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—— Abstract
The grounding bottleneck is an important open issue in Answer Set Programming. Lazy ground-
ing addresses it by interleaving grounding and search. The performance of current lazy-grounding
solvers is not yet comparable to that of ground-and-solve systems, however. The aim of this
thesis is to extend prior work on lazy grounding by novel heuristics and other techniques like
non-ground conflict learning in order to speed up solving. Parts of expected results will be
beneficial for ground-and-solve systems as well.
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1 Introduction

Answer Set Programming (ASP) is an approach to declarative problem solving [3,22], in
which problems to be solved by a computer are encoded as logic programs, which are sets of
rules that can contain variables. Most ASP systems follow the ground-and-solve paradigm
and split the solving process into two steps: First, a grounder transforms the input program
containing variables into a propositional encoding [4,12,14,19]. Then, solutions for the
resulting variable-free program are found by a solver [16]. The grounding step can result in
an exponential blow-up in space in the worst case [10].

This grounding bottleneck is a major problem of traditional approaches to ASP. For
example, the rule

partnerunits(U, P) < unit2zone(U, Z), unit2sensor(P, S), zone2sensor(Z,S),U # P.

has to be replaced by up to |U|-|P|-|Z|-|S| ground rules, where |U|, |P|, |Z| and |S| are the
number of constants the respective variable may be substituted with. Many of these ground
rules may be irrelevant because they are not needed to build a specific answer set anyway.
Problems that are actually easy to solve thus become prohibitive as soon as their grounding
ceases to fit into working memory. This makes ASP, an otherwise powerful and versatile
approach, unsuitable for large-scale problem instances frequently occurring in practice.
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Lazy grounding interleaves grounding and solving to avoid storing the entire ground
program in memory. By this, lazy grounding addresses the limitations of state-of-the-art
grounders like GRINGO [14] and Z-DLv [4,12]. These grounders employ sophisticated ground-
ing techniques to omit irrelevant ground rules, but these can only mitigate and not eliminate
the blow-up in space. Known approaches to lazy grounding are ASPERIX [20], GASP [25],
OMIGA [7], and, most recently, ALPHA [30]. Lazy grounding methods have also been pro-
posed for FO(-), a knowledge representation formalism whose foundations are similar to
those of ASP [8]. Also related, though not a lazy-grounding system as such, are lazy con-
straints, a technique that removes constraints that consume much space in grounding from
the input program and adds only relevant ground ones again when a potential answer set
has been found that needs to be checked for constraint violations [6].

While lazy-grounding systems are able to limit their memory usage, their time consump-
tion is not yet comparable to that of state-of-the-art solvers. One reason for this is that most
of these systems do not exploit conflict-driven nogood learning (CDNL), which is a key suc-
cess factor of state-of-the-art ASP solvers. ALPHA has been the first lazy-grounding system
to employ CDNL [30]. The system consists of a grounder and a solver which, however, do
not work in sequence (as in ground-and-solve), but interact cyclically. Still, ALPHA also does
not reach the performance of traditional solvers yet. One reason for this is that ALPHA (and
all other lazy-grounding systems) lack powerful search heuristics to guide the exploration of
the search space, which are another major success factor of traditional systems.

The remainder of this research summary is structured as follows: In section 2, we recall
preliminaries on ASP and lazy grounding. In section 3, we state the research questions
addressed by this thesis, after which we report on its current status in section 4. Preliminary
results are presented in section 5, before open issues and expected achievements are put
forward in section 6. This paper is then briefly concluded in section 7.

2 Preliminaries

In this section, we present a brief account of ASP syntax and semantics and of the general
idea of the lazy-grounding ASP solver ALPHA.

2.1 Syntax

An answer-set program P is a finite set of rules of the form
hi;...5hqg <= 0b1,..., by, n0t b1, ...,n0t by.

where hq,...,hq and by, ..., b,, are positive literals (i.e. atoms) and not b,41,...,not b,
are negative literals. An atom is either a classical atom or a cardinality atom!. A classical
atom is an expression p(ty,...,t,) where p is an n-ary predicate and t1,...,t, are terms. A
term is either a variable or a constant. A literal is either an atom a or its default negation
not a. Default negation refers to the absence of information, i.e. an atom is assumed to be
false as long as it is not proven to be true. A cardinality atom is of the form

Hay s byl 5an t ooy ln, b u

L Other types of atoms are supported in the language standard ASP-Core-2 [2], but these are not needed
within the scope of this article.



R. Taupe

where each structure a; : l;,,...,1; 1is a conditional literal in which a; (the head of the
conditional literal) and all [;; are classical literals, and [ and u are terms representing non-

im

negative integers indicating lower and upper bound. If one or both of the bounds are not
given, their defaults are used, which are 0 for [ and oo for u.

H(r) = {h1,...,hq} is called the head, and B(r) = {b1,...,bm,n0t byyi1,...,n0t by}
the body of the rule. A rule r with H(r) consisting of a cardinality atom is called choice
rule. A rule with a head consisting of more than one classical atom is called disjunctive rule.
A rule whose head consists of at most one classical atom is called a normal rule. A normal
rule with empty head, e.g. < b., is called (integrity) constraint. A normal rule with empty
body, e.g. h + ., is called fact.

2.2 Semantics

There are several ways to define the semantics of an answer-set program, i.e. to define the
set of answer sets of an answer-set program. An overview is provided by [23]. Probably the
best-known semantics is based on the Gelfond-Lifschitz reduct [17]. A variant that applies
to choice rules also is presented in [5].

Informally, an answer set A of a program P is a subset-minimal model of P (i.e. a set
of atoms interpreted as true) which satisfies the following conditions: All rules in P are
satisfied by A; and all atoms in A are ‘derivable’ by rules in P. A rule is satisfied if its head
is satisfied or its body is not. The disjunctive head of a rule is satisfied if at least one of its
atoms is. A cardinality atom is satisfied if [ < |C| < w holds, where C' is the set of head
atoms in the cardinality literal whose conditions (e.g. 1;,,...,!
which are satisfied themselves. In the presence of choice rules, the semantics is adjusted to

for a;) are satisfied and

im
allow non-minimal subsets satisfying the cardinality atom to appear in answer sets.

2.3 Lazy Grounding and Solving

ASP systems employing lazy grounding, such as ALPHA, are based on so-called computation
sequences, which are sequences of firing rules. Starting from facts, rules are fired one after
the other by choosing in each step among the set of applicable rules, which are ground rules
whose positive body is already satisfied and whose negative body is false or unassigned. This
implies that the solver guesses whether an applicable rule fires, while traditional CDNL-based
search guesses whether an arbitrary atom is true or false. Lazy-grounding solvers need an
additional truth value must-be-true to distinguish whether an atom was derived by a firing
rule or by a constraint [30]. When a conflicting assignment is reached, the solver backtracks.
In this case, CDNL can learn new information from the conflict that is then used to avoid
encountering similar conflicts in the future [16].

3 Research Questions

The remaining performance issues in lazy-grounding ASP solving lead us to the central

research questions of this thesis:

1. How can lazy-grounding solvers be enabled to solve large-scale (industrial) problem in-
stances as efficiently as traditional solvers solve smaller instances?

2. How can conflict learning contribute to that goal, and can conflicts be reused across
problem instances?

3. How can various forms of heuristics, e.g. domain-independent or domain-specific search
heuristics, contribute to that goal?

20:3
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Within the scope of the DynaCon research project?, lazy grounding methods will be evalu-
ated on real-world industrial problem instances from domains like cyber-physical systems,
road traffic control, and railway operation [11].

4  Current Status of the Research

To date, our research efforts have focused on research question 3, i.e. on heuristics. Pre-
liminary results for domain-independent search heuristics have been reported at the 1st
International Workshop on Practical Aspects of Answer Set Programming [28] and at the
LPNMR 2017 Doctoral Consortium [27]. Lazy grounding and other ASP-based approaches
to large-scale product configuration problems have been investigated in a contribution to the
19th International Configuration Workshop [26]. Since then, our research focus has shifted
to domain-specific heuristics. A conference paper on this topic is currently being written.

5 Preliminary Results Accomplished

Source code has been contributed to ALPHA, a lazy-grounding system introduced by Ant-
onius Weinzierl [30]. Contributions are made under an open-source license and are freely
available at https://github.com/alpha-asp.

While initial work aimed at comprehending the solver’s inner workings and making small
improvements and extensions on the go, our focus has soon shifted to the development of
novel search heuristics.

5.1 Heuristics for Lazy-Grounding ASP Solving

ALPHA takes ideas from state-of-the-art ASP solvers that work on a full grounding. There-
fore it is natural to investigate heuristics from such systems and try to apply them in the
solver component of a lazy-grounding system like ALPHA. Heuristics for answer-set solving
can roughly be classified into domain-independent heuristics, which are designed without
a concrete application domain in mind, and domain-specific heuristics, which have to be
tailored to a specific problem. For the class of domain-independent heuristics, two promin-
ent examples are VSIDS [24] and BerkMin [18], which have originally been developed for
SAT but are also successfully employed by ASP solvers (such as CLASP [16] and WASP [1]).
Both assign a so-called activity counter to every variable that counts the number of clauses
involving this variable that are responsible for at least one conflict. These counters are di-
vided by a constant (‘decayed’) periodically to reduce the influence of ‘aged’ clauses. When
the heuristic is asked for an atom, it chooses the most active unassigned atom. This is done
to regard the fact that the set of variables responsible for conflicts may change very quickly.
BerkMin additionally organizes the set of conflict clauses as a chronologically ordered stack,
thereby preferring variables in recent conflicts. Other counters are maintained for picking
truth values.

A direct application of BerkMin or VSIDS to a lazy-grounding ASP system like ALPHA
seems unnatural because such a solver differs in many important ways from a solver adhering
to the classical ground-and-solve paradigm. One major difference is that not all ground rules,
and consequently not all ground atoms, are known at any time to a lazy-grounding solver.
Because of this, a heuristic that applies ideas from BerkMin or VSIDS to lazy grounding can

2 Dynamic knowledge-based (re)configuration of cyber-physical systems, https://isbi.aau.at/dynacon
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only incorporate atoms that are already grounded and thus known to the solver. Another
major difference lies in the solving mechanism: while a traditional ASP solver can choose
any atom to guess on, ALPHA only guesses on atoms representing bodies of applicable rules
(cf. section 2.3).

5.2 Domain-Independent Heuristics

A set of domain-independent heuristics inspired by BerkMin and incorporating new ideas
has been developed for ALPHA and is described in detail in [28], where the results of a basic
experimental evaluation on a number of benchmark problems can also be found. Although
the heuristics presented are still under development and only a brief experimental study was
conducted, promising results can be seen.

The novel family of ‘dependency-driven’ heuristics was repeatedly able to outperform
ALPHA’s naive heuristic as well as two BerkMin-inspired heuristics. It extends the latter by
expanding the scope of atoms considered by the heuristics: If the atom a chosen due to its
activity and recency is a choice point, i.e. it represents the body of an applicable rule, it
is immediately picked. If that is not the case, the set of choice points depending on a are
considered for selection, where a choice point representing the body of a ground rule ro is
said to depend on all atoms occurring in H(ro) U B(ro).

While our results are encouraging, there is obviously more work to be done to improve
the performance of these heuristics and the solver in general.

5.3 Domain-Specific Heuristics

Domain-specific heuristics have been proposed for pre-grounding solvers but are not dir-
ectly transferable to a lazy-grounding system for the same reasons that domain-independent
heuristics are not. HCLASP [15] is an extension of the solver CLASP that accepts heuristic pre-
dicates as part of the declarative problem specification. These predicates allow to modify
priorities and truth preferences of atoms, i.e. the order in which atoms are guessed and
the truth values assigned to them during solving. These modifications can be mixed with
domain-independent heuristics like VSIDS. Heuristic predicates have since been replaced by
heuristic directives in CLASP [13].

HWASP [9], on the other hand, is an extension of the solver wasP that facilitates the
integration of external heuristics implemented in a procedural language which are consulted
at specific points during the solving process via a prespecified API.

Our current efforts are directed at devising an extension of the ASP language by an-
notations or directives to specify heuristics declaratively within the input program. Our
preliminary proposal for such annotations is syntactically similar to optimize statements in
ASP-Core-2 [2] or weak constraints in DLV [21].

A rule to which an heuristic annotation is attached could be of the following form:

hiy...;hg < b1, ... by, not b1, ..., not by. (WAL s: 1, ..., ¢

Here, w and [ are terms denoting weight and level of the heuristics (together called
priority, in which level is more important than weight), both defaulting to 1, and s is a sign
(true or false) stating if the rule shall fire or not fire when selected.

During solving, all rules that have already been grounded and whose condition cq,...,c,
is satisfied by the current partial assignment® are candidates for rule selection. From these

3 To be in line with semantics of default negation, atoms that are still unassigned are assumed false.

20:5
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candidates, the solver will choose the one with the highest priority w@I and assign s to the
atom representing its body. If multiple applicable rules have the same maximum priority, a
fallback heuristics like BerkMin or VSIDS is used to break ties. If s is not specified, the sign
is also determined by a fallback heuristics. If a condition is not satisfied, the corresponding
rule stays applicable but has default weight and level (1@1).

This syntax is still preliminary. We are currently working on extending it with ways to
specify preferences over disjunctive heads or elements of a choice head, and with support for
randomness and restarts. A full proposal together with example programs and a performance
study will form a forthcoming publication.

6 Open Issues and Expected Achievements

So far, we have concentrated on search heuristics, i.e. on branching strategies for the solver
component of a lazy-grounding ASP system. Several other procedures of such a system could
be equipped with heuristic decision-making as well. A prominent group of such heuristics is
formed by grounding heuristics, which are relevant for lazy-grounding systems only. They
deal with questions like how much to ground at a given point in time and when to save
space by forgetting grounded nogoods or doing a restart. Some work in this direction has
already been done for FO(-) [8]. Ways to adapt and extend this for use by a CDNL-based
solver will be explored.

Furthermore, we plan to explore other ways of modifying or enhancing the algorithms of a
lazy-grounding ASP system to improve performance by aiding heuristic decision-making. For
example, program analysis techniques (atom dependencies, strongly connected components,
etc.) could guide the selection or tuning of solver heuristics, and relaxing the restrictions
which atoms we can guess on could open up new ways towards finding answer sets quickly.
By these efforts, we expect the solver heuristics to have more information and operate on a
smaller search space — and thus to perform even better then currently is the case.

Also, our research will not be limited to heuristics but include other important issues of
lazy-grounding ASP systems as well. One such issue is to extend CDNL to generalise learnt
nogoods to the non-ground level and reuse such non-ground nogoods for future problem
instances. Preliminary work on non-ground rule learning has already been done in the scope
of OMIGA [29]. There, a technique called rule unfolding is proposed, which is based on ideas
from propositional resolution and derives new rules that are implied by the original program.
A new rule that is a constraint containing variables can be seen as a non-ground nogood.
To the best of our knowledge, non-ground rule learning has not yet been addressed in
conjunction with CDNL, and the question how such learnt rules can be utilised to accelerate
solving of future problem instances has also remained unstudied.

We expect that several aspects of our work will be beneficial not only for lazy-grounding
systems, but for ground-and-solve systems as well.

7 Conclusion

Lazy grounding is an approach to solve the grounding bottleneck in ASP by interleav-
ing grounding and solving. The performance of current lazy-grounding systems is not on
par with that of systems producing the full grounding upfront, however. The goal of this
thesis is to equip the lazy-grounding approach with novel heuristics and other techniques
to make solving faster. Preliminary results have been accomplished in the area of domain-
independent and domain-specific search heuristics. To the knowledge of the authors, this
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investigation of search heuristics in lazy-grounding ASP systems is the first of its kind.
Future achievements on heuristics and conflict learning are expected to be transferable to
ground-and-solve systems.
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