
ordering by inclusion with meet/join (∆℘(A)/C)(A∩((

⋂
/

⋃
)S)) of any S ⊆ (imgC),

C and imgC being called dual to one another.

Remark 2.1. Due to Zorn Lemma, according to which any non-empty inductive set
has a maximal element, MI [K](C) is a basis of any inductive closure system C. �
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A filter/ideal on A is any F ⊆ ℘(A) such that, for all S ∈ ℘ω(℘(A)), (S ⊆
F) ⇔ ((A ∩ ((

⋂
/

⋃
)S)) ∈ F) “the set Fi(A) of them being an inductive closure

system over ℘(A) with dual closure operator (of filter generation) FgA such that
FgA(S) = ℘(A ∩ (

⋂
S), A)”/. Then, an ultra-filter on A is any filter U on A such

that ℘(A) \ U is an ideal on A.

2.2. Algebraic background. Unless otherwise specified, we deal with a fixed but
arbitrary finitary functional signature Σ, Σ-algebras/“their carriers” being denoted
by same capital Fraktur/Italic letters (with same indices, if any) “with denoting
their class by AΣ”/. Given any α ∈ (∞\1), let Tmα

Σ be the carrier of the absolutely-
free Σ-algebra Tmα

Σ, freely-generated by the set Vα , {xβ}β∈α of (first α) variables,
and Eqα

Σ , (Tmα
Σ)2, φ ≈ /(/ | ')ψ, where φ, ψ ∈ Tmα

Σ /“and Σ+ , {∧,∨} 3 ∧ ∈
Σ”, meaning 〈φ/(φ ∧ ψ), ψ/(φ|ψ)〉 “and being called a Σ-equation of rank α with
denoting the set of variables actually occurring in it by Var(φ ≈ ψ) ∈ ℘ω(Vα)”/.
/“Likewise, for any Σ-algebra A and a, b ∈ A, (a(6 | >)Ab)‖[a, b]A stands for
((a|b) = (a ∧A b))‖{c ∈ A | a 6A c 6A b}.” Then, any 〈Γ,Ψ〉 ∈ (℘∞/(1[∪ω])(Eqα

Σ)×
Eqα

Σ) /“with α ∈ ω” is called a Σ-implication/-[quasi-]identity of rank α, written as
Γ → Ψ /[and identified with Ψ] as well as treated as the universal infinitary/first-
order /[positive] strict Horn sentence ∀β∈αxβ((

∧
Γ)→ Ψ).

Subclasses of AΣ closed under I/S/P[U|SD] are referred to as abstract/hereditary/
[ultra-|sub-]multiplicative (cf. [11]). Given a K ⊆ AΣ 3 A and a K ⊆ ∞, set
KK , {B ∈ K | |B| ∈ K}, hom(A,K) , (

⋃
{hom(A,B) | B ∈ K} and CoK(A) ,

{θ ∈ Co(A) | (A/θ) ∈ K}, whose elements are called K-(relative )congruences of A,
in which case, by the Homomorphism Theorem:

(2.3) ker[hom(A,K)] = CoISK(A).

Furthermore, for any set I, any B ∈ AI
Σ and any h̄ ∈ (

∏
i∈I hom(A,Bi)):

(2.4) (
∏

h̄) ∈ hom(A,
∏
i∈I

Bi).

Remark 2.2. As, for any A ∈ AΣ, by the Homomorphism Theorem, ∀Θ ⊆ Co(A) :
θ , (A2 ∩ (

⋂
Θ)) ∈ Co(A), h̄Θ , 〈ν−1

θ ◦ νϑ〉ϑ∈Θ ∈ (
∏

ϑ∈Θ hom(A/θ,A/θ), h ,
(
∏
h̄Θ) ∈ hom(A/θ,

∏
ϑ∈Θ(A/θ)), (kerh) = ∆A/θ,∀ϑ ∈ Θ : πϑ[h[A/θ]] = (A/ϑ),

in view of (2.1), (2.2) and (2.4), while ∀I ∈ Υ,∀B ∈ AI
Σ,∀θ ∈ Co(A),∀h ∈

hom(A/θ,
∏

i∈I Bi) : (((kerh) = ∆A/θ)&(∀i ∈ I : πi[h[A/θ]] = Bi)) ⇒ ((∀i ∈ I :
θi , ker((νθ◦h)◦πi) ∈ Co(A), hi , (ν−1

θ ◦((νθ◦h)◦πi)) ∈ hom(A/θi,Bi), (kerhi) =
∆A/θi

, hi[A/θi] = Bi)&(θ = (A2 ∩ (
⋂

i∈I θi)))), CoK(A), where K ⊆ AΣ, being
a basis of the closure system CoIPSDK(A) over A2, if K is abstract, is a clo-
sure system over A2 iff K is both abstract and sub-multiplicative, and, by (2.3)
and the bijectivity of ν∆A

∈ hom(A,A/∆A), A ∈ ISPK(= IPSD[I]SK) iff (A2 ∩
(
⋂

ker[hom(A,K)])) = ∆A. �

Thus, [providing a K ⊆ AΣ is both abstract and sub-multiplicative] the closure
operator (of [K-]congruence generation) over A2 dual to the closure system Co[K](A)
over A2 is denoted by CgA

[K].
According to [20], pre-varieties are abstract hereditary multiplicative subclasses

of AΣ (these are exactly model classes of theories constituted by Σ-implications of
unlimited rank, and so are said to be implicative/implicational ; cf., e.g., [3]/[14])),
ISPK = IPSDSK being the least one including and so called generated by a K ⊆ AΣ.
Then, [quasi-]varieties are [ultra-multiplicative] pre-varieties closed under H[I][, I]
(these are exactly model classes of sets of Σ-[quasi-]identities of unlimited finite
rank, and so are said to be [quasi-]equational ; cf., e.g., [11]), H[I]SP[PU]K being
the least one including and so called generated by a K ⊆ AΣ. In particular, given
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a quasi-variety Q ⊆ AΣ 3 A axiomatized by a set Q of Σ-quasi-identities of finite
rank and a θ ∈ Co(A), hom(Tmω

Σ,A) = {h ◦ νθ | h ∈ hom(Tmω
Σ,A/θ)}, in which

case θ is Q-relative iff ∀h ∈ hom(Tmω
Σ,A),∀(Γ → Φ) ∈ Q : (h2[Γ] ⊆ θ) ⇒ (h2(Φ)),

and so CoQ(A) is inductive, for CoQ(A) is so, as Σ is finitary.
Given a [pre-]variety P ⊆ AΣ, an A ∈ P is called [ P-{relatively }]simple/ 〈K−〉su-

bdirectly-irreducible 〈where K ⊆ ∞〉, if ∆A ∈ (max /MI〈K〉)(Co[P](A) \ ({A2}/∅)),
in which case |A| 6= 1, the class of them being denoted by (Si /SI〈K〉)[P](P).
Then, P is said to be [relatively] 〈K−〉semi-simple/subdirectly-representable, if
(SI〈K〉

[P] (P)/P) ⊆ | = (Si[P](P)/IPSD SI〈K〉
[P] (P)). Likewise, it is said to be [relatively]

{(sub)directly} congruence-distributive, if, for each A ∈ (P{∩P(SD) SI[P](P)}), Co[P]

(A) is distributive.

Lemma 2.3. Let A,B ∈ AΣ[⊇ K ⊇ ((IS)/I)K] and h ∈ hom(A,B) /“with
h[A] = B”. Then, (h2)−1

℘ �Co[K](B) /“and (h2)℘�(Co[K](A) ∩ ℘(kerh,A2))” is/are
a/ homomorphism/“inverse to one another isomorphisms” from/between the poset
Co[K](B) to/and that Co[K](A) ∩ ℘(kerh,A2) under the partial ordering by ⊆.

Proof. The []-non-optional part is well-known. [Then, for any θ ∈ Co(B), g ,
(h ◦ νθ) ∈ hom(A,B/θ) /“with g[A] = (B/θ)”, while ϑ , (ker g) = h−1

2 [θ] ∈
(Co(A) ∩ ℘(kerh,A2)), in which case, by the Homomorphism Theorem, ν−1

ϑ ◦ g is
an embedding/isomorphism from A/ϑ into/onto B/θ, and so (ϑ ∈ CoK(A))⇐ /⇔
(θ ∈ CoK(B)), as required.] �

This immediately yields:

Corollary 2.4. For any [pre-]variety P ⊆ AΣ, (SI(K) |Si)[P](P) is abstract (where
K ⊆ ∞)|.

Corollary 2.5. Any [quasi-]variety Q is [relatively] (K-)subdirectly representable
(where K ⊆ ∞). In particular, it is [relatively] subdirectly congruence-distributive
iff it is [relatively] congruence-distributive.

Proof. For any A ∈ Q, by Lemma 2.3, MI(K)(Co[Q](A)) = Co
SI

(K)
[Q] (Q)

(A), the for-

mer/latter being a basis of CoQ(A)/Co
IPSD SI

(K)
[Q] (Q)

(A), in view of Remark 2.1/“2.2

and Corollary 2.4”, in which case these are equal, and so A ∈ IPSD SI(K)
[Q] (Q), for

ν∆A
∈ hom(A,A/∆A) is bijective. Then, Lemma 2.3 completes the argument. �

Corollary 2.6. Let A,B ∈ AΣ[⊇ K ⊇ IPSDK] and h ∈ hom(A,B) with h[A] = B.
Then, for all X ⊆ A2, CgA

[K](X ∪ (kerh)) = h−1
2 [CgB

[K](h2[X])].

Proof. By Lemma 2.3, we have:

h−1
2 [CgB

[K](h2[X])] = h−1
2 [B2 ∩ (

⋂
{θ ∈ Co[K](B) | h2[X] ⊆ θ})] =

(h−1
2 [B2] ∩ (

⋂
{h−1

2 [θ] | θ ∈ Co[K](B), X ⊆ h−1
2 [θ]})) =

(A2 ∩ (
⋂
{ϑ ∈ Co[K](B) | (X ∪ (kerh)) ⊆ ϑ})) = CgA

[K](X ∪ (kerh)). �

2.2.1. Filtral congruences. Let I be a set, F a{n ultra-}filter on I [Q ⊆ AΣ a quasi-
variety] and A ∈ (AΣ[∩Q])I as well as B a subalgebra of its direct product. Then,
by Lemma 2.3, for each i ∈ I, (B2 ∩ (kerπi)) = ((πi�B)−1

2 [∆Ai
] ∈ Co[Q](B), as

(πi�B) ∈ hom(B,Ai) and ∆Ai ∈ Co[Q](Ai), in which case, for all K ⊆ J ⊆ I,
the closure system Co[Q](B) on B2 contains θB

J , (B2 ∩ ε−1
I [℘(J, I)]) = (B2 ∩

(
⋂

j∈J kerπj)) ⊆ θB
K , ΘB

F , {θB
L | L ∈ F} being then upward-directed, and so
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Co[Q](B), being inductive, contains θB
F , (

⋃
ΘB

F ) = (B2 ∩ ε−1
I [F]), called (F-

){ultra-}filtral. Clearly, for any X ⊆ Fi(I) |“with (
⋃

X) ∈ Fi(I)”,

(2.5) θB
℘(I)∩((

⋂
|
⋃

)X) = (B2 ∩ ((
⋂
|
⋃

){θB
F | F ∈ X})).

A [quasi-]variety Q ⊆ AΣ is said to be [relatively] {(sub)directly} filtral, if every [Q-
]congruence of each member of SPSI[Q](Q){∩P(SD) SI[Q](Q)} is filtral {(cf. [5])}, in
which case, by Corollary 2.4, Q is [relatively] semi-simple, because any C ∈ SI[Q](Q)
is isomorphic to D , C1, while Fi(1) = {1, 2}, whereas θD

1 = ∆D 6= D2 = θD
2 , for

|D| = |C| 6= 1, and so Co[Q](D) = {∆D, D
2}, i.e., D is [Q-]simple, viz., C is so.

Lemma 2.7 (cf. [7] for the []()-non-optional case). Let Q be a [quasi-]variety,
I a set, A ∈ QI , B ∈ S(

∏
A) and θ ∈ MI(ω)(Co[Q](B)). Suppose Co[Q](B) is

distributive. Then, there is an ultra-filter U on I such that θB
U ⊆ θ.

Proof. By (2.5), S , {F ∈ Fi(I) | θB
F ⊆ θ} is inductive, for Fi(I) is so, in which

case, by Zorn Lemma, it has a maximal element U, and so, for any X ∈ ℘ω(℘(I))
such that Y , (

⋃
X) ∈ U, (X ∩ U) 6= ∅, as, for each Z ∈ X, θB

FZ
∈ Co[Q](B)

with U ⊆ FZ , FgI(U ∪ {Z}) ∈ Fi(I), while U = FgI(U) = FgI(U ∪ {Y }) =
(℘(I) ∩ (

⋂
{FZ | Z ∈ X})), whereas, by (2.5), θ = CgB

[Q](θ ∪ θB
U) = CgB

[Q](θ ∪ (B2 ∩
(
⋂
{θB

FZ
| Z ∈ X}))) = (B2∩ (

⋂
{CgB

[Q](θ∪θB
FZ

) | Z ∈ X})), that is, for some Z ∈ X,
θ = CgB

[Q](θ ∪ θB
FZ

) ⊇ θB
FZ

, i.e., U ⊆ FZ ∈ S, viz., Z ∈ FZ = U, as required. �

This, by Lemma 2.3 and the Homomorphism Theorem {as well as [4, Corollary
2.3]}, yields:

Corollary 2.8. Let K be a {finite} class of {finite} Σ-algebras and P , H(I)SPK.
Suppose P is a [relatively] congruence-distributive [quasi-]variety. Then, SI〈ω〉[P] (P) ⊆
H(I)SPUK{⊆ H(I)SK, in which case its members are finite, and so SIω[P](P) =
SI[P](P)}.

2.2.2. Subdirect products versus subalgebras.

Lemma 2.9 (cf. [8]). Let A ∈ AΣ and B a subalgebra of A. Then, hB
A , {〈ā, b〉 ∈

(Aω × B) | |ω \ εω(ā, ω × {b})| ∈ ω} ⊇ (
⋃
{{〈ω × {b}, b〉} ∪ {〈((ω \ {i}) × {b}) ∪

{〈i, a〉}, b〉 | i ∈ ω, a ∈ A} | b ∈ B}) is a function forming a subalgebra of Aω ×B,
in which case it is a surjective homomorphism from CB

A , (Aω�(domhB
A)) onto B,

and so CB
A is a subdirect product of ω × {A}.

Corollary 2.10. Let Q ⊆ AΣ be a [relatively] subdirectly filtral [quasi-]variety.
Then, SI[Q](Q) ∪ I(

∏
∅) is hereditary.

Proof. Let A ∈ (SI[Q](Q) ∪ I(
∏

∅)) and B a non-one-element subalgebra of A, in
which case |A| 6= 1, and so, by Lemma 2.9, h , hB

A is a surjective homomorphism
from the subdirect product C , CB

A of (ω × {A}) ∈ SI[Q](Q)ω onto B. Consider
any θ ∈ (Co[Q](B) \ {∆B}) and take any 〈a, b〉 ∈ (θ \∆B) 6= ∅, in which case, by
Lemma 2.3, ϑ , h−1

2 [θ] ∈ Co[Q](C), while θ = h2[ϑ], whereas (c̄|d̄) , (ω × {a|b}) ∈
h−1[{a|b}] ⊆ C, and so there is some F ∈ Fi(ω) such that 〈c̄, d̄〉 ∈ ϑ = θC

F , while,
as a 6= b, ∅ = εω(c̄, d̄) ∈ F, whereas F = ℘(ω). Then, ϑ = C2, in which case
θ = h2[C2] = B2, and so B ∈ SI[Q](Q), as required. �

3. Preliminaries

3.1. Closure systems with disjunctive closure bases. Let A be a set, C a
closure operator over it, δ : A2 → ℘(A) and ∀X,Y ⊆ A : δ(X,Y ) , (

⋃
δ[X × Y ]).
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Then, an X ⊆ A is said to be weakly/ δ-disjunctive, if ∀a, b ∈ A : (({a, b} ∩X) 6=
∅)⇒ /⇔ (δ(a, b) ⊆ X), in which case:

(3.1) ∀Y,Z ∈ ℘(A) : ((Y * X)⇒ (Z ⊆ X))⇒ /⇔ (δ(Y,Z) ⊆ X)

/“the set of those in an S ⊆ ℘(A) being denoted by Sf”. Likewise, C is said to be
weakly/ [multiply] δ-disjunctive, if ∀X,Y ∈ ℘{1}[∪∞](A),∀Z ∈ ℘(A) : C(δ(X,Y ) ∪
Z) ⊆ / = (C(X ∪Z)∩C(Y ∪Z)) /[in which case ∀X,Y, Z ∈ (imgC) : (C(X ∪Z)∩
C(Y ∪ Z)) = C(δ(X,Y ) ∪ Z) = C(C(δ(X,Y )) ∪ Z) = C((C(X) ∩ C(Y )) ∪ Z) =
C((X ∩ Y ) ∪ Z), and so imgC is distributive].

Lemma 3.1. Let B ⊆ ℘(A)f. Then, CB is multiply δ-disjunctive. In particular,
the closure system (imgCB) over A with basis B is distributive.

Proof. By (3.1), we have:

∀X,Y, Z ∈ ℘(A),∀a ∈ A : (a ∈ (CB(X ∪ Z) ∩ CB(Y ∪ Z)))

⇔ (∀W ∈ B : (((X ⊆W )&(Z ⊆W ))⇒ (a ∈W ))

&(((Y ⊆W )&(Z ⊆W ))⇒ (a ∈W )))

⇔ (∀W ∈ B : (((X * W )⇒ (Y ⊆W ))&(Z ⊆W ))⇒ (a ∈W ))

⇔ (∀W ∈ B : ((δ(X,Y ) ⊆W )&(Z ⊆W ))⇒ (a ∈W ))

⇔ (a ∈ CB(δ(X,Y ) ∪ Z)). �

Lemma 3.2. Suppose C is weakly/ δ-disjunctive. Then,

(imgC)f ⊆ / = (MIω(imgC) ∪ {A}).

Proof. Clearly, A ∈ (imgC) is f-disjunctive. Now, consider any X ∈ MIω(imgC),
in which case, providing C is δ-disjunctive, ∀a, b ∈ A : (δ(a, b) ⊆ X) ⇔ (X =
C(X) = C(δ(a, b)∪X) = (C({a}∪X)∩C({b}∪X)))⇔ (X ∈ {C({a}∪X), C({b}∪
X)}) ⇔ (({a, b} ∩X) 6= ∅), and so X is then f-disjunctive. Finally, consider any
Y ∈ ((imgC)f \ {A}) and any S ∈ ℘ω(imgC) such that Y = (A ∩ (

⋂
S)). in

which case S 6= ∅, for Y 6= A. By induction on n , |S| ∈ ω, let us prove that
Y ∈ S. For take any U ∈ S 6= ∅, in which case T , (S \ {U}) ∈ ℘ω(imgC),
|T| = (n−1) < n, Z , (A∩(

⋂
T)) ∈ (imgC) and Y = (U ∩Z), and so, if Y was not

in {U,Z} ⊆ ℘(Y,A), then there would be some (c|d) ∈ ((U |Z) \ Y ) 6= ∅, implying
Y 6= (U ∩Z), because Y + δ(c, d) ⊆ C(δ(c, d)∪ Y ) ⊆ (C({c} ∪ Y )∩C({d} ∪ Y )) ⊆
(C(U)∩C(Z)) = (U ∩Z). Hence, Y ∈ {U,Z}, that is, either Y = U ∈ S or Y = Z,
in which case, by induction hypothesis, Y ∈ S, and so, anyway, Y ∈ S. �

This, by Remark 2.1 and Lemma 3.1, immediately yields:

Corollary 3.3. If C is both δ-disjunctive and finitary, then (imgC)f is a basis
of imgC, in which case C is multiply δ-disjunctive, and so imgC is distributive.

3.1.1. Application to relatively directly filtral quasi-varieties.

Lemma 3.4. FgA is (∪�℘(A)2)-disjunctive, in which case the set of ultra-filters
on A is a basis of Fi(A), and so this is distributive.

Proof. Let X,Y, Z ∈ ℘(A) ⊇ S. If Z ∈ FgA({X ∪ Y } ∪ S), then there is some
T ∈ ℘ω(S) such that ((X ∩ (

⋂
T))∪ (Y ∩ (

⋂
T))) = ((X ∪Y )∩ (

⋂
T)) ⊆ Z, in which

case (X ∩ (
⋂

T)) ⊆ Z ⊇ (Y ∩ (
⋂

T)), and so Z ∈ (FgA({X} ∪ S) ∩ FgA({Y } ∪ S).
Conversely, if Z ∈ (FgA({X}∪S)∩FgA({Y }∪S)), then there are some U,V ∈ ℘ω(S)
such that (X ∩ (

⋂
U)) ⊆ Z ⊇ (Y ∩ (

⋂
V)), in which case W , (U ∪ V) ∈ ℘ω(S),

while (X ∩ (
⋂

W)) ⊆ Z ⊇ (Y ∩ (
⋂

W)), that is, Z ⊇ ((X ∩ (
⋂

W))∪ (Y ∩ (
⋂

W))) =
((X ∪ Y ) ∩ (

⋂
W)), and so Z ∈ FgA({X ∪ Y } ∪ S). In this way, Corollary 3.3

completes the argument. �
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Corollary 3.5. Let I be a set, F,G ∈ Fi(I) {and Q ⊆ AΣ a [relatively] directly
filtral [quasi-]variety} as well as A ∈ ((AΣ{∩SI[Q](Q)}) \ I(

∏
∅))I with its direct

product B. Suppose F * G. Then, θB
F * θB

G {in which case {〈H, θB
H〉 | H ∈

Fi(I)} is an isomorphism from Fi(I) onto Co[Q](B), and so Q is [relatively] directly
congruence-distributive}.

Proof. Take any J ∈ (F \ G) 6= ∅, ā ∈ (
∏

j∈J Aj) 6= ∅ and b̄ ∈ (
∏

i∈(I\J)(A
2
i \

∆Ai
)) 6= ∅, in which case (c̄|d̄) , (ā∪ 〈π0|1(bi)〉i∈I) ∈ B, while εI(c̄, d̄) = J , and so

〈c̄, d̄〉 ∈ (θB
F \ θB

G ). {Then, (2.5) and Lemma 3.4 complete the argument.} �

3.2. Abstract hereditary local subclasses of locally-finite quasi-varieties.
A quasi-variety is said to be locally-finite, if every finitely-generated member of it is
finite, any finitely-generated [quasi-]variety being locally-finite. Likewise, a class of
Σ-algebras is said to be (finitely-)local, if it contains every Σ-algebra, each finitely-
generated subalgebra of which is in the class, any quasi-variety being local. As an
immediate consequence of [18, Lemma 2.1], in its turn, being that of [4, Corollary
2.3], we have:

Corollary 3.6. Any abstract hereditary local subclass of a locally-finite quasi-
variety is ultra-multiplicative.

Lemma 3.7. Let Q ⊆ AΣ be a [quasi-]variety. Then, (Si |SIω[Q])(Q) ∪ I(
∏

∅)) is
local.

Proof. Consider any B ∈ (Q \ ((Si |SIω[Q])(Q) ∪ I(
∏

∅))), in which case there are
some ā ∈ (B2 \∆B) 6= ∅, n ∈ (ω|{1}) and θ̄ ∈ (Co[Q](B) \ (img ϑ̄B))n, where, for
any C ⊆ B, ϑ̄C , (〈∆C〉|〈∆C , C

2〉), |“such that (B2 ∩ (
⋂

(img θ̄))) = ∆B”, and
so some 〈b̄i,j〉j∈(1|2)

i∈n ∈ (
∏j∈(1|2)

i∈n ((θi \ ϑB
j ) ∪ (ϑB

j \ θi))) 6= ∅. Let A be the finitely-
generated subalgebra of B generated by {a0, a1} ∪ {bi,jk | i ∈ n, j ∈ (1|2), k ∈ 2}, in
which case, by Lemma 2.3 with h = ∆A, η̄ , 〈θi∩A2〉i∈n ∈ (Co[Q](A)\ (img ϑ̄A))n,
as 〈b̄i,j〉j∈(1|2)

i∈n ∈ (
∏j∈(1|2)

i∈n ((ηi \ ϑA
j ) ∪ (ϑA

j \ ηi))), and so A ∈ (Q \ ((Si |SIω[Q])(Q) ∪
I(

∏
∅))), for ā ∈ (A2 \∆A) |“and (A2 ∩ (

⋂
(img η̄))) = (A2 ∩∆B) = ∆A”. �

This immediately yields:

Corollary 3.8. Any locally-finite [relatively] semi-simple [quasi-]variety Q ⊆ AΣ

with hereditary SIω[Q](Q) ∪ I(
∏

∅)) is [relatively] finitely semi-simple.

4. Main issues

A [restricted] {quaternary} Σ-(equational )system/scheme of rank α ∈ ((∞[∩5])
\ 4) is any f ⊆ Eqα

Σ defining the [quantifier-free] formula Φα
f , (∃β∈(α\4)xβ(

∧
f))

with free variables in V4, in which case, for all A,B ∈ AΣ, ā ∈ A4 and h ∈
hom(A,B):

(4.1) (A |= Φα
f[xi/ai]i∈4)⇒ (B |= Φα

f[xi/h(ai)]i∈4),

and so, for any set I with [any sub]direct product D of any C ∈ AI
Σ:

(4.2) (D |= Φα
f[xi/ā

j ]j∈4)⇔ (∀i ∈ 4 : Ci |= Φα
f[xj/a

j
i ]j∈4)

for all 〈āj〉j∈4 ∈ D4, as ∀i ∈ I : (πi�D) ∈ hom(D,Ci). Then, f is called an
implication system/scheme for a K ⊆ AΣ, if this satisfies the Σ-implication:

(4.3) ({x0 ≈ x1} ∪ f)→ (x2 ≈ x3).

[Likewise, it is called an identity |reflexive|symmetric|transitive one, if K satis-
fies the Σ-implications of the form (∅|∅|f|(f ∪ (f[x2+i/x3+i]i∈2))) → Ψ, where
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Ψ ∈ (f([x3/x2]|[x2+i/xi]i∈2|[x3/x2, x2/x3]|[x3/x4])), reflexive symmetric transi-
tive ones being called equivalence ones. Then, f is called a congruence one, if
it is an equivalence one, while, for each ς ∈ Σ of arity n ∈ (ω \ 1), K sat-
isfies the Σ-implications of the form (

⋃
j∈n(f[x2+i/x2+i+(2·j)]i∈2)) → Ψ, where

Ψ ∈ (f[x2+i/ς(〈x2+i+(2·j)〉j∈n)]i∈2).] Given “a {quasi-}variety Q ⊆ AΣ {〈not
necessarily〉} equal to”/ a K ⊆ AΣ, a finite|[finite] Σ-scheme f of rank m ∈
((ω[∩{4}])|{4}) is called a [restricted] | “equationally definable principal {〈Q−〉rela-
tive} congruences ( {〈Q−〉}[R]EDP{R}C)”/implicative|disjunctive scheme/system
for K, if ∀A ∈ K,∀ā ∈ A4 : (∀θ ∈ (Co{Q}(A)/{∆A}) : (〈a0, a1〉 ∈ | 6∈ θ) ⇒
(〈a2, a3〉 ∈ θ)) ⇔ (A |= Φm

f [xi/ai]i∈4) (cf. [5]/[18]|[17]) /“so for I({
∏

∅} ∪
(([S]PU)|(S[PU]))K)” “being an [identity] implication scheme for K ∩ ((AΣ{∩Q})/
AΣ)”|, d/“bquasi-cvarieties|pre-varieties of”e‖“the class of” Σ-algebras d/“with bre-
lativelyc subdirectly-irreducibles”|“generated by subclasses”e‖“in a C ⊆ AΣ” with
/d[restricted|finite]e‖ “{Q-}[R]EDP{R}C scheme”/“implicative|disjunctive system”
f being “/called”‖denoted /“d[restricted |finitely]e f-implicative|-disjunctive”‖“by
C

f/
{Q}/f”.

4.1. Disjunctive pre-varieties. Given any restricted Σ-equational system f and
any A ∈ AΣ, we have fA : (A2)2 → ℘(A2), 〈ā, b̄〉 7→ {〈φA[xi/ai, x2+i/bi]i∈2, ψ

A[xi/
ai, x2+i/bi]i∈2〉 | (φ ≈ ψ) ∈ f}. Then, any θ ∈ (Co(A)[∩{∆A}]) is fA-disjunctive iff
A/θ [viz., A ∈ I(A/θ), for νθ ∈ hom(A,A/θ) is injective] is f-disjunctive, in which
case, for any ϑ ∈ (Co(A)∩℘(θ,A2))[= Co(A)], the Σ-identities in

⋃
j∈2(f[x(2·j)+1/

x2·j ]), being true in A/θ, are so in (A/ϑ) ∈ H(A/θ), as, by the Homomorphism
Theorem, (νϑ ◦ ν−1

θ ) ∈ hom(A/θ,A/ϑ), i.e., ϑ is weakly fA-disjunctive [and so is
CgA]. In this way, by Lemmas 2.3, 3.1, 3.2 and Remark 2.2, we, first, get:

Lemma 4.1. Let f ⊆ Eq4
Σ. Then, any f-disjunctive [pre-]variety P ⊆ AΣ,

being generated by Pf ⊆ ISPf ⊆ Pf, is equal to IPSDPf, in which case it is
[relatively both] congruence-distributive [and finitely-subdirectly-representable] with
Pf = (SIω[P](P) ∪ I(

∏
∅)), and so SIω[(P)](P) = (Pf \ I(

∏
∅)). In particular, any

/finite f-disjunctive A ∈ AΣ is finitely/ subdirectly-irreducible.

Theorem 4.2. Any [pre-]variety P ⊆ AΣ is disjunctive iff it is [relatively both]
congruence-distributive [and finitely-subdirectly-representable] with SIω[P](P)∪I(

∏
∅)

being “a universal (infinitary) model class”/hereditary.

Proof. The “only if” part is by Lemma 4.1. Conversely, assume P is [relatively
both] congruence-distributive [and finitely-subdirectly-representable] with hered-
itary SIω[P](P) ∪ I(

∏
∅), in which case, by Corollary 2.5, it is [relatively] finitely-

subdirectly-representable, while, by Lemma 2.3, Co[P](Tm4
Σ)∩℘(θ,Eq4

Σ), where θ ,
(Eq4

Σ ∩(
⋂

CoSIω
[P](P)(Tm4

Σ))) ∈ Co[P](Tm4
Σ), is distributive, for Co[P](Tm4

Σ/θ) is so.

Let ∀j ∈ 2 : ϑj , CgTm4
Σ

[P] (θ ∪ {〈x2·j , x(2·j)+1〉}) ∈ (Co[P](Tm4
Σ) ∩ ℘(θ,Eq4

Σ)) 3 f ,

(ϑ0∩ϑ1) ⊆ Eq4
Σ. Consider any A ∈ SIω[P](P) and any ā ∈ A4. Let h ∈ hom(Tm4

Σ,A)
extend {〈xi, ai〉 | i ∈ 4}, in which case B , (A�(img h)) ∈ (SIω[P](P) ∪ I(

∏
∅)),

and so (({〈a0, a1〉, 〈a2, a3〉} ∩∆A) 6= ∅) &|⇔ (A |= Φ4
f[h�V4]), unless B ∈ SIω[P](P).

Otherwise, by Lemma 2.3, Corollary 2.4 and the Homomorphism Theorem, θ ⊆
η , (kerh) ∈ MIω(Co[P](Tm4

Σ)), in which case we have:

(A |= Φ4
f[h�V4])⇔ ((ϑ0 ∩ ϑ1) = f ⊆ η)⇔ (η = CgTm4

Σ
[P] (η ∪ (ϑ0 ∩ ϑ1)) =

(CgTm4
Σ

[P] (η ∪ ϑ0) ∩ CgTm4
Σ

[P] (η ∪ ϑ1))⇔ (∃j ∈ 2 : η = CgTm4
Σ

[P] (η ∪ ϑj))⇔
(∃j ∈ 2 : ϑj ⊆ η)⇔ (∃j ∈ 2 : 〈x2·j , x(2·j)+1〉 ∈ η)⇔ (∃j ∈ 2 : a2·j = a(2·j)+1),
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and so f is a disjunctive system for SIω[P](P). Thus, P, being [relatively] finitely-
subdirectly-representable, is f-disjunctive, as required. �

This, by Corollary 2.5 and Lemma 4.1 (as well as the Compactness Theorem for
ultra-multiplicative classes; cf., e.g., [11]), immediately yields:

Corollary 4.3. Any [quasi-]variety Q ⊆ AΣ is (finitely) disjunctive iff it is [rela-
tively] congruence-distributive with SIω[Q](Q)∪I(

∏
∅) being “a universal (first-order)

model class”/“hereditary (and ultra-multiplicative)”.

This, in its turn, by Corollaries 2.4, 3.6 and Lemma 3.7, immediately yields:

Corollary 4.4. Any locally-finite [quasi-]variety Q ⊆ AΣ is (finitely) disjunctive
iff it is [relatively] congruence-distributive with SIω[Q](Q)∪I(

∏
∅) being “a universal

model class”/hereditary.

Finally, this, by the congruence-distributivity of lattice expansions (cf. [12]) and
Corollary 2.8, immediately yields:

Corollary 4.5. Suppose Σ+ ⊆ Σ. Then, any finitely-generated variety V ⊆ AΣ of
lattice expansions with hereditary SI(ω)(V) ∪ I(

∏
∅) is finitely disjunctive.

This provides an immediate (though far from being constructive) insight into
the finite disjunctivity of the finitely-generated variety of distributive/Stone|“De
Morgan” lattices/algebras|algebras‖lattices, a constructive one being given by [16,
Example 1/2] and [17, Lemma 11].

4.2. Implication systems versus EDPC.

Lemma 4.6. Let f be a finite Σ-system of rank m ∈ (ω \ 4), Q ⊆ AΣ a quasi-
variety, A ∈ AΣ and ā, b̄ ∈ A2. Suppose f is an implication system for Q such that
A |= Φm

f [xi/ai, x2+i/bi]i∈2. Then, b̄ ∈ θ , CgA
Q({ā}).

Proof. As, by (4.1), we have (A/θ) |= Φm
f [xi/νθ(ai), x2+i/νθ(bi)]i∈2, for νθ ∈

hom(A,A/θ), while Q 3 (A/θ) satisfies (4.3), and ā ∈ θ = (ker νθ), we get ā ∈ θ. �

This, by (4.1) {and (4.2)} as well as Corollary 2.6, immediately yields:

Corollary 4.7. Let f be a finite [restricted] Σ-equational system and Q ⊆ AΣ a
(quasi-)variety. {Suppose f is an implication system for Q.} Then, Qf

(Q) is abstract
{and [sub-]multiplicative}.

Theorem 4.8. Any f ∈ ℘ω(Eq4
Σ) is an REDPC scheme for a variety V ⊆ AΣ iff

it is an identity congruence implication one.

Proof. The “only if” part is immediate. Conversely, if f is an identity congruence
implication scheme for V, then, by induction on construction of any ϕ ∈ Tmω

Σ, we
conclude that V satisfies the Σ-identities in f[x2+i/(ϕ[x0/xi])]i∈2, in which case, by
Mal’cev Lemma [10] (cf. [5, Lemma 2.1]), for any A ∈ V, ā ∈ A2 and b̄ ∈ CgA({ā}),
we have A |= Φ4

f[xi/ai, x2+i/bi]i∈2, and so Lemma 4.6 completes the argument. �

4.3. Implicative quasi-varieties.

Lemma 4.9. Let f be a finite Σ-equational system of rank m ∈ (ω \ 4) and Q a
[quasi-]variety (with implication system f). Then, (Qf =)((Si[Q](Q) ∪ I(

∏
∅)) ∩

Qf) = ((Si[Q](Q)∪ I(
∏

∅))∩Qf
[Q]). In particular, Q is [relatively] semi-simple with

Qf = (Si[Q](Q) ∪ I(
∏

∅)), whenever it is f-implicative.
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Proof. Consider any A ∈ Q. If it is [Q-]simple|one-element, Co[Q](A) ⊆ {∆A, A
2},

implying ∀ā ∈ A4 : (∀θ ∈ Co[Q](A) : (a0 θ a1) ⇒ (a2 θ a3)) ⇔ ((a0 = a1) ⇒
(a2 = a3)), as 〈a2, a3〉 ∈ A2, so (A ∈ Qf) ⇔ (A ∈ Qf

[Q]). (Now, assume A is
f-implicative. Consider any θ ∈ (Co[Q](A) \ {∆A}) and take any ā ∈ (θ \∆A) 6= ∅,
implying ∀a2, a3 ∈ A : A |= Φm

f [xi/ai]i∈4, so, as (4.3) is true in each member of
Q 3 (A/θ) |= Φm

f [xi/νθ(ai)]i∈4, by (4.1), since νθ ∈ hom(A,A/θ), 〈a2, a3〉 is in
θ = (ker νθ), for ā is so. Thus, θ = A2.) So, Corollary 2.5 ends the proof. �

This, by Corollaries 2.5 and 4.7, immediately yields:

Corollary 4.10. Let f be a (restricted) Σ-system. Then, a [quasi-]variety is f-
implicative if(f) it is [relatively] semi-simple with (R)EDP[R]C scheme f.

Corollary 4.11. Let Q ⊆ AΣ be a [quasi-]variety and f ∈ ℘ω(Eq4
Σ). Then, Q

is restricted f-implicative iff it is the quasi-/pre-variety generated by a subclass
with restricted implicative system f, in which case it is finitely disjunctive, and so
[relatively] both congruence-distributive and finitely-semi-simple.

Proof. The “only-if” part is by Corollary 2.5. Conversely, assume Q = ISPPUK,
for some K ⊆ Qf, in which case f, being finite, is an implication system for Q, while
K′ , PUK ⊆ PUQf ⊆ Qf, and so Q is the pre-variety generated by K′ ⊆ Qf. Then,
by [18, Remark 2.4], K′ has a finite disjunctive system, in which case Q is finitely
disjunctive, and so, by Lemma 4.1, is [relatively] congruence-distributive. Hence,
by Corollary 2.8 and Lemma 4.9, SI(ω)

[Q] (Q) ⊆ (ISPUK′ \ I(
∏

∅)) ⊆ (ISPUQf \
I(

∏
∅)) ⊆ (Qf \ I(

∏
∅)) ⊆ Si[Q](Q), as required. �

This, in particular, means that the notion of restricted implicative quasi-variety
adopted here is equivalent to that of implicative quasi-variety adopted in [18].

Lemma 4.12. Let f be a finite [restricted] Σ-equational system of rank m ∈ ω,
Q ⊆ AΣ a [restricted] f-implicative quasi-variety and I ∈ Υ with [a sub]direct
product B of an A ∈ SIQ(Q)I . Then, for any Θ ∈ ℘ω(B2), CgB

Q (Θ) = θB
FΘ

, where
FΘ , ℘(IΘ, I) and IΘ , (I ∩ (

⋂
i∈I ε

−1
I [Θ]).

Proof. By induction on |Θ|. If Θ = ∅, then IΘ = I, in which case FΘ = {I},
and so CgB

Q (Θ) = ∆B = θB
FΘ

. Otherwise, take any 〈ā, b̄〉 ∈ Θ, in which case
Ξ , (Θ \ {〈ā, b̄〉}) ∈ ℘ω(B2) with |Ξ| < |Θ|, and so, by induction hypothesis,
θ , CgB

P (Ξ) = θB
FΞ

= (B2 ∩ (
⋂

i∈IΞ
kerπi)) = (B2 ∩ (

⋂
i∈I (πi)

−1
2 [ηi]) with η̄ ∈

(
∏

i∈I CoQ(Ai)) given by ∀i ∈ (IΞ|(I \ IΞ)) : ηi , (∆Ai
|A2

i ). Then, for each i ∈ I,
gi , ((πi�B) ◦ νηi) ∈ hom(B,Ci) with Ci , (A/ηi) ∈ Qf

Q, in view of Lemma 4.9, in
which case, by Lemma 2.3, ϑi , (ker gi) = (B2 ∩ (πi)

−1
2 [ηi]) ∈ Co(B), and so θ =

(B2∩(
⋂

i∈I ϑi)). Therefore, θ ⊆ ϑi, in which case, by the Homomorphism Theorem,
fi , (ν−1

θ ◦gi) ∈ hom(B/θ,Ci) with gi = (νθ ◦fi), and so ((B/θ)∩(
⋂

i∈I(ker fi))) =
∆B/θ. Hence, e : (B/θ) → (

∏
i∈I Ci), b 7→ 〈fi(b)〉i∈I is an embedding of B/θ into

E , (
∏

i∈I Ci) with ∀i ∈ I : fi = (e ◦ πi), and so an isomorphism from B/θ onto
D , (E�e[B/θ]) with

(4.4) ∀i ∈ I : gi = (h ◦ πi),

where h , (νθ ◦ e) ∈ hom(B,D) with h[B] = D and (kerh) = (ker νθ) = θ,
for e is injective. Next, for every i ∈ I, πi[B] = Ai, in which case, by (4.4),
πi[D] = πi[h[B]] = gi[B] = νηi

[πi[B]] = Ci, and so D is a subdirect product
of C , 〈Ci〉i∈I . Moreover, if B = (

∏
i∈I Ai), then, for each c̄ ∈ E and every

i ∈ I, there is some ai ∈ Ai with νηi
(ai) = ci, in which case ā , 〈ai〉i∈I ∈

B with D = h[B] 3 h(ā) = c̄, in view of (4.4), and so D = E. Then, by
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Corollaries 2.5 and 4.7, D ∈ Qf
Q ⊇ (img C), in which case, as, by (4.2, 4.4),

for all c̄, d̄ ∈ D, we have (D |= Φm
f [x0/h(ā), x1/h(b̄), x2/c̄, x3/d̄]) ⇔ (∀i ∈ I :

Ci |= Φm
f [x0/νηi

(ai), x1/νηi
(bi), x2/ci, x3/di]), we get CgD

Q ({〈h(ā), h(b̄)〉}) = (D2 ∩
(
⋂

i∈I (πi)
−1
2 [CgCi

Q (〈νηi(ai), νηi(bi)〉)])), and so, applying Corollary 2.6 twice and
taking (4.4) into account, we eventually get:

CgB
Q (Θ) = CgB

Q ((kerh) ∪ {〈ā, b̄〉}) = h−1
2 [CgD

Q ({〈h(ā), h(b̄)〉})] =

(B2 ∩ (
⋂

i∈I
h−1

2 [(πi)
−1
2 [CgCi

Q (〈νηi
(ai), νηi

(bi)〉)]])) =

(B2 ∩ (
⋂

i∈I
(πi)

−1
2 [(νηi)

−1
2 [CgCi

Q (〈νηi(ai), νηi(bi)〉)]])) =

(B2 ∩ (
⋂

i∈I
(πi)

−1
2 [CgAi

Q (ηi ∪ CgAi

Q ({〈ai, bi〉}))])) =

(B2 ∩ (
⋂

i∈IΘ
kerπi)) = θB

FΘ
,

because, for all i ∈ I, (CgAi

Q ({〈ai, bi〉}) = (∆Ai
|A2

i )) ⇔ (ai = | 6= bi), since, by
Lemma 4.9, Ai ∈ SiQ(Q). �

Corollary 4.13. Let f be a finite [restricted] Σ-equational system, Q ⊆ AΣ a
[restricted] f-implicative quasi-variety and I ∈ Υ with [a sub]direct product B of
an A ∈ SIQ(Q)I . Then, for any Ξ ⊆ B2, CgB

Q (Ξ) = θB
FΞ

, where FΞ , FgI(εI [Ξ]).
In particular, Q is relatively [sub]directly filtral.

Proof. As CgB
Q is finitary, (CgB

Q (Ξ) = (
⋃

CgB
Q [℘ω(Ξ)]). Likewise, as FgI is finitary,

FgI(εI [Ξ]) = (
⋃

FgI [℘ω(εI [Ξ])]) = (
⋃
{FgI(εI [Θ]) | Θ ∈ ℘ω(Ξ)}) = (

⋃
{℘(IΘ, I) |

Θ ∈ ℘ω(Ξ)}). In this way, (2.5) and Lemma 4.12 complete the argument. �

Lemma 4.14. Let α′ ∈ (∞\ω) and Q a relatively (sub)directly filtral quasi-variety.
Then, SIQ(Q)(α′+1)(∪∞) has a (restricted) implicative system.

Proof. Let α , (α′(∩4)), ∀i ∈ I , {θ ∈ CoSIQ(Q)(Tmα
Σ) | (x0 θ x1) ⇒ (x2 θ

x3)} : Bi , (Tmα
Σ/i) ∈ SIQ(Q), ∀j ∈ 4 : aj , 〈νi(xj)〉i∈I , E the subalgebra of

F , (
∏

i∈I Bi) generated by A4 , {aj | j ∈ 4} and D , (F�(F (∩E))), in which
case (for each i ∈ I, as Bi is generated by νi[V4] = πi[A4], we have πi[D] = Bi,
and so) ∃F ∈ Fi(I) : CoQ(D) 3 ϑ , CgD

Q ({〈a0, a1〉}) = θD
F . Then, as 〈a0, a1〉 ∈ ϑ,

i.e., εI(a2, a3) ⊇ εI(a0, a1) ∈ F, we get εI(a2, a3) ∈ F, that is, 〈a2, a3〉 ∈ ϑ. Let γ ,
(ω∪|F \E|) ⊇ ω and β , (γ(∩4)), in which case |γ\4| = |γ| ⊇ |F \E|, and so there is
a surjection from Vβ \V4 onto D\E to be extended to a surjective h ∈ hom(Tmβ

Σ,D)
including {〈xj , aj〉 | j ∈ 4}. Consider any A ∈ Q and any g ∈ hom(Tmβ

Σ,A)
with (kerh) ⊆ (ker g) 3 〈x0, x1〉, in which case, by the Homomorphism Theorem,
f , (h−1 ◦ g) ∈ hom(D,A), and so, by Lemma 2.3, 〈a0, a1〉 ∈ (ker f) = f−1

2 [∆A] ∈
CoQ(D), for g = (h ◦ f) and ∆A ∈ CoQ(A), as ν∆A

∈ hom(A,A/∆A) is bijective.
Then, 〈a2, a3〉 ∈ ϑ ⊆ (ker f), in which case g(x2) = f(h(x2)) = f(a2) = f(a3) =
f(h(x3)) = g(x3), and so Ω , (kerh) is an implication system for Q of rank β
such that D |= (

∧
Ω)[h�Vβ ], for Ω ⊆ (kerh). Hence, by the Compactness Theorem

for ultra-multiplicative classes (cf., e.g. [11]), some Ξ ∈ ℘ω(Ω) is an implication
system for Q of rank β such that D |= (

∧
Ξ)[h�Vβ ], for Ξ ⊆ (kerh), in which case

V , ((
⋃

Var[Ξ]) \ V4) is finite, and so there is a bijection σ from V onto Vm \ V4,
where m , (|V | + 4) ∈ (ω \ 4). Thus, f , (Ξ[σ]) ∈ ℘ω(Eqm

Σ ) is an implication
system for Q such that D |= (

∧
)[(σ−1 ∪ ∆V4) ◦ h], so D |= Φm

f [xn/an]n∈4. Now,
consider any C ∈ SIQ(Q)(α′+1)(∪∞) and any c̄ ∈ C4, in which case (4.3) is true in
C, and so (c0 = c1) ⇒ (c2 = c3), whenever C |= Φm

f [xi/ci]i∈4. Conversely, assume
(c0 = c1) ⇒ (c2 = c3). Let G be the subalgebra of C generated by {ci | i ∈ 4}
and H , (C�(C(∩G))) ∈ (SIQ(Q)(∪I(

∏
∅))) (in view of Lemma 2.10, in which
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case C |= Φm
f [xi/ci]i∈4, whenever |H| = 1. Otherwise, H ∈ SIQ(Q).) Then, since

|α′ \4| = |α′| ⊇ |H \G|, there is a surjection from Vα \V4 onto H \G to be extended
to a surjective e ∈ hom(Tmα

Σ,H) including {〈xj , cj〉 | j ∈ 4}, in which case, by
the Homomorphism Theorem, (ν−1

η ◦ e) ∈ hom(Tmα
Σ/η,H), where η , (ker e), is

bijective, and so, by Corollary 2.4, η ∈ I. Therefore, by (4.1), H |= Φm
f [xi/ci]i∈4, for

{〈ai, ci〉 | i ∈ 4} ⊆ ((πη�D) ◦ (ν−1
η ◦ e)) ∈ hom(D,H), so C |= Φm

f [xi/ci]i∈4. In this
way, f is a (restricted) implicative system for SIQ(Q)(α′+1)(∪∞), as required. �

Lemma 4.15. Any class K of Σ-algebras has an implicative system, if, for each
α ∈ (∞\ ω), Kα+1 does so.

Proof. Suppose, for every f ∈ E , ℘ω(Eqω
Σ), K′

f , (K \ Kf) 6= ∅, in which
case ∅ 6= Cf , {|A| | A ∈ K′

f} ⊆ ∞, and so αf , (
⋂
Cf) ∈ Cf. Then,

α , (
⋃

({ω} ∪ {αf | f ∈ E})) ∈ (∞ \ ω), for E is a set, in which case, for each
f ∈ E, (Cf ∩ (αf + 1)) 3 αf ⊆ α, and so ∅ 6= (K′

f)αf+1 ⊆ Kα+1, as required. �

Lemmas 4.14 and 4.15 immediately yield:

Corollary 4.16. Any [relatively] (sub)directly filtral [quasi-]variety Q is (restricted)
implicative.

Lemma 4.17. Let Q ⊆ AΣ be a [quasi-]variety, I ∈ Υ, A ∈ Si[Q](Q)I , D , (
∏

A),
B ∈ (S){D} and θ ∈ (Co[Q](B) \ {B2}). Suppose Si[Q](Q)I ∪ I(

∏
∅) is ultra-

multiplicative (and hereditary) {while Co[Q](B) is distributive}. Then, θ is maximal
in Co[Q](B) \ {B2} if {f } it is ultra-filtral. In particular, all elements of Co[Q](B)
are filtral, whenever Q is [relatively] both semi-simple and (sub)directly congruence-
distributive.

Proof. First, assume θ = θB
U , for some ultra-filter U on I, in which case C ,

(D/θD
U ) ∈ PU Si[Q](Q) (while h , (∆B ◦ νθD

U
) ∈ hom(B,C), whereas (kerh) =

(∆B)−1
2 [θD

U ] = θ), and so (by the Homomorphism Theorem and Corollary 2.4), as
θ 6= B2, (B/θ) ∈ ((IS)PU(Si[Q](Q) ∪ I(

∏
∅)) \ I(

∏
∅)) ⊆ ((Si[Q](Q) ∪ I(

∏
∅)) \

I(
∏

∅)) = Si[Q](Q). Then, by Lemma 2.3, θ ∈ max(Co[Q](B)\{B2}). {Conversely,
assume θ ∈ max(Co[Q](B) \ {B2}) ⊆ MI(Co[Q](B)), in which case, by Lemma 2.7,
there is some ultra-filter U on I such that, as θ 6= B2, (Co[Q](B) \ {B2}) 3 θB

U ⊆ θ,
and so, by the “if” part, θ = θB

U .} Finally, the inductivity of Co[Q](B), Remark 2.1,
Lemma 2.3 and (2.5) (as well as Corollary 2.5) complete the argument. �

Then, by Corollaries 3.5, 4.11, 4.10, 4.13, 4.16 and Lemma 4.17, we eventually
get:

Theorem 4.18. A [quasi-]variety Q ⊆ AΣ is (restricted) implicative iff it is
[relatively] (sub)directly filtral (iff it is [relatively] filtral) iff it is [relatively] both
( {finitely-})semi-simple and (sub)directly distributive with Si[Q](Q)I ∪I(

∏
∅) being

“a (universal) first-order model class”/“ultra-multiplicative (and hereditary)” if(f)
it is [relatively] ( {finitely-})semi-simple with an (R)EDP[R]C scheme.

This, by Corollaries 2.4, 3.6 and Lemma 3.7, immediately yields:

Corollary 4.19. Any locally-finite [quasi-]variety Q ⊆ AΣ is restricted implica-
tive iff it is [relatively] both congruence-distributive and (finitely-)semi-simple with
Si[Q](Q) ∪ I(

∏
∅) being “a universal model class”/hereditary.

Likewise, by Corollaries 4.3, 4.11 and Theorem 4.18, we immediately get:

Corollary 4.20. A [quasi-]variety Q ⊆ AΣ is restricted implicative iff it is finitely
disjunctive and [relatively] finitely-semi-simple.
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This, in its turn, by Corollaries 3.8 and 4.4, immediately yields:

Corollary 4.21. A locally-finite [quasi-]variety Q ⊆ AΣ is restricted implicative
iff it is (finitely) disjunctive and [relatively] {finitely-}semi-simple.

Finally, by the congruence-distributivity of lattice expansions (cf. [12]), Corol-
laries 2.4, 2.8, 4.19, 4.21 and Lemma 4.9, we immediately get:

Corollary 4.22. Suppose Σ+ ⊆ Σ. Then, any locally-finite variety V ⊆ AΣ

of lattice expansions is semi-simple [“and (finitely) disjunctive”|“with hereditary
(Si |SI)(V) ∪ I(

∏
∅)”] if[f ] it is [restricted] implicative.

Corollary 4.23. Suppose Σ+ ⊆ Σ, K ⊆ AΣ a finite set of finite lattice expansions
without non-simple non-one-element subalgebras and V the variety generated by K.
Then, V is restricted implicative with (Si |SI)(V) = (ISK \ I(

∏
∅)).

These provide an immediate /{though far from being constructive} insight into
the not/restricted implicativity of (and so not/ REDPC for; cf. Corollary 4.10)
the not/ semi-simple finitely-generated variety of Stone/distributive|“De Morgan”
algebras/lattices|algebras‖lattices /(cf. [6]|[19]‖) /“a constructive one being given
below”. Before, note that the stipulations of “relative ([sub]direct) congruence-
distributivity”/“{finite} disjunctivity”/“lattice expanding” cannot be omitted in
the formulations of Corollaries 4.3, 4.4, 4.5, 4.19, 4.20, 4.21, 4.22, 4.23 as well as
Theorems 4.2 and 4.18, in view of:

Example 4.24. Let Σ = {∧} and SL the variety of semi-lattices, in which case,
for any filter F 6= A of any A ∈ SL, χF

A is a surjective homomorphism from A

onto S2 ∈ SL with S2 , 2 and ∧A , (∩�22), and so, by Remark 2.2, SL =
IPSDS2. Now, assume |A| > 2, in which case, providing A is a chain, for any
ā ∈ A3 with | img ā| = 3 such that a0 6A a1 6A a2 and i ∈ 2, ∆A 6= θi ,
([ai, ai+1]2A ∪ ∆A) = CgA({〈ai, ai+1〉}) ∈ Co(A), while (θ0 ∩ θ1) = ∆A, and so
A is not finitely-sibdirectly-irreducible. Otherwise, take any b̄ ∈ A2 such that
c , (b0 ∧A b1) 6∈ (img b̄), in which case, for each j ∈ 2, ϑj , ((

⋃
{[c∧A d, bj ∧A d]2A |

d ∈ A}) ∪ ∆A) ) ∆A is symmetric and forms a subalgebra of A2, and so the
transitive closure ηj = CgA({〈c, bj〉}) ⊇ ϑj of ϑj is a congruence of A distinct from
∆A. By contradiction, prove that (η0∩ η1) ⊆ ∆A. For suppose (η0∩ η1) * ∆A. Take
any ē ∈ ((η0 ∩ η1) \∆A) 6= ∅, in which case, for all k, l ∈ 2, 〈ek, e1−k〉 ∈ (θl \∆A),
that is, there are some ml ∈ ω, f̄ l ∈ Aml+2 and ḡl ∈ Aml+1 such that f l

0 = ek,
f l

ml+1 = e1−k and, for every n ∈ (ml + 1), f l
n[+1] ∈ [c ∧A gl

n, bl ∧A gl
n]A, and so

ek 6A c, when taking n = 0, because {l, 1−l} = 2, while ek = f
l|(1−l)
0 6A (bl|(1−l)∧A

g
l|(1−l)
0 ) 6A bl|(1−l). By induction on any ` ∈ (ml + 2), show that ek 6A f l

`. The
case ` = 0 is by the equality ek = f l

0. Otherwise, (ml + 2) 3 (` − 1) < `, in
which case, by induction hypothesis, we have c >A ek 6A f l

`−1 6A (bl ∧A gl
`−1) 6A

gl
`−1, and so we get ek 6A (c ∧A gl

`−1) 6A f l
`. In particular, ek 6A e1−k, when

taking ` = (ml + 1), since f l
ml+1 = e1−k. Then, e0 = e1, in which case this

contradiction shows that (η0 ∩ η1) = ∆A, and so A is not finitely-sibdirectly-
irreducible. Thus, by Lemma 2.3 as well as the simplicity of two-element algebras
and absence of their proper non-one-element subalgebras, (SI(ω) |Si)(SL) = IS2

is the class of two-element semi-lattices, that is, the universal first-order model
subclass of SL relatively axiomatized by the single universal first-order sentence
∀ı∈3xı((x2 ≈ x1) ∨ (x2 ≈ x0) ∨ (x1 ≈ x0)), while SL, being finitely-semi-simple
and finitely-generated, is semi-simple and locally-finite. On the other hand, since
Fi(2) = {℘(N, 2) | N ⊆ 2}, the set {∆22 , (22)2} ∪ {ker(π�22) |  ∈ 2} of filtral
congruences of S2

2 does not contain its congruence ∆22∪{〈〈0,k〉, 〈0, 1− k〉〉 | k ∈ 2},
in which case, by Theorem 4.18, SL, not being directly filtral, is not {restricted}
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implicative, and so is not d〈sub〉directlye congruence-distributive bin particular, is
neither /finitely disjunctive, in view of Lemma 4.1, nor lattice expanding, in view of
the well-known congruence-distributivity of lattice expansions; cf., e.g., [12]c. �

Likewise, the variety of Stone algebras demonstrates the necessity of the stipula-
tion of relative [finite] semi-simplicity in the formulations of Corollaries 4.19, 4.20,
4.21, 4.22, 4.23 and Theorem 4.18 (cf. the next section).

4.3.1. Restricted implicativity versus equality determinants. Recall that a (logical)
Σ-matrix is any pair A = 〈A, DA〉 with its underlying Σ-algebra A and its truth
predicate DA ⊆ A {in general, any Σ-matrix/“its underlying algebra” are denoted
by same capital Calligraphic/Fraktur letter [with same indices, if any], its truth
predicate being denoted by the letter D with superscript denoting the Σ-matrix},
in which case any = ∈ ℘ω(Tm1

Σ) determines =A : A→ ℘(Ω), a 7→ {ι ∈ = | ιA(a) ∈
DA}, and so is called a [joint] equality/identity determinant for |of a class M of Σ-
matrices, if ∀A ∈ M,∀a, b ∈ A : (∀B ∈ (({A}[∪M])∩π−1

0 [{A}]) : =B(a) = =B(b))⇒
(a = b), being then a joint one 〈cf. [16, 17, 18] for one-element M〉.

Here, it is supposed that Σ+ ⊆ Σ.
Given any ϕ̄ ∈ (Tm1

Σ)∗, ι ∈ = ∈ ℘ω(Tm1
Σ), i ∈ 2 and ∆ ∈ Ξ ⊆ ℘(img ϕ̄),

let εi,ι
ϕ̄,∆ , ((∧+〈(ϕ̄ ∩∆) ∗ ((ϕ̄ ∩∆) ◦ [x0/x1]), ι(x2+i)〉) / (∨+〈(ϕ̄ \∆) ∗ ((ϕ̄ \∆) ◦

[x0/x1]), ι(x3−i))) ∈ Eq4
Σ and fϕ̄

=,Ξ , {εi,ι
ϕ̄,∆ | i ∈ 2, ι ∈ =∆ ∈ Ξ} ∈ ℘ω(Eq4

Σ).

Lemma 4.25. Let M be a class of Σ-matrices, ϕ̄ ∈ (Tm1
Σ)∗, Ω , (img ϕ̄), Ξ ⊆

℘(Ω) and = ∈ ℘ω(Tm1
Σ(∩Ω)). Suppose, for all A ∈ M, {ΩA[A] ⊆ Ξ and} A�Σ+ is a

[distributive] lattice {while DA is a prime filter of it, whereas = is a joint equality
determinant for M}. Then, fϕ̄

=,Ξ is an identity (reflexive) symmetric [transitive
{implication}] system for π0[M].

Proof. Clearly, for all j ∈ 2, ι ∈ = and ∆ ∈ Ξ, there are some φ, ψ, ξ ∈ Tm3
Σ such

that (εj,ι
ϕ̄,∆[x3/x2]) = ((φ ∧ ξ) / (ψ ∨ ξ)), in which case this is satisfied in lattice

Σ-expansions, and so in π0[M]. (Likewise, there are then some η̄, ζ̄ ∈ (Tm2
Σ)+

with ((img η̄) ∩ (img ζ̄)) 6= ∅ such that (εj,ι
ϕ̄,∆[x2+i/xi]i∈2) = ((∧+η̄) / (∨+η̄)), in

which case this is satisfied in lattice Σ-expansions, and so in π0[M].) Furthermore,
(fϕ̄

=,Ξ[x2/x3, x3/x2]) = fϕ̄
=,Ξ. [Next, since the Σ+-quasi-identity {(x0 ∧ x1) /

(x2 ∨ x3), (x0 ∧ x3) / (x2 ∨ x4)} → ((x0 ∧ x1) / (x2 ∨ x4)), being satisfied in
distributive lattices, is so in π0[M], so are logical consequences of its substitutional
Σ-instances (fϕ̄

=,Ξ∪(fϕ̄
=,Ξ[x2+i/x3+i]i∈2))→ Ψ, where Ψ ∈ (fϕ̄

=,Ξ[x3/x4]). {Finally,
consider any A ∈ M, a ∈ A and b̄ ∈ (A2 \∆A), in which case there are some k ∈ 2,
ι ∈ = and B ∈ M with B = A such that ιB(bk) ∈ DB 63 ιB(b1−k), and so, as
∆ , ΩB(a) ∈ Ξ, A 6|= εk,ι

ϕ̄,∆[xi/a, x2+i/bi]i∈2, for DB is a prime filter of A�Σ+.}] �

By the Prime Ideal Theorem, due to which V1 is a joint equality determinant for
any class M of Σ-matrices with underlying algebras, being lattice expansions, and
truth predicates, being exactly all prime filters of the Σ+-reducts of members of
π0[M], Lemma 4.25 immediately yields:

Corollary 4.26. Let K ⊆ AΣ, ϕ̄ ∈ (Tm1
Σ)∗, Ω , (img ϕ̄) and = ∈ ℘ω(V1,Tm1

Σ(∩
Ω)). Suppose, for all A ∈ K, A�Σ+ is a [distributive] lattice. Then, fϕ̄

=,℘(Ω) is an
identity (reflexive) symmetric [transitive implication] system for π0[M].

This, in its turn, by Theorem 4.8, provides a practically immediate constructive
insight/proof into/to REDPC for varieties of distributive|“De Morgan” lattices|“al-
gebras‖lattices”, originally being due to [6]|[19]. And what is more, by Lemma 4.9,
it immediately yields:
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Corollary 4.27. Let K ⊆ AΣ, ϕ̄ ∈ (Tm1
Σ)∗, Ω , (img ϕ̄) and = ∈ ℘ω(V1,Tm1

Σ).
Suppose, for all A ∈ K, A�Σ+ is a distributive lattice, while fϕ̄

=,℘(Ω) is an implica-
tive system for K. Then, members of IS>1K are simple.

Theorem 4.28. Let M be a class of Σ-matrices, ϕ̄ ∈ (Tm1
Σ)∗, Ω , (img ϕ̄) and

Ξ ⊆ | = ℘(Ω). Suppose, for all A ∈ M, “ΩA[A] ⊆ Ξ and”| A�Σ+ is a distributive
lattice with set of its prime filters {DB | B ∈ M,B = A}. Then, Ω is an equality
determinant for M iff fϕ̄

V1,Ξ is an implicative system for (IS[>1])π0[M] |([in which
case its members are simple]).

Proof. Let A ∈ M, ā ∈ A2 and, for any b̄ ∈ A2, hb̄ , [xi/ai, x2+i/bi]i∈2. First,
assume Ω is an equality determinant for M. Consider any b̄ ∈ A2. Assume A 6|=
εj,x0

ϕ̄,∆[hb̄], for some j ∈ 2 and ∆ ∈ Ξ, in which case, by the Prime Ideal Theorem,
∃B ∈ M : B = A,∀k ∈ 2 : ∆ = ΩB(ak), so a0 = a1. Moreover, by the Prime Ideal
Theorem, V1 is a joint equality determinant for M. Hence, by Lemma 4.25, fϕ̄

V1,Ξ

is an implicative system for A. Conversely, assume fϕ̄
V1,Ξ is an implicative system

for A and ∆ , ΩA(a0) = ΩA(a1). Take any b̄ ∈ (DA × (A \DA)) 6= ∅, in which
case, as ∆ ∈ Ξ, A 6|= ε0,x0

ϕ̄,∆ [hb̄], for DA is a prime filter of A�Σ+, and so a0 = a1.
|([Finally, Corollary 4.27 completes the argument.]) �

This, by Corollary 4.10, yields a new, quite transparent constructive proof/ins-
ight to/into REDPC for the [quasi-//pre-]variety of “distributive lattices”|“De Mor-
gan algebras” (cf. [6]|[19]) generated by the |“diamond non-Boolean” one A with
carrier A = 2|2 and zero‖unit (0‖1)|〈0‖1, 0‖1〉, when Σ = (Σ+ ∪ (∅|{¬,⊥,>}))
|“with (1 o 0)-ary ¬ o (⊥,>)”, M = ({A} × ({{1}}|{{〈1, 1〉, 〈i, 1− i〉} | i ∈ 2}),
ϕ̄ = (〈x0〉∗(∅|〈¬x0〉)) and Ξ = ℘(Ω), as well as an immediate proof/insight to/into
the well-known simplicity of non-one-element subalgebras of A, in its turn, by Corol-
laries 2.5 and 2.8, implying the equationality of the quasi-//pre-variety generated
by A.

5. Strong Morgan-Stone lattices versus distributive lattices

Here, we deal with signatures Σ(−)
+[,01] , (Σ+[∪{>,⊥}](∪{¬})). The variety of

[bounded] distributive lattices is denoted by [B]DL ⊆ AΣ+[,01] , that with carrier
n ∈ (ω \1) and the natural ordering on this being denoted by Dn[,01], in which case
V1 is an equality determinant for D2[,01] , 〈D2[,01], {1}〉, and so, as {1} is a/“the
only” prime filter of D2[,01], by [17, Lemma 11]/“Theorem 4.28 with M = {D2[,01]},
ϕ̄ = 〈x0〉 and Ξ = ℘(V1)”, (f+ , {(xi∧x2+j) / (x1−i∧x3−j) | i, j ∈ 2})/f〈x0〉

V1,℘(V1)
is

a disjunctive/implicative system for D2[,01]. Then, taking the Prime Ideal Theorem,
Corollaries 4.10, 4.11 Lemmas 4.1, 4.9 and Remark 2.2 into account, we immediately
have the following well-known fact (cf. [6] as to REDPC):

Lemma 5.1. For any A ∈ [B]DL and prime filter F of A[�Σ+], h , χF
A ∈

hom(A,D2[,01]) and h[A] = 2, in which case [B]DL = IPSDD2[,01], and so [B]DL is
the finitely f+-disjunctive restricted f〈x0〉

V1,℘(V1)
-implicative congruence-distributive

finitely-semi-simple (pre-/quasi-)variety generated by D2[,01] with (Si |SI〈ω〉)([B]DL)
= ID2[,01] = ([B]DLf+|f

〈x0〉
V1,℘(V1)

\ I(D0
2[,01])) and REDPC scheme f〈x0〉

V1,℘(V1)
.

A [bounded/] strong (De-)Morgan-Stone lattice[/algebra] is any Σ−
+[,01]-algebra,

whose Σ+[,01]-reduct is a [bounded] distributive lattice and which satisfies the fol-
lowing Σ−

+-identities:

¬(x0 ∧ x1) ≈ (¬x0 ∨ ¬x0),(5.1)
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x0 / ¬¬x0,(5.2)
x0 ' (¬¬x0 ∧ ¬x0),(5.3)

¬¬x0 / (x0 ∨ (¬¬x1 ∨ ¬x1)),(5.4)

in which case, by (5.1), (5.2) and (5.3), it satisfies the Σ−
+-quasi-identities:

(x0 / x1) → (¬x1 / ¬x0),(5.5)
(¬x0 / x0) ← | → (¬x0 / ¬¬x0),(5.6)

and so the Σ−
+[,01]-identities:

¬(x0 ∨ x1) ≈ (¬x0 ∧ ¬x1),(5.7)
¬¬¬x0 ≈ ¬x0,(5.8)

[¬(>|⊥) ≈ (⊥|>)(5.9)

(in particular, it is a Morgan-Stone algebra; cf. [2, 21])], the variety of them being
denoted by [B/]S(D)MS(L[/A]). Then, its members satisfying the Σ−

+-identity:

(5.10) ¬¬x0 ≈ | / x0,

are exactly [bounded/] De(-)Morgan lattices[/algebras] (cf. [1, 14, 13]), the va-
riety of them being denoted by [B/]DM(L[/A]). Likewise, [bounded/] Stone lat-
tices[/algebras] are [bounded/] strong Morgan-Stone lattices[/algebras] satisfying
the Σ−

+-identity:

(5.11) (x0 ∧ ¬x0) / x1,

[i.e., (5.11)[(/ / ≈, )x1/⊥]], the variety of them being denoted by [B/]S(L[/A]).
Then, members of [B/]B(L[/A]) , ([B]DML ∩ [B]SL) are called [bounded/] Boolean
lattices[/algebras]. Finally, [bounded/] {strong} Kleene{-Stone} lattices[/algebras]
are [bounded] {strong} De-Morgan{-Stone} lattices satisfying the Σ−

+-identity:

(5.12) (x0 ∧ ¬x0) / (x1 ∨ ¬x1),

the variety of them being denoted by [B/]{S}K{S}(L[/A]){⊇ [B]SL, for (5.12) =
((5.11)[x1/(x1 ∨ ¬x1)])}.

Let ϕ̄ , 〈x0,¬x0〉 and Ω , (img ϕ̄).

Lemma 5.2. Let A ∈ [B]SMSL, a, b ∈ A and F a prime filter of A�Σ+. Suppose
both ((¬A)a ∈ F )⇔ ((¬A)b ∈ F ). Then, (¬A¬Aa ∈ F )⇔ (¬A¬Ab ∈ F ).

Proof. Assume ¬A¬Aa ∈ F . If b ∈ F , then, as A |= (5.2)[x0/b], we have ¬A¬Ab ∈
F . Otherwise, a 6∈ F , in which case, as A |= (5.3)[x0/a], we have ¬Aa 6∈ F , that is,
¬Ab 6∈ F , and so, since A |= (5.4)[x0/a, x1/b], we get ¬A¬Ab ∈ F as well. �

This, by Theorem 4.8, the Prime Ideal one, (5.1), (5.7) and Corollary 4.26,
immediately yields:

Corollary 5.3. fϕ̄
Ω,℘(Ω) is an REDPC scheme for [B]SMSL.

This provides a uniform insight into REDPC for Stone and De Morgan algebras,
originally given by separate distinct schemes in [9, 19].

Let (DM|S)(4|3)[,01] ∈ [B]SMSL be the Σ−
+[,01]-algebra with ((DM|S)(4|3)[,01]�

Σ+[,01]) , (D2
2[,01]�(2

2 \ (∅|{〈1, 0〉})) and ¬(DM|S)(4|3)[,01] , {〈〈j, k〉, 〈1 − (k|j), 1 −
j〉〉 | 〈j, k〉 ∈ (DM |S)4|3} and (((K‖K′)/B)(3/2)[,01] , (DM4[,01]�(∆2∪({〈0‖1, 1‖0〉}/
∅)), in which case µ : K3 → K ′

3, 〈ı, 〉 7→ 〈, ı〉 is an isomorphism from K3 onto
K′

3, and so S[01] , {DM4[,01],K3[,01],S3[,01],B2[,01]}, being a skeleton of S′[01] ,
{DM4[,01],K3[,01],K

′
3[,01],S3[,01],B2[,01]} = S>1{DM4[,01],S3[,01]}, is that of IS′[01]

= IS[01]. Then, for any A ∈ S[01], Ω is an equality determinant for 〈A, A ∩ π−1
0 [{1}]〉,
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in which case, since A ∩ π−1
0 [{1}] is a prime filter of A, by [17, Lemma 11], fΩ ,

{(τ(xk) ∧ ρ(x2+`)) / (τ(x1−k) ∨ ρ(x3−`)) | k, ` ∈ 2, τ, ρ ∈ Ω} is a finite disjunctive
system for S[01], and so, by Lemma 4.1, its members are subdirectly-irreducible, as it
is well-known. And what is more, by the paragraph following the proof of Theorem
4.28, isomorphic copies of members of S′′[01] , {DM4[,01],K3[,01],K

′
3[,01],B2[,01]} =

S>1DM4[,01], being fϕ̄
V1,℘(Ω)-implicative, are simple, as it is well-known. On the

other hand,

(5.13) ~ , ((π1�S3)× (π1�S3)) ∈ hom(S3[,01],B2[,01]),

in which case, by Lemma 2.3, since ~(〈1, 1〉) = 〈1, 1〉 = ~(〈0, 1〉) 6= 〈0, 0〉 = ~(〈0, 0〉),
{∆S3 , S

2
3} 63 (ker ~) = ~−1

2 [∆B2 ] ∈ Co(S3[,01]), and so S3[,01] is not simple, as it is
well-known. Thus, S′′[01] = Si(S′[01]). In particular, S′′′[01] , {DM4[,01],K3[,01],B2[,01]}
= Si(S[01]).

Theorem 5.4. For any prime filter F of the Σ+-reduct of any A ∈ [B]SMSL, so is
G , (A\(¬A)−1[F ]), in which case, for some B ∈ S′[01], h , (χF

A×χG
A) ∈ hom(A,B)

and h[A] = B, and so [B]SMSL = IPSDS[01]. In particular, [B]SMSL is finitely
fΩ-disjunctive with ([B]SMSLfΩ

\ I(
∏

∅)) = SI(ω)([B]SMSL) = IS[01] 3 S3[,01] 6∈
IS′′′[01] = Si([B]SMSL), in which case it is not {finitely-}semi-simple, and so is not
〈restricted〉 implicative.

Proof. Take any (a|b) ∈ (F |(A \ F )) 6= ∅. Then, as A |= (5.2|5.3)[x0/(a|b)], we
have (({¬Aa}|{b,¬Ab}) ∩ ((A \ G)|G)) 6= ∅, in which case G 6= ∅ 6= (A \ G),
and so, by (5.1) and (5.7), G is a prime filter of A�Σ+. Therefore, by (2.2), (2.4)
and Lemma 5.1, h is a surjective homomorphism from A�Σ+[,01] onto a subdirect
square C of D2[,01], in which case, for each i ∈ 2, as πi[C] = 2, there are some
(a|b)i ∈ C such that πi((a|b)i) = (0|1), and so C ⊇ {a0 ∧C a1, b0 ∨C b1} = ∆2.
Then, there are some (c|d) ∈ A such that h(c|d) = 〈0|1, 0|1〉. And what is more,
by Lemma 5.2, (kerh) ⊆ (ker(¬A ◦ h)), in which case, by the Homomorphism
Theorem, h is a surjective homomorphism from A onto the Σ−

+[,01]-algebra B with

(B�Σ+[,01]) , C and ¬B , (h−1 ◦ (¬A ◦ h)), and so B ∈ [B]SMSL. Furthermore,
(c|d) 6∈ | ∈ F 3 | 63 ¬A(c|d), in which case, as A |= (5.3|5.2)[x0/(c|d)], we have
¬A¬A(c|d) 6∈ | ∈ F , and so ¬B〈0|1, 0|1〉 = h(¬A(c|d)) = 〈1|0, 1|0〉. In particular,
B = B2[0,1], whenever B = C = ∆2. Next, if 〈1, 0〉 ∈ B = h[A], i.e., there is some
e ∈ A such that h(e) = 〈1, 0〉, viz., e ∈ F 3 ¬Ae, then, as A |= (5.2)[x0/e], we have
¬A¬Ae ∈ F , in which case ¬B〈1, 0〉 = h(¬Ae) = 〈1, 0〉, and so B = K′

3[0,1], whenever
B = C = K ′

3. Likewise, if 〈0, 1〉 ∈ B = h[A], i.e., there is some f ∈ A such that
h(f) = 〈0, 1〉, viz., f 6∈ F 63 ¬Af , then ¬B〈0, 1〉 = h(¬Af) = 〈0,m〉, for somem ∈ 2,
and so B = (S‖K)3[0,1], whenever B = C = K3 = S3 and m = (0‖1). Finally, if
B = C = 22, then, since B |= (5.1)[x0/〈1, 0〉, x1/〈0, 1〉], we have 〈1, 1〉 = ¬B〈0, 0〉 =
¬B(〈1, 0〉∧B 〈0, 1〉) = (¬B〈1, 0〉∨B¬B〈0, 1〉) = (〈1, 0〉∨B 〈0,m〉) = 〈1,m〉, in which
case m = 1, and so B = DM4[0,1]. Thus, in any case, B ∈ S′[01]. In this way, the
Prime Ideal Theorem, Corollaries 2.4, 2.8, Lemmas 2.3, 4.1, 4.9 and Remark 2.2
complete the argument. �

Corollary 5.5. Sub-varieties of [B]SMSL form the non-chain distributive seven-
element lattice, whose Hasse diagram is depicted at Figure 1, where any (non-)solid
circle-node is marked by V : S with a variety V ⊆ [B]SMSL, (not) being (ω|∞)-semi-
simple/“ {〈sub〉direecttly} filtral”/“ drestricted bfϕ̄

V1‖Ω,℘(Ω)-ceimplicative”, and the
least S ⊆ S[01] such that (V ∩ S[01]) = S>1S, in which case SI(V) = IS>1S, while
V = ISPS is finitely fΩ-disjunctive, and so disjunctive//“restricted implicative”
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[B]SMSL : {DM4[,01],S3[,01]}

[B]DML : {DM4[,01]}[B]SKSL : {K3[,01],S3[,01]}

[B]KL : {K3[,01]}
[B]SL : {S3[,01]}

[B]BL : {B2[,01]}

I(B0
2[,01]) : ∅

Figure 1. The lattice of sub-varieties of [B]SMSL.

sub-pre-//quasi-varieties of [B]SMSL are sub-varieties of [B]SMSL//[B]DML. In
particular:

(i) [B]SMSL is the (pre-/quasi-)variety generated by {SI}([B]DML) ∪ {SI}([B]SL);
(ii) [B]SKSL is the sub-variety of [B]SMSL relatively axiomatized by (5.12)[x1/
¬x1].

Proof. Clearly, [B]DML 3 DM4[,01] 6|= ((5.12)[x1/(¬)x1])[xi/〈i, 1− i〉]i∈2, in which
case (S[01] ∩ Mod((5.12)[x1/(¬)x1])) = (S[01] \ {DM4[,01]}), and so (ii) is due to
Theorem 5.4, while [B]SL 3 S3[,01] 6|= (5.10)[x0/〈0, 1〉], whereas [B]KL 3 K3[,01] 6|=
(5.11)[x0/〈0, 1− i〉]i∈2, as well as B2[,01] ∈ [B]BL is not one-element, in which case
the seven varieties involved do form the lattice with Hasse diagram depicted at
Figure 1 and their intersections with S[01] exhausting all those subsets of this,
which are closed under S>1, and so Theorems 4.18, 4.28 with M = ({DM4[,01]} ×
{22 ∩ π−1

j [{1}] | j ∈ 2}), 5.4, Corollaries 4.10, 4.11, 5.3 as well as Lemmas 4.1 and
4.9 complete the argument. �

It is in the sense of (i) that [B]SMSL is the implicational/(quasi-)equational join
of [B]DML and [B]SL.

Let K(i:)4[,01] (where i ∈ {1, 2}) be the Σ−
+[,01]-algebra with (K(i:)4[,01]�Σ+[,01]) ,

D4[,01] and ¬K(i:)4[,01] , ({〈j, 3− j〉 | j ∈ (4(\{1, 2}))}(∪{〈i, i〉, 〈3− i, 2 · (i− 1)〉}))
(in which case, providing i = (1|2), it satisfies (5.1), (5.2) and (5.3)|(5.4) [as well
as (5.9) {in particular, it is a Morgan-Stone algebra; cf. [2, 21]}], but (5.4)|(5.3)
is not true in it under [xk/(2− k)]k∈2|[x0/1], and so neither (5.3) nor (5.4) can be
omitted).

5.1. Pre-varieties of strong Morgan-Stone lattices.

Definition 5.6 (cf. [14]). Members of [B]{S}(DM‖K){S})L, satisfying the following
Σ−

+-quasi-identity:

(5.14) (¬x0 ≈ x0)→ (x0 ≈ x1),

are called non-idempotent, NI[B/]{S}((D)M‖K){S}(L[/A]) denoting their quasi-va-
riety {and including [B]SL}. �

Lemma 5.7. Any (non-one-element finitely-generated) A ∈ [B]SMSL is non-idem-
potent if(f) hom(A,B2[,01]) 6= ∅, in which case ([B]SMSL \ [B]NISMSL) ⊆ [B]DML,
and so [B]SMSL = ([B]NISMSL ∪ [B]DML).



20 A. P. PYNKO

Proof. The “if” part is by the fact that ¬B2[,01]a = a, for no a ∈ ∆2. (Conversely,
assume A is non-idempotent, in which case, if hom(A,S3[,01]) is non-empty, then
so is hom(A,B2[,01]), in view of (5.13). Otherwise, by Remark 2.2 and Corollary
5.5, A[�Σ−

+] [being finitely-generated, as {⊥A,>A} is finite] is a non-one-element
finitely-generated non-idempotent De Morgan lattice. Then, by [14, Lemma 4.3],
[since B2 has no proper subalgebra, in which case, for each h ∈ hom(A�Σ−

+,B2),
there are some (a|b) ∈ A such that h(a|b) = 〈0|1, 0|1〉, and so h((⊥|>)A) =
h((a|b)(∧|∨)A(⊥|>)A) = 〈0|1, 0|1〉] ∅ 6= hom(A[�Σ−

+],B2)[= hom(A,B2,01)].) Fi-
nally, Remark 2.2, Corollary 5.5 and (5.13) complete the argument. �

This, by Remark 2.2, Corollary 5.5, (2.1), (2.4) and the locality of quasi-varieties,
immediately yields:

Corollary 5.8. NI[B]{S}(DM|K){S}L is the pre-/quasi-variety generated by {(DM|
K)(4|3)[,01] ×B2[,01]{,S3[,01]}}. In particular, any (non-one-element) A ∈ [B]SMSL

is non-idempotent if(f) hom(A,B2[,01]) 6= ∅.

Likewise, Lemma 5.7 and [14, Proof of Lemma 4.9] immediately yield:

Corollary 5.9. K3 is embeddable into any member of SKSL \ NISKSL.

Corollary 5.10. NI[B]{S}DM{S}L ∪ [B]{S}K{S}L is the sub-quasi-variety of [B]
{S}DM{S}L relatively axiomatized by the Σ−

+-quasi-identity:

(5.15) (¬x0 ≈ x0)→ (x0 / (x1 ∨ ¬x1))

and is the pre-/quasi-variety generated by {DM4[,01] ×B2[,01],K3[,01]{,S3[,01]}}.

Proof. Clearly, (5.15) is satisfied in NI[B]{S}DM{S}L ∪ [B]{S}K{S}L. Conversely,
consider any A ∈ ([B]{S}DM{S}L \ NI[B]{S}DM{S}L) satisfying (5.15) and any
a, b ∈ A, in which case there is some c ∈ A such that ¬Ac = c, and so, as
A(5.15)[x0/c, x1/(a|b)], we have c 6A ((a|b) ∨A ¬A(a|b)). Then, by (5.2), (5.5)
and (5.7), we get (a ∧A ¬Aa) 6A c, in which case A |= (5.12)[x0/a, x1/b], and so
A ∈ [B]{S}K{S}L. Thus, Corollaries 5.5 and 5.8 complete the argument. �

This, by Lemma 5.7 and [14, Case 8 of Proof of Theorem 4.8], immediately
yields:

Corollary 5.11. DM4 is embeddable into any member of {S}DM{S}L not satis-
fying (5.15).

Members of [B]{S}K{S}L satisfying the Σ−
+-quasi-identity:

(5.16) {¬x0 / x0, (x0 ∧ ¬x1) / (¬x0 ∨ x1)} → (¬x1 / x1)

are called regular/classical (cf. [14]/[15]), the quasi-variety of them being denoted
by R[B/]{S}K{S}(L[/A]).

Lemma 5.12. {K4[,01]{,S3[,01]}} ⊆ R[B]{S}K{S}L ⊆ NI[B]{S}K{S}L.

Proof. The fact that K4[,01] ∈ [B]KL{⊆ [B]SKSL} is well-known, while its regularity
is by the fact that F , {¬K4[,01]i 6K4[,01] i | i ∈ 4} = (4 \ 2) = ¬K4[,01] [4 \ F ] is a
prime filter of D4 {whereas that of S3[,01] ∈ [B]SKSL is immediate}. For proving
the second inclusion, consider any A ∈ R[B]{S}K{S}L and any a, b ∈ A such that
¬Aa = a, in which case, as A |= (5.1|5.16)[x0/a, x1/((¬A)b|(a∧A (¬A)b))] (and A |=
(5.2)[x0/b]), we have (b 6A)¬A(¬A)b 6A (¬Aa ∨A ¬A(¬A)b) = ¬A(a ∧A (¬A)b) 6A

(a∧A (¬A)b) 6A (¬A)b, and so ¬Ab = b. Then, since A |= (5.12)[x0/(a|b), x1/(b|a)],
we eventually get both a(6 | >)Ab, i.e., a = b. Thus, A is non-idempotent. �

Corollary 5.13. K4 is embeddable into any A ∈ (NISKSL \ SL) ⊇ (RSKSL \ SL).
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Proof. Then, there are some a, b ∈ A such that c , (a∧A¬Aa) 6= d , (b∧A c) 6A c,
in which case, applying (5.1) and (5.5) [twice], we have [¬A¬Ad 6A ¬A¬A]c 6A

¬Ac 6A ¬Ad, and so, by (5.2) and (5.3), we get ¬A¬A(c|d) = (c|d). In this way,
as c 6= d, by (5.14), we have ¬Ac 6= c, in which case we get ¬Ad 6= ¬Ac, and so
{〈0, d〉, 〈1, c〉, 〈2,¬Ac〉, 〈3,¬Ad〉} is an embedding of K4 into A. Finally, Lemma 5.12
completes the argument. �

Theorem 5.14. R[B]{S}K{S}L is the pre-/quasi-variety generated by {K4[,01]{,
S3[,01]}}.

Proof. In view of locality of quasi-varieties and Lemma 5.12, it suffices to prove
that any finitely-generated non-one-element A ∈ R[B]{S}K{S}L belongs to the pre-
variety generated by {K4[,01]{,S3[,01]}}. Assume A is generated by img ā, for some
ā ∈ An and some n ∈ (ω \ 1). Put b , (∧A

+〈am ∨A ¬Aam〉m∈n), in which case, by
(5.1), (5.7) and (5.12), we have ¬Ab 6A b. Consider any h ∈ hom(A,K3[,01]). Let
(I|J) , {i ∈ n | h(ai) = 〈0|1, 0|1〉}, (ı|) = |(I|J)| and k̄|¯̀any bijection from ı| onto
I|J . We prove, by contradiction, that there is some g ∈ hom(A,B2[,01]) such that
g[img((k̄|¯̀) ◦ ā)] = {〈0|1, 0|1〉}. For suppose that, for every g ∈ hom(A,B2[,01]),
there is either some i ∈ ı or some j ∈  such that g(a(k|`)i|j ) = 〈1|0, 1|0〉, in
which case, as, by Lemmas 5.7 and 5.12, we have hom(A,B2[,01]) 6= ∅, we get
(I ∪ J) 6= ∅, and so we are allowed to put c , (∨A

+((k̄ ◦ ā ◦ ¬A ◦ ¬A) ∗ (¯̀◦ ā ◦ ¬A))).
Then, ¬Ac 
A c, for h(c) = 〈0, 0〉 �K3[,01] 〈1, 1〉 = h(¬Ac). Now, consider any
f ∈ (hom(A, {K3[,01],S3[,01]}) and the following complementary cases:

• f ∈ hom(A,S3[,01]),
in which case, by (5.13) and the assumption to be disproved, f(c) = 〈1, 1〉,
and so f(b ∧A ¬Ac) = 〈0, 0〉 6S3[,01] 〈1, 1〉 = f(¬Ab ∨A c).

• f 6∈ hom(A,S3[,01]),
in which case f ∈ hom(A,K3[,01]), while, as B2[,01] is a subalgebra of both
K3[,01] and S3[,01], there is some i ∈ n such that f(ai) = 〈0, 1〉, and so
f(b ∧A ¬Ac) 6K3[,01] f(b) = 〈0, 1〉 = f(¬Ab) 6K3[,01] f(¬Ab ∨A c).

In this way, since, by Corollary 5.5, [B]SKSL 3 A is the pre-variety generated by
{K3[,01],S3[,01]}, by Remark 2.2, we eventually get (b ∧A ¬Ac) 6A (¬Ab ∨A c), in
which case A 6|= (5.16)[x0/b, x1/c], and so this contradiction to the regularity of A
definitely shows existence of some g ∈ hom(A,B2[,01]) such that g[img((k̄|¯̀) ◦ ā)] =
{〈0|1, 0|1〉}. Then, by (2.4), h′ , (h × g) ∈ hom(A,K3[,01] × B2[,01]), while e ,
{〈k, 〈[k

3 ],min(k, 1), 〈[k
2 ], [k

2 ]〉〉〉 | k ∈ 4} ∈ hom(K4[,01],K3[,01] ×B2[,01]) is injective,
whereas (img h′) ⊆ (img e), in which case h′′ , (h′ ◦ e−1) ∈ hom(A,K4[,01]) as well
as, by (2.1) and the injectivity of e−1, (kerh′′) = (kerh′) ⊆ (kerh), and so Corollary
5.5 and Remark 2.2 complete the argument. �

Lemma 5.15. K3 ×B2 is embeddable into any A ∈ (NISKSL \ RSKSL).

Proof. Then, by (5.1), (5.5), (5.6), (5.7) and (5.8), there are some a, b ∈ A such
that (c|d) , ¬A¬A(a|b)(> | �)A¬A(c|d) and (c ∧A ¬Ad) 6A (¬Ac ∨A d), in which
case, using (5.1), (5.7) and (5.8), by induction on construction of any ϕ ∈ Tm2

Σ−
+
,

we get ¬A¬AϕA(c, d) = ϕA(c, d), and so the subalgebra B of A generated by {c, d}
is a non-idempotent Kleene lattice such that B 6|= (5.16)[x0/c, x1/d]. Hence, by
[14, Case 4 of Proof of Theorem 4.8], K3 ×B2 is embeddable into B, and so into
A. �

Lemma 5.16. DM4 ×B2 is embeddable into any A ∈ (NISMSL \ SKSL).
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Figure 2. The lattice of sub-pre-/quasi-varieties of SMSL.

Proof. Then, taking Corollary 5.5(ii) into account, there are some a, b ∈ A such
that, by (5.2), c , ¬A¬A(a ∧A ¬Aa) 
A d , (¬Ab ∨A ¬A¬Ab), in which case, by
(5.1), (5.7) and (5.8), we have both ¬A(c|d)(> | 6)A(c|d) = ¬A¬A(c|d), and so,
by induction on construction of any ϕ ∈ Tm2

Σ−
+
, we get ¬A¬AϕA(c, d) = ϕA(c, d).

Thus, the subalgebra B of A generated by {c, d} is a non-idempotent De Morgan
lattice such that B 6|= (5.12)[x0/c, x1/d], in which case, by the proof of [14, Lemma
4.10], DM4 ×B2 is embeddable into B, and so into A. �

Lemma 5.17. S3 is embeddable into any A ∈ (SMSL \ DML).

Proof. Then, there is some a ∈ A such that ¬A¬Aa 6= a, in which case, by (5.2), b ,
(¬Aa∧A¬A¬Aa) 6A c , (a∨A¬Aa) 6A d , (¬Aa∨A¬A¬Aa), while, by (5.1), (5.7)
and (5.8), both ¬Ac = b = ¬Ad and ¬Ab = d, whereas c 6= d, for, otherwise, since
A |= (5.2|5.3)[x0/a], {b,¬Aa, a,¬A¬Aa, d} would be a pentagon of the distributive
lattice A�Σ+, and so b 6= c, for otherwise, we would have c = b = ¬Ac = ¬Ab = d.
Thus, {〈0, 0, b〉, 〈0, 1, c〉, 〈1, 1, d〉} is an embedding of S3 into A. �

Theorem 5.18. Sub-pre/quasi-varieties of SMSL form the fifteen-element non-
chain distributive lattice depicted at Figure 2.

Proof. We use Corollary 5.5 tacitly. Clearly, DM4 ×B2 is not in SKSL, for DM4

is not so, while π0�(22 ×∆2) is a surjective homomorphism from the former onto
the latter, in which case, by Corollary 5.10, SKSL ( (SKSL ∪ NISMSL) ( SMSL,
for SMSL 3 DM4 6|= (5.15)[xi/〈i, 1− i〉]i∈2. Likewise, S3 6∈ DML, so, by Corollar-
ies 5.8, 5.10 and Theorem 5.14, both (KL ∪ NIDML) ( (SKSL ∪ NISMSL), NIDML (
NISMSL, NIKL ( NISKSL and RKL ( RSKSL, while, by Corollary 5.8, NIKL 3 (K3×
B2) 6|= (5.16)[x0/〈〈0, 1〉, 〈1, 1〉〉, x1/(〈〈0, 0〉, 〈1, 1〉〉], so, by Lemma 5.12, RSKSL (
NISKSL, whereas KL 3 K3 6|= (5.14)[x0/〈0, 1〉, x1/〈0, 0〉], so NISKSL ( SKSL. Fi-
nally, by Theorem 5.14, S3 ∈ RSKSL 3 K4 6|= (5.11)[xi/(1− i)]i∈2, so SL ( RSKSL.
Thus, by Lemma 5.7, Corollaries 5.8, 5.10, Theorem 5.14 and [14, Theorem 4.8],
the fifteen quasi-varieties involved are pair-wise distinct and do form the lattice de-
picted at Figure 2. Now, consider any pre-variety P ⊆ SMSL such that P * DML,
in which case, by Lemma 5.17, S3 ∈ P, and so SL ⊆ P, as well as the following
exhaustive cases:
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(1) P * (SKSL ∪ NISMSL),
in which case, by Corollaries 5.10 and 5.11, DM4 ∈ P 3 S3, and so
P = SMSL.

(2) P ⊆ (SKSL ∪ NISMSL) but neither P ⊆ SKSL nor P ⊆ NISMSL,
in which case (SKSL|NISMSL) + (P ∩ (NISMSL|SKSL)), and so, by Lemma|
Corollary 5.16|5.9 ((DM4 ×B2)|K3) ∈ P 3 S3. Then, by Corollary 5.10,
P = (SKSL ∪ NISMSL).

(3) P ⊆ NISMSL but P * SKSL,
in which case, by Lemma 5.16, (DM4×B2) ∈ P 3 S3, and so, by Corollary
5.8, P = NISMSL.

(4) P ⊆ SKSL but P * NISMSL,
in which case, by Corollary 5.9, K3 ∈ P 3 S3, and so P = SKSL.

(5) P ⊆ NISKSL but P * RSKSL,
in which case, by Lemma 5.15, (K3 ×B2) ∈ P 3 S3, and so, by Corollary
5.8, P = NISKSL.

(6) P ⊆ RSKSL but P * SL,
in which case, by Corollary 5.13, K4 ∈ P 3 S3, and so, by Theorem 5.14,
P = RSKSL.

(7) P ⊆ SL,
in which case P = SL.

In this way, [14, Theorem 4.8] completes the argument. �

5.1.1. Implicative quasi-varieties of strong Morgan-Stone lattices and algebras.

Lemma 5.19. Let Q ⊆ [B]SMSL be a quasi-variety. Then, (SiQ(Q)∩[B]NISMSL) ⊆
IB2[0,1] ⊆ [B]BL ⊆ [B]KL ⊆ [B]DML.

Proof. Consider any A ∈ (SiQ(Q) ∩ [B]NISMSL), in which case |1A| > 1 [viz.,
⊥A 6= >A], i.e., A 6∈ IB0

2[,01], and so [as, by (5.9), {〈0, 0,⊥A〉, 〈1, 1,>A〉} ∈
hom(B2,01,A) is injective], by Corollary 5.5 and Theorem 5.18, B2[,01] ∈ Q. Then,
by Corollary 5.8, since B2[,01] has no proper subalgebra, there is some surjective
h ∈ hom(A,B2[,01]) 6= ∅, in which case, by Lemma 2.3, as (img h) = ∆2 is not a
singleton, A2 6= (kerh) = h−1

2 [∆B2 ] ∈ CoQ(A) ⊆ {A2,∆A}, and so h is injective, as
required, in view of Corollary 5.5. �

Theorem 5.20. Any relatively semi-simple (more specifically, implicative) quasi-
variety Q ⊆ [B]SMSL is a sub-variety of [B]DML, in which case it is restricted
fϕ̄

V1|Ω,wp(Ω)-implicative, and so “ {relatively} 〈finitely-〉semi-simple”/“ drestricted
bfϕ̄

V1‖Ω,wp(Ω)-ceimplicative sub-{quasi-}varieties of [B]SMSL are exactly sub-vari-
eties of [B]DML.

Proof. In that case, by Corollary 2.5, Q is generated by K , SiQ(Q), and so, by
Lemmas 5.7 and 5.19, Q ⊆ [B]DML. Consider the following complementary cases:

• K = ∅,
in which case Q = IB0

2[,01].
• K 6= ∅.

Consider the following complementary subcases:
– K ⊆ [B]NISMSL,

in which case, by Corollary 2.4 and Lemma 5.19, K = IB2[,01], and so,
by Corollary 5.5, Q = [B]BL.

– K * [B]NISMSL.
Consider the following complementary subcases:
∗ K ⊆ ([B]SKSL ∪ [B]NISMSL),

in which case (K \ [B]NISMSL) ⊆ [B]KL, and so, by Lemma 5.19,
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Q ⊆ [B]KL. Conversely, take any A ∈ (K \ [B]NISMSL) 6= ∅, in
which case (A[�Σ−

+]) ∈ (SKSL \ NISMSL), and so, by Corollary
5.9, there is an embedding e of K3 into A[�Σ−

+]. Then, [as a ,
e(〈0, 1〉) = ¬Aa, by (5.9), {〈0, 0,⊥A〉, 〈0, 1, a〉, 〈1, 1,>A〉} is an
embedding of K3,01 into A, in which case] K3[,01] ∈ Q, and so, by
Corollary 5.5, Q = [B]KL.

∗ K * ([B]SKSL ∪ [B]NISMSL.
Take any B ∈ (K \ ([B]SKSL ∪ [B]NISMSL)) 6= ∅, in which case,
by Corollaries 5.10 and 5.11, there is an embedding f of DM4

into B[�Σ−
+], and so DM4 ∈ Q in the []-non-optional case. [By

contradiction, prove that DM4,01 ∈ Q. For suppose DM4,01 6∈
Q, in which case it is not embeddable into B, and so, by (5.9),
both f(〈0|1, 0|1〉) 6= (⊥|>)A. Then, by (5.9), g , (((π0�(22 ×
{〈0, 1〉}))◦f)∪{〈〈0, 0〉, 〈0, 0〉,⊥B〉, 〈〈1, 1〉, 〈1, 1〉,>B〉}) is an em-
bedding of DM6 , ((DM4,01 × K3,01)�(dom g)) into B, while
∆K3×∆K3 is that of K3,01 into DM6, whereas both π0‖1[DM6] =
(DM‖K)4‖3, in which case {DM6,K3,01} ⊆ Q 63 DM4,01, and
so, by the Homomorphism Theorem, Lemma 2.3 and the subdi-
rect filtrality of BDML with its simple members DM4,01 and
K3,01, being due to Corollary 5.5, since Fi(2) = {℘(N, 2) |
N ∈ ℘(2)}, Co{Q}(DM6) = ({ker(πi�DM6) | i ∈ (2{\1})} ∪
{∆DM6 , DM

2
6 }}). In this way, since ∆DM6 ( ker(π1�DM6) (

DM2
6 , for 6 6= 3 6= 1, DM6 ∈ (SIQ(Q) \ SiQ(Q)), contrary

to the relative semi-simplicity of Q.] Thus, by Corollary 5.5,
Q = [B]DML.

This, by Corollary 5.5 (and Lemma 4.9), completes the argument. �

6. Conclusions

Perhaps, the main problem remained still open whether any (f-)implicative
[quasi-]variety has EDP[R]C scheme (f). Likewise, the issue whether the stipu-
lations “finitely|finitely-”/“locally-finite” in the formulation of Corollary 4.20/4.21
are necessary remains open as well. Finally, an interesting (though a purely method-
ological) point remained open is an equational derivation of Corollary 5.5(ii).
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