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Abstract: Prediction models in mobility and transportation maintenance systems have been 

dramatically improved through using machine learning methods. This paper proposes novel 

machine learning models for an intelligent road inspection. The traditional road inspection 

systems based on the pavement condition index (PCI) are often associated with the critical 

safety, energy and cost issues. Alternatively, the proposed models utilize surface deflection 

data from falling weight deflectometer (FWD) tests to predict the PCI. Machine learning 

methods are the single multi-layer perceptron (MLP) and radial basis function (RBF) neural 

networks as well their hybrids, i.e., Levenberg-Marquardt (MLP-LM), scaled conjugate 

gradient (MLP-SCG), imperialist competitive (RBF-ICA), and genetic algorithms (RBF-GA). 

Furthermore, the committee machine intelligent systems (CMIS) method was adopted to 

combine the results and improve the accuracy of the modeling. The results of the analysis 

have been verified through using four criteria of average percent relative error (APRE), 

average absolute percent relative error (AAPRE), root mean square error (RMSE), and 

standard error (SD). The CMIS model outperforms other models with the promising results 

of APRE=2.3303, AAPRE=11.6768, RMSE=12.0056, and SD=0.0210. 

Keywords: Transportation; mobility; prediction model; pavement management; pavement 

condition index; falling weight deflectometer; multilayer perceptron; radial basis function; 

artificial neural networks; intelligent machine system committee 



 

 

 

1. Introduction 

In road transportation, pavement plays a vital role as the part of the road that is in direct 

contact with vehicles. Users' judgment about the quality of road service is primarily predicated 

upon pavement conditions. The Maintenance, Rehabilitation, and Reconstruction (MR&R) 

program of pavement network is a multidimensional decision-making process that takes into 

account several considerations. Highway agencies generally focus on two issues: maximizing the 

efficiency of the pavement network or minimizing agency costs [1]. Both of these issues require the 

estimation of operating conditions of the pavement network to set up pavement management and 

maintenance plans. 

Detection of pavement surface distresses is essential before setting up a maintenance plan to 

determine the pavement operating conditions, as pavement network maintenance operations are 

arranged based on the state of such distresses [2]. Table 1 shows an instance of pavement network 

maintenance operations based on pavement status. 

Table 1. Maintenance program in roads [2] 

Damage (%) Condition Maintenance Program 

< 𝟔 Good Routine Maintenance 

6-11 Moderate Minor Rehabilitation 

11-15 Light Damage Major Rehabilitation 

> 𝟏𝟓 Heavy Damage Reconstruction 

Pavement maintenance has attracted growing attention of pavement engineers in recent years. 

Evaluation of pavement conditions is the most important factor for the effective and economical 

maintenance of the pavement network that can lead to the promotion of service life [3]. The 

condition of an in-service pavement is assessable in two categories including functional and 

structural. Both functional and structural conditions play an important role in pavement 

management at the network-level[4]. In most Pavement Management Systems (PMSs), non-

structural indices such as Pavement Condition Index (PCI) are used as pavement indicators to 

select treatments [3,5] while ignoring the structural conditions of pavement [6]. It has recently been 

proven that there is a statistical relationship between functional and structural conditions [7]. 

Hence in recent years, various agencies around the world have attempted to use indices of 

structural capacity in PMS and decision-making processes [6]. 

A very common index in the PMSs is the PCI, which was developed by the US Army Corps 

of Engineers in 1982. PCI is an indicator of surface functional condition and structural integrity [8]. 

After visual inspection of the pavement network, pavement engineers calculate PCI based on 

distress type, severity, and quantity. This index varies from zero for a virtually unusable pavement 

to 100 for a perfect pavement [9]. On the other hand, the assessment of structural conditions 

generally performed by non-destructive tests such as Falling Weight Deflectometer (FWD) [10-13]. 

In the FWD test, an impulsive load applies to the pavement surface for 25-30 ms and the surface 

deflections are recorded by seven (or more) sensors. The sensors measurements are analyzed by 

back-calculation software such as ELMOD and MODULUS and useful information, including 

overlay thickness, layers modulus, and remaining life is determined [14-16]. 

Nowadays, PCI calculation in many organizations is done using automated distress 

identification from digital images but some organizations are still using traditional methods for 

PCI determination. The traditional process of calculating PCI in a pavement segment involves the 



 

 

visual inspection of pavement. This type of inspection has always raised safety concerns among 

engineers. When an inspector is recording surface pavement distresses, the possibility of clashing 

into road traffic is relatively high. Another drawback of the PCI calculation process is concerned 

with potential human error in identifying and recording pavement distress. Human error can affect 

the accuracy of the calculated PCI. In this paper, the authors propose a novel method for estimating 

PCI in flexible pavements. In the proposed method, the PCI of a pavement segment can be 

calculated based on the surface deflections recorded in the FWD testing. Another major incentive 

of the authors was the inadequacy of studies on the link between PCI and pavement surface 

deflection in the FWD testing. 

To implement the proposed method, the authors selected 236 pavement segments from 

Tehran-Qom freeway in Iran. First, PCI was calculated by inspecting all segments and recording 

surface distresses data. Then, all the segments were subjected to FWD testing and the average 

deflection of each segment was determined. After completing the database, the analysis stage was 

carried out with the help of Machine Learning (ML) techniques. ML techniques are a sub-category 

of computational intelligence. These techniques chiefly applied for function approximation, 

classification, pattern recognition, etc. [17]. ML include different methods such as ANN, RBF, SVM, 

etc. and many papers have been published on the application of these techniques in the PMS 

studies [18-29]. In this paper, Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) 

neural networks were used for data analysis. The optimization of MLP neural network was 

conducted by Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms and 

RBF neural network was optimized by Genetic Algorithm (GA) and Imperialist Competitive 

Algorithm (ICA) algorithms. Therefore, the analytical methods used in this paper are MLP-LM, 

MLP-SCG, RBF-GA, and RBF-ICA. Finally, to obtain more accurate results, all four methods were 

merged with Committee Machine Intelligent Systems (CMIS) in a single model. The results of these 

five methods were assessed using Average Percent Relative Error (APRE), Average Absolute 

Percent Relative Error (AAPRE), Root Mean Square Error (RMSE) and Standard Error (SD) criteria 

to determine the accuracy of each method. 

The proposed method enhances the safety of the PCI determination process by eliminating 

the field inspection of the pavement. Also, by removing the human factor from the inspection 

process, the potential human error is eradicated and the results is boosted. Furthermore, the use of 

FWD test results to estimate PCI provides to the overlapping and cost-effectiveness of the 

pavement network maintenance activities. 

This paper is organized as follows. The second section reviews relevant studies in the 

literature. In the next section, the research methodology is presented. This section also includes an 

introduction to PCI and its calculation method, FWD test, the freeway understudy, and data 

analysis methods. At the end of this section, the validation criteria of the results are presented. The 

fourth section discusses the results and conclusions are drawn in the fifth Section. 

2. Literature Review 

In addition to the conventional method of determining PCI, several other attempts have been 

made to predict this index. PCI prediction methods can be broadly divided into three categories: 

• PCI prediction methods based on other pavement quality indices 

• PCI prediction methods based on pavement age 

• PCI prediction methods based on pavement surface deflection 

The first category represents the most frequent method used by other researchers. In this 

category, PCI of flexible pavement is determined based on other indices that manifest pavement 

quality. Surface pavement distresses have a direct relationship with other indicators of pavement 

distress, including roughness and driving quality. Table 2 depicts a number of methods in this 

category. 

 

 

 



 

 

Table 2. PCI prediction methods based on other pavement quality indices 

Model Equation Description 

Park et al. [30] 
log(PCI) = 2 − 0.436 log(IRI) 

IRI: International roughness 

index. 

Dewan and 

Smith [31] 
PCI = 153 −

IRI

0.0171
 

IRI: International roughness 

index. 

Arhin et al. [32] 

PCI = (A × IRI) + K + ε 

IRI: International roughness 

index, 

A and K: Regression 

coefficients, 

ε: Error 

Korea institute of 

construction 

technology [33] NHPCI = ((0.004xRD) + (0.003xCR)

+ (0.0183xIRI) + 0.33)−2 

NHPCI: National highway 

pavement condition index, 

xRD: Ruth depth (mm), 

xCR: Crack ration (%), 

xIRI: International roughness 

index (m/km). 

Korea 

expressway 

corporation 

research institute 

[33] 

HPCI = 5 − 0.75RD1.2 − 0.54IRI0.8

− 0.9 log(1 + SD) 

HPCI: Highway pavement 

condition index, 

RD: Ruth depth (mm), 

IRI: International roughness 

index (m/km), 

SD: Surface distress (crack 

quantity converted to area) 

(m2). 

Ningyuan et al. 

[34] 

PCI = DMI × Ci × √0.1 × RCI × 10 

DMI: Distress manifestation 

index, 

Ci: Calibration coefficient 

for pavement type, 

RCI: Riding comfort index. 

Khattak et al. [35] 

PCI

= Max {

1. Avg (RNDM, ALCR, PTCH, RUFF, RUT) −

0.85STD(RNDM, ALCR, PTCH, RUFF, RUT)
2. Min (RNDM, ALCR, PTCH, RUFF, RUT)

 

RNDM: Random cracking 

index, 

ALCR: Alligator cracking 

index, 

PTCH: Patch index, 

RUFF: Roughness index, 

RUT: Rutting index. 

In the second category of PCI prediction methods, researchers focus on pavement age as a 

major prediction factor. The pavement age is directly linked to pavement distresses so that different 

types of distress are more likely to appear in an old pavement segment. Table 3 reveals examples 

of methods in this category. 

Table 3. PCI prediction methods based on pavement age 

Model Equation Description 

South Dakota 

Department of 

Transportation 

[36] 

PCI = a + (b × agec) 

a: Maximum value of PCI, 

Age: Age of pavement 

(year), 

b: Slop coefficient of 

performance curve, 

c: Power coefficient for 

performance curve. 



 

 

Oklahoma 

airfield 

pavement 

management 

system [37] 

PCI = a0 + a1x + a2x2 + ⋯ + anxn 

ai: Polynomial parameters, 

x: Pavement age, 

n: Polynomial order. 

Michles [38] 
PCI = 71.09 + 27.42(Treatment type)

− 4.07(Age) 

Treatment type: 0 for 

microsurfacing and 1 for 

thin overlay, 

Age: Pavement age (year). 

 

The third category of PCI prediction methods involves the pavement surface deflections in 

the FWD test. FWD is a device used to evaluate the structural capacity of pavements. The 

appearance of different types of surface distress on pavements and their expansion reflects the 

deterioration of the structural capacity of pavements. Given the above points, there is a mutual 

relationship between the FWD testing process and surface distresses of pavement. The paucity of 

research in this area was one of the reasons prompting the authors to investigate the relationship 

between pavement deflection data and the PCI index. One of the few studies that fall into this 

category of PCI prediction methods is the research undertaken by O'Brien et al. They developed a 

model for predicting PCI, which in addition to deflections of surface pavement, drew on traffic 

data, pavement age, and type of pavement[39]. Eq.1 shows the model proposed by O'Brien et al. 

PCI = 96.6 − [(0.000572 × AGE2 × LPMTOT × DIFF × AREA)

+ (0.3062 × AGE
1
4 × AGESOL2 × DIFF2)

+ (0.00156 × AGE
1
2 × AGETOT × LPMTOT × DIFF × AREA)] 

(1) 

where, AGE: Age of pavement since last overlay (yaer), LPMTOT: Log of weighted traffic total 

(veh/day), and DIFF: Normalized deflection basin slope, 

DIFF =
D0 − D12

D0

 (2) 

where, Di: Pavement surface deflection at i inches from center of loading plate in FWD test, and 

AREA: Area of FWD deflection basin at the high load level (in.2/103), 

AREA = 12(D0 + D12) (3) 

where, AGESOL: Age of pavement to last overlay (year), and AGETOT: Total age of pavement 

(year). 

The data used by O'Brien et al. were obtained from Virginia in the United States. In this study, 

the pavement surface deflections data were collected using Dynatest 8000 FWD. Statistically, Eq.1 

is moderately accurate, for a correlation coefficient (R2) and a standard error (σ) of 0.586 and 6.88 

were obtained, respectively[39]. 

Safety has always been a key factor in transportation engineering. As such, one major strength 

of the method proposed in this paper is that it eliminates the need for field inspection of pavement 

surface distresses, which significantly promotes inspection safety. On the other hand, whenever 

the human factor is involved in scientific processes, the possibility of error induced by inaccuracy 

and distraction cannot be ruled out. Thus, the accuracy of the PCI estimation process could be 

improved by eliminating the human factor. Another strength of this study lies in its application of 

FWD. Due to its very accurate simulation of traffic load, FWD is a valid test endorsed by all 

transportation agencies and is extensively used in many parts of the world for structural evaluation 

of pavements. Therefore, the simultaneous use of FWD testing for structural evaluation of the 

pavement network and PCI estimation contributes to the overlapping of maintenance activities 



 

 

and diminishes the consumption budget. The last achievement of this is concerned with its role in 

filling the research gap in this area, which could lay the ground for future research in this field. 

 

 

3. Methodology 

3.1. Pavement Condition Index (PCI) 

One of the most common indices used to evaluate flexible pavement is PCI. Introduced by the 

US Army Corps of Engineers, this index is based on visuals inspection of pavement [40,41]. The 

PCI value is a number from 100 to zero, with 100 representing the best pavement conditions and 

zero indicating the worst pavement conditions. To calculate PCI in a pavement segment, initially, 

number 100 is assigned to that segment. Then, based on the type, extent, and severity of the 

pavement distresses, a Deduct Value (DV) is subtracted from until PCI is finally obtained[42]. Table 

4 shows the relationship between the pavement status and the value of PCI. 

Table 4. Rating scale of PCI [43] 

PCI 0 - 10 10 - 25 25 – 40 40 – 55 55 – 70 70 – 85 85 - 100 

Condition Failed Serious Very poor Poor Fair Satisfactory Good 

The process of PCI calculation in flexible pavements is summarized as follows [43,44]: 

1. Determine the type, extent, and severity of pavement distresses. 

2. Determining DV for each distress based on its corresponding curve. Figure 1 shows an 

example of such curves. 

 

Figure 1. Typical deduct value curve [44] 

3. Reducing the number of DVs to the maximum number allowed by Eq.4: 

mi = 1 +
(100 − HDV) × 9

98
 (4) 

where, mi: Maximum allowable number of deduct values, and HDV: Greatest individual deduct 

value. 



 

 

4. Determining the number of DVs greater than 2 (q). 

5. Determining Total Deduct Value (TDV), which is the sum of DVs. 

6. Determining Corrected Deduct Value (CDV) based on correction curves using q and TDV. 

Figure 2 shows an example of correction curves. 

 

Figure 2. Typical corrected deduct value curve [44] 

7. Decreasing the smallest DVs larger than 2 to 2. 

8. Repeating steps 4 to 7 until q reaches 1. 

9. Determining the maximum CDV and calculating the PCI using Eq.5: 

PCI = 100 − CDVmax (5) 

3.2. Falling Weight Deflectometer (FWD) 

Structural evaluation of the pavement network is one of the requirements of pavement 

management systems and FWD is the most common test for structural evaluation of pavement[45]. 

This test is widely used by pavement engineers due to the desirable simulation of traffic load. In 

this experiment, a loading plate with a radius of 30 cm and 7 to 9 sensors installed at different 

distances from the center of the loading plate is placed on the pavement surface. The FWD applies 

a type of impulsive load to the pavement surface. To do so, a weight is dropped from a certain 

height on the loading plate[16]. Figure 3 shows the FWD load application system. 

 

Figure 3. Loading mechanism in FWD [46] 



 

 

After the load is applied to the pavement surface, it generates vertical deflections, which are 

recorded by the sensors. In this study, the resulting deflections are recorded by one geophone 

below the loading plate and six other geophones that are 20, 40, 60, 90, 120 and 150 cm away from 

the center of the loading plate. Deflections are transmitted to the central computer for later 

applications. Useful information such as remaining service life of the pavement, overlay thickness, 

and layers module can be obtained from the pavement surface deflections [16]. 

3.3. Case study  

In this paper, 236 pavement segments were adopted from the Tehran-Qom freeway in Iran to 

implement the proposed theory. The understudy route is part of the artery between the capital and 

southern Iran, which is located in two provinces of Tehran and Qom. The freeway consists of 3 

lanes in each direction with a width of 3.65 m for any lane. This freeway has a flexible pavement. 

A total of 236 pavement segments were selected from this freeway and the PCI was calculated as 

described in the subsection pavement condition index. After calculating PCI, a load was applied to 

the pavement using an FWD equipped with 7 pavement deflection recording sensors. These 

sensors recorded the mean deflection in all pavement segments. 

3.4. Analysis methods 

Artificial neural networks constitute a set of computational intelligence inspired by biological 

neural systems such as the human brain. Neural networks can be used to explore complex 

relationships between inputs and outputs of a system. Each neural network comprises two main 

elements: the processor elements (neurons and nodes) that process information, and weights, 

which are responsible for establishing connections between neurons [47]. The most common 

artificial neural networks are MLP and RBF, which have been used in this paper. 

3.4.1. Multi-layer Perceptron (MLP) Neural Network 

There are three types of layers in MLP. The first layer is the input layer, which is concerned 

with the input data. The second type of layer is the output layer that deals with the model output. 

Between the input and output layers, there are intermediate layers known as hidden layers. The 

number of neurons in the input layer is equal to the number of input variables, while the output is 

generally the parameter considered for the analysis. The number of hidden layers and neurons in 

each hidden layer is determined experimentally. Generally, a hidden layer is sufficient for most 

analyses, but in highly complex systems, two hidden layers could be used. Each neuron in the 

hidden layer is connected to all the neurons in its preceding and succeeding layers [48]. The amount 

of each neuron in the hidden layer and the output layer is determined based on the amount of each 

neuron in the previous layer, weights, and bias. To do so, the amount of each neuron in the 

previous layer is multiplied by its weight and then the sum of the weighted values of neurons in 

the previous layer is obtained and combined with the bias. The obtained value is passed through 

an activation function and transferred to the next layer [48]. Various activation functions are used 

in MLP, including Tansig, Linear, Sigmoid and Tanh. 

Optimization algorithms used for model training play a key role in MLP performance. In other 

words, training optimization in a neural network is equivalent to minimizing a general error 

function, which is a multivariate function and depends on the weights of the network. In this study, 

LM and SCG algorithms have been used to optimize MLP. 

The LM algorithm introduced by Kenneth Levenberg and Donald Marquardt is a simple and 

stable convergence algorithm, which represents the most prevalent way of optimizing weights and 

biases in MLP networks [49]. This algorithm is a combination of the steepest descent method and 

the Gauss-Newton algorithm, which is designed to alleviate computations by excluding the 

Hessian matrix [50]. Interested readers can refer to [51] for further details regarding the application 

of the LM algorithm. 



 

 

Another set of training algorithms for MLP neural networks is the Conjugate Gradient (CG) 

algorithms, for which a variety of algorithms have been presented so far. In conventional CG 

algorithms, the step size is estimated using the line search technique, which escalates the 

computational complexity. The SCG algorithm used in this paper is a CG algorithm that eliminates 

the line search technique and utilizes a step size scaling mechanism, thus accelerating the network 

learning process [52,53]. 

The MLP neural network used in this article has 40 neurons in 4 hidden layers for LM and 

SCG algorithm. Tansig, Sigmoid, Tansig, and Tansig activation functions, respectively, were used 

in hidden layers. 

3.4.2. Radial Basis Function (RBF) Neural Network 

RBF is one of the most popular neural networks introduced by Broomhead and Lowe in 1988. 

Employed for both classification and regression purposes, this neural network is inspired by 

approximation function theory. The RBF generally has a three-layer feed-forward architecture in 

which an input layer connects to the output layer via a hidden layer [54,55]. Figure 4 illustrates the 

structure of the RBF neural network adopted in this paper.  

 

 

Figure 4. Structure of RBF neural network used in this paper 

The input layer contains seven nodes (input variables including D1, D2, D3, D4, D5, D6, and D7). 

The main member of the RBF network is the hidden layer that transfers information from the input 

layer to the hidden space. Each point in the hidden layer is the center of a specific space with a 

known radius [56]. For inputs of research (Di), RBF network calculates PCI as Eq.6 [57]: 

PCI = ∑ wjφj(‖Di − cj‖)

N

j=1

 (6) 

where, wj: Connection weight, φj: Radial basis function, and ‖Di − cj‖: Euclidian distance between 

input data and radial function center. 

In this paper, GA and ICA algorithms are used to optimize the RBF neural network. GA is a meta-

heuristic algorithm inspired by natural selection processes and used for search and optimization 

problems. In this algorithm, a set of possible solutions, phenotype, is developed for an optimization 

problem to find better solutions. Each person has a set of chromosomes and genotypes that could 

be modified or stimulated. In this algorithm, a population of individuals generated in a random 



 

 

process begins to evolve. The fitness (target function value) of each individual in the population is 

determined and the fittest individuals are selected to produce the next generation. The new 

generation will be used in the next iteration of the algorithm. This process is sustained until the 

maximum number of iterations (or the highest number of generations) or the desired accuracy in 

the optimization problem is achieved [58,59]. Figure 5 shows the GA algorithm. 

 

Figure 5. A schematic of GA method in this study 

ICA is an algorithm inspired by colonial rivalry, representing an evolutionary algorithm for 

optimization problems. This algorithm was first proposed by Atashpaz-Gargari and Lucas [60]. 

Like other evolutionary algorithms, ICA begins with an initial population (countries of the world). 

These countries are split into two categories including imperialist states and colonies. All colonies 

are divided among the imperialists incommensurate with their power and dominance. Each 

empire consists of an imperialist and a few colonies. The power of each empire corresponds to the 

fitness value at the GA algorithm and embraces the power of the colonial state and its colonies [60]. 

Over time, the colonies begin to launch a movement against the imperialists, and some powerful 

colonies may be able to seize the power of the empire. In the next stage, a rivalry breaks out 

between the imperialists with the strong empires gradually growing in strength and the feeble 

empires collapsing. The movement of colonies against the imperialists, the rivalry of imperialists, 

and the dissolution mechanism continue until all countries merge into one state with only a single 

empire while other countries serve as its colonies. Under these conditions, since all colonies are in 

a relatively identical state and they all have the same position and value, the algorithm ends [60,61]. 

Figure 6 shows the flowchart of the ICA algorithm. 



 

 

 

Figure 6. Flowchart of ICA 

For GA and ICA algorithms used in this study, the number of neurons and the distribution 

coefficient were 55 and 0.37, respectively. 

3.4.3. Committee Machine Intelligent System (CMIS) 

The standard procedure in intelligence analysis is to consider several models for analysis and 

then select the best model based on the results. In this process, efforts made for the abandoned 

models are virtually in vain. This drawback could be fixed by a committee machine. In a committee 

machine, the results of different models are combined to reach a more accurate answer. The 

important thing in a committee machine is how to integrate models. In simple arithmetic 

averaging, all solutions have the same contribution, but in weighted averaging, the solutions are 

weighted based on their accuracy and then incorporated into the final solution [62-64]. In this 

paper, the CMIS model was presented by using MLP-LM, MLP-SCG, RBF-GA, and RBF-ICA 

neural networks. Weighted coefficients were optimized by Solver. Table 5 shows the final weighted 

coefficients in CMIS. 

Table 5. Coefficients of CMIS 

No. of coefficients Coefficients 

C1 0 

C2 0.657295 

C3 0.227583 

C4 0.069749 

C5 0.04656 

3.5. Performance Criteria 

In any scientific study, after analyzing data and calculating the analysis output, the results 

need to be reviewed and verified. Four statistical criteria have been used to validate the results in 



 

 

this study including APRE, AAPRE, RMSE, and SD. These criteria are calculated according to the 

following Eqs. 7 to 10 [65]: 

APRE =
100

N
∑

PCIobserved,i − PCIpredicted,i

PCIobserved,i

N

i=1

 (7) 

AAPRE =
100

N
∑

|PCIobserved,i − PCIpredicted,i|

PCIobserved,i

N

i=1

 (8) 

RMSE = √
1

N
∑(PCIobserved,i − PCIpredicted,i)

2

N

i=1

 (9) 

SD = √
1

N − 1
∑ [

PCIobserved,i − PCIpredicted,i

PCIobserved,i

]

2N

i=1

 (10) 

All the above four statistical criteria represent some kind of computational errors, with smaller 

values close to zero indicating higher accuracy of the modeling results. By examining Eqs. 7 to 10, 

it becomes clear that APRE can be negative and the other three criteria are always positive. 

4. Results and Discussion 

This section presents and discusses the achieved results. As mentioned in the previous section, 

five methods MLP-LM, MLP-SCG, RBF-GA, RBF-ICA, and CMIS were applied to the PCI 

prediction. The modeling input in this study is the pavement surface deflection, which is collected 

by FWD. Figure 7 shows the relative impact of recorded deflections on PCI. In this figure, D1 to D7 

represents the deflections in geophones 1 to 7, respectively. As shown in Figure 7, geophones 1 to 

3 is inversely related while other geophones are directly related to PCI. The deflections in geophone 

7, which is the furthest from the loading spot, wield the highest impact on PCI. 

 

Figure 7. The relative effect of input parameters on PCI 
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Table 6 lists the statistical parameters of APRE, AAPRE, RMSE, and SD for all the models 

developed in this paper. Considering AARPE and APRE values for the CMIS model (11.67% and 

2.33%, respectively) and lower RMSE and SD errors in the CMIS method compared to other 

models, this model yields the highest accuracy for predicting PCI among the developed models. 

Table 6. Performance criteria of the all developed models for prediction of PCI 

Model Data APRE (%) AAPRE (%) RMSE SD 

CMIS 

Train 3.5636 11.6098 12.0543 0.020082 

Test -2.632 11.9464 11.807884 0.025687 

Total 2.3303 11.6768 12.005653 0.021081 

MLP-LM 

Train -1.2093 14.9275 14.541231 0.078995 

Test 4.7599 12.7179 14.330003 0.027158 

Total -0.02115 14.4877 14.499431 0.068174 

MLP-

SCG 

Train -0.1949 15.5046 14.167214 0.070149 

Test 6.6833 13.5662 15.145498 0.031747 

Total 1.1742 15.1187 14.367255 0.062318 

RBF-GA 

Train -0.4446 11.8509 13.003455 0.032987 

Test 14.2997 19.406 58.919147 0.360989 

Total 2.4902 13.3547 28.747779 0.096868 

RBF-ICA 

Train -0.5063 12.6392 17.077364 0.057202 

Test 16.7628 25.886 45.214386 0.45286 

Total 2.9311 15.276 25.308415 0.134177 

According to Figure 8, one can visually analyze the quality of all models developed to predict 

PCI of asphalt pavement. In this figure, a graph is presented for all five models proposed in this 

research. In each graph, the horizontal axis represents PCIobserved values and the vertical axis 

represents PCIpredicted values. In Figure 8, the higher is the data concentration around the Y=X line, 

the higher is the accuracy of the model in predicting PCI. As can be seen in this figure, the 

concentration of points around Y=X line for the CMIS model is higher than other models, so this 

model has greater precision in predicting PCI. 



 

 

 

Figure 8. Cross-plot for developed models to prediction of PCI 
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Figure 8. Continued 
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Figure 9 reveals the relative error distribution curves. In general, and for each model, the 

closer the data points are to the horizontal line of zero error, the greater the accuracy of the model 

is. According to Figure 9, the highest relative error between PCIobserved and PCIpredicted in the CMIS 

model is less than 33%, which is superior to other models. Thus, Figure 9 also confirms the greater 

accuracy of the CMIS model compared to other models. 

 

Figure 9. Relative error between the observed and predicted PCI versus observed PCI 
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Figure 9. Continued 

The cumulative frequency curve of AAPRE for models developed in this paper is presented 

in Figure 10. The analysis of curves in this figure suggests that the quality of results in models 

based on the RBF neural network is higher than models based on MLP neural network, especially 

RBF-GA model, which has a lower error in PCI prediction. The curve of the CMIS model, which is 

the median of the results achieved from four MLP-LM, MLP-SCG, RBF-GA and RBG-ICA methods, 

lies in the middle of these four methods. However, the endpoint of the CMIS curve is in a better 

position than all four methods, which corroborates the higher quality of the CMIS model in PCI 

prediction. 

 

Figure 10. Cumulative frequency curve of average absolute relative error for developed models in 

this study to predict PCI 
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5. Conclusion 

In this paper, the authors attempted to present a method for estimation the PCI based on 

pavement surface deflections in flexible pavements. To implement the proposed theory in this 

paper, data set including PCI and pavement surface deflections were collected based on FWD 

testing of 236 pavement segments taken from Tehran-Qom freeway in Iran. The data set was 

analyzed by two MLP and RBF neural networks. LM and SCG algorithms for optimization of MLP 

neural network and ICA and GA algorithms for optimization of RBF neural network were used. 

To improve the results of four neural networks adopted in this study, the CMIS method was 

employed. The results of this paper were verified by four statistical criteria including APRE, 

AAPRE, RMSE, and SD. For CMIS method, the values of these criteria were 2.3303, 11.6768, 12.0056 

and 0.0210, respectively. 

The proposed method in this paper helps pavement engineers to use the non-destructive test 

(FWD) results for determining PCI rather than a visual survey by the inspector. Therefore, the 

challenges of the traditional procedure for PCI calculation (safety and potential human error) are 

eliminated. On the other hand, since FWD is generally used in pavement network maintenance 

programs, the method proposed provides overlapping in pavement maintenance activities and 

thus saving time and expense. 

For future research, the authors suggest that modeling becomes more complete. For instance, 

the results of other non-destructive tests such as GPR are also used. On the other hand, after 

approving in the study phase, new deflectometers (such as RWD and TSD) can be used for 

recording the pavement surface deflections. Because of having the speed of traffic, these equipment 

have less interference in traffic flow. 

 

Acronyms  

Abbreviation Description  

PCI Pavement Condition Index 

FWD Falling Weight Deflectometer 

MLP Multi-layer perceptron 

RBF Radial Basis Function 

MLP-LM Multi-layer perceptron Optimized by Levenberg-Marquardt Algorithm 

MLP-SCG Multi-layer perceptron Optimized by Scaled Conjugate Gradient Algorithm 

RBF-ICA Radial Basis Function Optimized by Imperialist Competitive Algorithm 

RBF-GA Radial Basis Function Optimized by Genetic Algorithm 

CMIS Committee Machine Intelligent Systems 

APRE Average Percent Relative Error 

AAPRE Average Absolute Percent Relative Error 

RMSE Root Mean Square Error 

SD Standard Error 

MR&R Maintenance, Rehabilitation, and Reconstruction 

PMS Pavement Management System 

ML Machine Learning 

DV Deduct Value 

TDV Total Deduct Value 



 

 

CDV Corrected Deduct Value 

CG Conjugate Gradient 
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