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Abstract— Densimetric Froude (Fr)  is the minimum velocity 

required to prevent sediment deposition in pipes. Prediction of 

Fr is of utmost important in numerous applications in civil 

engineering.  In this paper through using a new hybrid method. 

Genetic Algorithm (GA) is used for optimum selection of 

membership functions of Adaptive Neuro-Fuzzy Inference 

System (ANFIS), and Singular Value Decomposition (SVD) 

method is used to compute the linear parameters of ANFIS’s 

results section (ANFIS-GA/SVD). Also, two different target 

functions known as training error (TE) and prediction error 

(PE) by Pareto curve, the trade-off between these functions is 

selected as the optimal modeling point. First, different models 

will be presented using the parameters affecting Fr prediction, 

classifying them in different groups; then the Fr parameter will 

be predicted for all the different models through utilizing three 

different sets of data and the ANFIS-GA/SVD technique. The 

results of the models indicate that the best Fr prediction is 

obtained when independent parameters such as volumetric 

sediment concentration (CV), ratio of median diameter of 

particle size to pipe diameter (d/D), ratio of median diameter of 

particle size to hydraulic radius (d/R) and overall friction factor 

of sediment (λs) use as input variables in prediction of Fr. A 

sensitivity analysis is also conducted for the purpose of 

examining the effect of each of the dimensionless parameters on 

Fr prediction accuracy. Comparing the results of the suggested 

models with the existing regression-based equations shows that 

ANFIS-GA/SVD (R2=0.986, MAPE=4.397, RMSE=0.206, 

SI=0.053, ρ=0.026, BIAS=-0.025) is more accurate than the rest 

of the models. 

Keywords—ANFIS, bedload, Genetic algorithm (GA), 

sediment transport, sensitivity analysis, Singular Value 

Decomposition (SVD), machine learning  

I. INTRODUCTION 

Storm waters usually wash away solid matter in sewers, 
transporting it along paths routed according to velocity and the 
path slope. The sediments get deposited on the channel bed in 
situations when the flow is passing through the pipe channel, 
and the gradient (or the flow velocity in a constant gradient) is 

less than the proper degree for the flow to pass on without 
solid matter being deposited. If the deposited solids are not 
washed away in a specific period of time, they will be 
consolidated and increase the bed roughness also decreasing 
the cross-sectional area of the flow, which in turn leads to 
reeducation of the transport capacity. 

One of the simplest methods for determining the minimum 
velocity required to prevent solid matter deposition is to use 
the minimum criterion of shear stress velocity. The suggested 
values for velocity and shear stress have been 
comprehensively presented by Ebtehaj et al. [1] (see 
Introduction). These values often over- or underestimates the 
minimum velocity, since it does not consider the hydraulic 
conditions of the flow and the channel [2]. Therefore, many 
researchers have presented various equations for the purpose 
of determining the minimum velocity through using various 
analytical and experimental studies and considering different 
dimensionless parameters [3-13]. Due to the complex problem 
of physics of sediment transport in channel pipes and lack of 
sufficient knowledge regarding it, the regression-based 
equations present good results only mostly when the 
conditions are similar to those of the data used to predict the 
model, as they perform differently when the conditions differ 
from the conditions under study [1]. 

Data-mining methods have been widely used in recent 
years in solving different water engineering problems, since 
they are very applicable for modeling the sort of problems that 
entail insufficiently understood physics, lending them 
compatible for making predictions about them [14-19]. Ab 
Ghani and Azamathulla [20] used five different sets of data, 
using gene expression programming (GEP), presenting an 
equation for sediment transport in smooth and rough bed 
channels. Guven and Kisi [21] used the linear genetic 
programming (LGP) and estimated the daily suspended 
sediments in the Tongue River in Montana, USA. Comparing 
the LGP with other methods indicated that this method 
performs better in comparison with artificial neural networks 



(ANN) and GEP. Azamathulla et al. [22] used ANFIS and 
modeled sediment transport in a sewer pipe. They 
demonstrated that using ANFIS leads to satisfactory results 
and that this method can be a suitable replacement for the 
existing ones. Ebtehaj and Bonakdari [23] used a hybrid ANN 
method with evolutionary algorithms such as multilayer 
perceptron imperialist competitive algorithm (MLP-ICA) and 
multilayer perceptron genetic algorithm (MLP-GA), 
examining sediment transport prediction through using the 
concept of self-cleaning in the sewers. Their results indicated 
that in comparison with using the backpropagationn 
algorithm, using the evolutionary algorithms increases the 
prediction accuracy. 

Ebtehaj and Bonakdari [24] used ANFIS and studied 
sediment transport in a sewer. The authors advise the 
application of GA for optimum selection of membership 
functions of ANFIS. This paper persists the prediction of the 
sediment transport without deposition in sewers by increasing 
ANFIS network performance and using a wide range of data. 
For this purpose, the ANFIS networks, based on a hybrid of 
the SVD and genetic algorithm (ANFIS-GA/SVD) for the 
optimum selection of the Gaussian membership function of 
the linear parameters was used for the concluding and premise 
parts, respectively. The parameters influencing the sediment 
deposition in channel pipes were determined by categorizing 
them first in a dimensionless manner in different groups, i.e., 
“flow resistance”, “movement”, “transport”, “transport 
mode”, “sediment”. Furthermore, various models are given to 
examine the effect of each of the dimensionless parameters. 
Following that, the Fr prediction results obtained by using the 
proposed model compared with the results of ANFIS and 
regression-based equations. 

II. MATERIAL AND METHODS 

A. The data used 

To examine the performance of the models presented, in 
this study 218 different data were used, which were collected 
under various hydraulic conditions and from three different 
sets of data, consisting those of Ab Ghani [25], Ota and Nalluri 
[26] and Vongvisessomjai et al.’s [12] data. Ab Ghani [25] 
had conducted his experiments to examine sediment 
deposition behavior at the limit of deposition, considering 
20.5 m in length for three diameter sizes of 154, 305 and 450 
mm for the smooth bed tests. In addition, the pipe in 305 mm 
was utilized for the rough bed test. Ota and Nalluri [26] 
examined the effect of granulation on sediment transport in 
their experiments. Their experiments were conducted on a 25 
m long pipe with a diameter of 225 mm. In their experiments, 
the Manning’s roughness coefficient was equal to 0.01, with 
the gradient and roughness of the pipe measuring 0.00315 and 
0.24 mm, respectively. Vongvisessomjai et al. [12] also 
conducted a series of experiments for the purpose of 
presenting a number of equations to determine the minimum 
velocity required to prevent sediment deposition at the limit of 
deposition. The length and diameter of the pipes used in these 
experiments were smaller than those in the experiments 
conducted by Ab Ghani [25] and Ota and Nalluri [26]. They 
used 16 m long pipes of 150 and 100 mm in diameter, while 
the measurements were taken at two different cross-sections, 
six meters away from each other, 4.5 m from the beginning of 
the pipe and 5.5 m from the end of the pipe. The Manning’s 
roughness coefficient is 0.0125. The basic statistical indexes 
of all the data sets is given in Table 1.

TABLE I.  BASIC STATISTICAL INDEX FOR DIFFERENT DATA SETS 

Index Reference CV d/R d/D D2/A λs Dgr R/D Fr 

Min 

Ghani [23] 1.00E-06 6.33E-03 1.51E-03 8.31E-01 1.29E-02 5.40E+00 1.08E-01 1.52E+00 

Ota and Nalluri [26] 5.94E-05 9.86E-02 2.49E-02 3.51E+00 2.99E-02 1.42E+02 3.82E-01 6.32E+00 

Vongvisessomjai et al. [12] 9.00E-05 2.53E-02 4.30E-03 1.61E+01 5.32E-02 1.09E+01 2.80E-01 8.98E+00 

Max 

Ghani [23] 1.28E-03 2.46E-01 3.70E-02 1.06E+01 3.92E-02 9.75E+01 3.02E-01 1.13E+01 

Ota and Nalluri [26] 2.02E-05 9.45E-03 3.16E-03 9.12E-01 2.49E-02 1.80E+01 2.24E-01 1.86E+00 

Vongvisessomjai et al. [12] 4.00E-06 7.14E-03 1.33E-03 3.41E+00 3.83E-02 5.06E+00 8.00E-02 2.84E+00 

Mean 

Ghani [23] 2.69E-04 7.21E-02 1.34E-02 4.21E+00 2.29E-02 4.44E+01 2.06E-01 3.85E+00 

Ota and Nalluri [26] 3.48E-05 3.85E-02 1.16E-02 1.83E+00 2.67E-02 6.60E+01 3.09E-01 3.40E+00 

Vongvisessomjai et al. [12] 3.36E-05 1.49E-02 2.62E-03 5.58E+00 4.42E-02 7.92E+00 1.85E-01 5.62E+00 

Standard 

Deviation 

Ab Ghani [23] 2.46E-05 4.59E-03 7.63E-04 1.76E-01 5.30E-04 2.51E+00 4.26E-03 1.73E-01 

Ota and Nalluri [26] 1.55E-06 3.39E-03 9.57E-04 1.46E-01 2.57E-04 5.45E+00 8.51E-03 1.47E-01 

Vongvisessomjai et al. [12] 7.14E-06 2.67E-03 4.70E-04 1.05E+00 7.50E-03 1.40E+00 3.29E-02 9.85E-01 

B. ANFIS 

ANFIS is a method which includes a set of IF-THEN rules 
related to the Takagi–Sugeno–Kang (TSK) type fuzzy set, 
which was used for the purposes of modeling and mapping 
between the inputs and outputs of the model. The objective of 

the problem is to find the f


 function in such a manner that 

the obtained result will almost equal the actual value obtained 
from the experiments for f. Therefore, at least the second 
degree of the mean of the difference between the predicted 



values and the actual values must be minimized in order to 

predict the output parameter y


 for an input vector in the form 

of X=(x1, x2, x3, …, xn) in Eq. (1) as follows: 
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Therefore, the TSK-type fuzzy set will be designed 
through using m different observations of the “n input- single 
output” set for the (Xi, Yi) pairs by using one of the fuzzy sets. 
The fuzzy rules presented in the ANFIS modeling could be 
generally shown as below: 
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set of parameters obtained from each rule. Therefore, the 
entire fuzzy sets in the Xi space could be expressed by Eq. (3), 
as follows: 

 },...AA,A,{AA (n)(3)(2)(1)(i) =  () 

Fuzzy sets are presented by using membership functions. 
The Gaussian shape membership functions will be used in this 
study. They are defined in [-αi, +β] (i=1, 2, …, n) rage. These 
membership functions are presented in Eq. (4), as seen below: 
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where  σj and cj are variances in antecedents and adjustable 
centers, respectively. The number of the parameters involved 
in the antecedent ANIFS models can be calculated as nr where 
n is the dimensions of the input axis and r is the number of 
fuzzy sets in each antecedent. The degree of local fuzzy IF-
THEN rule can be evaluated through using the concepts of 
Mamdani algebraic production and by using the Eq. (5): 
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lA
  membership degree of the xi input 

related to the value of the lth fuzzy rule is A1
ji. Inference engine 

is generated through using unique fuzzification and then the 
accumulation of unique sections of different rules will 
generate a fuzzy system as shown in Eq. (6) below: 
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If a set includes N fuzzy rules (Eq. 2), the above- 
mentioned equation can be rewritten as Eq. (7), as follows: 
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where D is the residual of f(X) and actual value, y, and 
pl(X) can be defined as in the following Eq. (8): 
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Equation (7) could be rewritten in a matrix form for input-
outputt (Xi, yi) as in Eq. (9) below: 
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and every member of (n+1) is the 

mth member of Wi axis in accordance with IF-THEN section of 
fuzzy principles of TSK model. The firing strength of p is 
obtained through partitioning the input space in a number of 
fuzzy sets. The governing set is rewritten as Eq. (10) in order 
to minimize D, as follows: 

 ( ) YPPPW T1)(T −
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Correcting the coefficients in the conclusion section of 
TSK rules has led to better prediction of the data, given to 
minimize the D vector. Solving normal equations is sensitive 
to rounding especially for the singularity of these equations 
[27]. Therefore, a powerful numerical method named 
“singular value decomposition” (SVD) is used to optimize the 
accuracy of the existing linear coefficients in the concluding 
section of the ANFIS model, which deals with probable 
singularities, shown by Eq. (9). Fig. 1 illustrates the way the 
combination of GA and SVD was used in this study in order 
to optimize the ANFIS design for the purpose of predicting 
sediment transport in a channel pipe. The GA and SVD are 
presented in the following sub-sections. 

C. Using GA in ANFIS design 

The genetic algorithm is used in designing the ANFIS 
model in order to determine the values of the dimension of 
input (n) parameters and the number of fuzzy sets in each 
antecedent (r), known as the nr real-value parameter of {cj, 
σj}. These parameters are known as the strings added to the 
sub-strings of binary numbers, selecting the rules in a {1, nr} 
range as strings of decimal numbers. So the decimal strings-
binary string combination indicates the basic section of the 
antecedent in a fuzzy system. The fitness of ANFIS model to 
prediction of the sediment transport, presented in this study, is 
examined through the following Eq. (11): 

 E1Φ =  () 

where E is the target function related to Eq. (1) and 
minimized through the use of the genetic algorithm that has an 
evolutionary process. The evolutionary process of this 
algorithm begins with randomly generating a primary 
generation in order to reach optimum solutions. Considering 



that different genetic operators such as “selection”, 
“crossover” and “mutation’ are used to correct the existing 
population up to the time the optimum solution has been 
obtained; in the present study the roulette wheel selection 
method was used, [23]. Consequently, SVD was used for the 
purpose of calculating optimally the linear coefficients of the 
TSK rules- calculation sections, related to each chromosome 
in the premise section of the fuzzy system display. A brief 
introduction of the SVD method, used for the purpose of 
determining the optimum coefficients, is presented in the 
following sub-section.  

D. Using SVD in ANFIS design 

Singular value decomposition (SVD) is a method for 
solving linear least square problems for states that may exist 

in the singularity problem. SVD is a matrix,
SMRP  that 

includes matrix factorization in order to generate three 

matrices, the column orthogonal )R(U SM  , the diagonal 

with positive elements )R(Q SM  and the orthogonal 

)R(V SM  , as shown by Eq. (12) below: 
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Golub and Rines [28] have presented one of the most 
popular techniques for calculating SVD. The optimum- W- 
selection problem in Eq. (9) first attends to searching for 
matrix inverse of the diagonal (Q) matrix, which considered 
zero or close- to- zero values as equal to zero. Consequently, 
the optimum W is calculated through the following equation 
[29]: 

   YU)diag)1/qVW T

i
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Fig. 1. Flowchart of proposed method (ANFIS-GA/SVD) 

E. Overview of Regression-based equations 

As proposed in [26], considering sediment transport at 
clean pipes, the regression-based equations can generally be 
divided into two groups i.e., the semi-experimental equations 
and the dimensional analysis equations The semi- 
experimental equations were obtained based on the forces 
influencing the sediment particle in the equilibrium state and 
using different experimental data. One of the best semi-
experimental equations is Eq. (14) [12], that of May et al. [7], 
estimated through using seven different sets of data (presented 
in Ackers et al. [30]): 
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where CV is volumetric sediment concentration, D the pipe 
diameter, A cross-sectional area of the flow, d the median 
diameter of particle size, V the flow velocity, Vt the velocity 



required for incipient motion of the sediment (Eq. 15) and y 
the flow depth. 

The second group is the equations obtained from 
dimensional analysis, determined through considering the 
hydraulic parameters which influence sediment transport. The 
Azamathulla et al. [22] equation is one of the most recently 
presented ones (Eq. 16). Another newly presented equation is 
that of Ebtehaj et al. [1], as presented in Eq. (17). 
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where λs represents the parameter of total friction, i.e., 
λs=0.851λc

0.86 CV
0.04Dgr

0.03, λc=clear water friction parameter. 
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III. PREDICTION OF FR USING GA/SVD BASED ON ANFIS 

Many studies have been devoted to the field of sediment 
transport in open channels, each of them concerning different 
parameters such as gravitational acceleration (g), median 
diameter of particles (d), pipe diameter (D), hydraulic radius 
(R), flow depth (y), specific gravity of sediment (s=ρs/ρ), 
volumetric sediment concentration (CV), dimensionless 
particle number (Dgr), cross-sectional area of the flow (A) and 
overall sediment friction factor (λs), having predicted the 
minimum velocity required in the pipe channel to prevent 
sediment deposition [7,12,13,20,26]. In order to examine 
different parameters with regard to the nature of each one, 
after defining different dimensionless parameters, the factors 
influencing sediment transport could be categorized into five 
different groups, namely, “transport”, “transport mode”, 
“sediment”, “flow resistance”, and “movement”, in such a 
manner that the independent parameters of “transport” (CV) 
“sediment” (Dgr, d/D, s), “transport mode” (d/R, D2/A, R/D) 
and the flow resistance (λs) groups were used to calculate the 
dependent parameters of the “movement” 

( ) )d1sgV/(Fr −= group. According to [26], six different 

models are presented as below with regard to the fact that there 
is more than one parameter in a transport mode and sediment 
groups: 

Model (1): Fr=f(CV, Dgr, d/R, λs) 

Model (2): Fr=f(CV, Dgr, D2/A, λs) 

Model (3): Fr=f(CV, Dgr, R/D, λs) 

Model (4): Fr=f(CV, d/D, d/R, λs) 

Model (5): Fr=f(CV, d/D, D2/A, λs) 

Model (6): Fr=f(CV, d/D, R/D, λs) 

As it could be seen in the above mentioned models, the 
effects of the other four groups were considered 
simultaneously in order to predict the Fr parameter, which 
belongs to the movement group. Three different sets of data 
[12,25,26], consisting of 218 data were used to predict the 
densimetric Froude number (Fr). In order to predict the 
models, 30 % were selected randomly from among all the data 
to test the model and 70% of the remaining were used to model 
the models, which were suggested above. And so for each 

input, three different membership functions (presented in Fig. 
2 for model 4 as example), leading to optimization of Gaussian 
functions, equaling 34= 81 for the first data and 33= 27 for the 
rest of the data, were used. The optimum results for the initial 
population, generation number, crossover probability and 
mutation probability parameters were 200, 300, 0.7, and 0.07, 
respectively, obtained through various trial and error 
procedures carried out during the problem solving 
evolutionary process. The Pareto curve was applied in this 
study to obtain optimum results; a sample of the curve (model 
4) is used as Fig. 3. The functions defined in the suggested 
ANFIS-GA/SVD model include Training Error (TE) and 
Prediction Error (PE). The TE point is the point with the 
minimum training error and the maximum prediction error, 
while the PE point is exactly the opposite (i.e., maximum 
training error and minimum prediction error). Optimum 
modeling occurs when the model presents comparatively 
similar results for the test and training modes and is flexible 
enough to present relatively good predictions for the data that 
had no role in training the model, as well. Regarding Fig. 3, 
the trade-off point (Trd point) simultaneously satisfies both 
the test and train error minimization conditions. 

 

 

 



 

Fig. 2. TSK membership function plot for input variables 

 

Fig. 3. Pareto vurve from training error (TE) and prediction error (PE) 

IV. RESULTS AND DISCUSSION 

R2 , RMSE, MAPE, and BIAS are the statistical indexes 
used for both testing and training modes of the models. Here, 
in order to collect information about the performance of each 
model presented, by using the suggested model and the 
existing equations. The manner of computing these indexes 
goes as follows: 
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where Expi
Fr  presents the observed value and 

Modeli
Fr  the 

prediction value based on the ANFIS-GA/SVD in this study 
and in other existing models. Also n is the total number of the 
data, and also the ρ index, which is a dimensionless index 
dependent on SI and R indices, is defined by Gandomi and 
Roke [31] as shown below: 
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+
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Table 2 shows the performance of the six different models 
presented in this study, which were modeled through using 
two methods of ANFIS and ANFIS-GA/SVD in the test and 
train modes. The results of the statistical indices indicate that 
the models 1 and 4 perform well in predicting the Fr for the 
train mode as well as by both of the ANFIS and ANFIS-
GA/SVD methods. However, the results of the test mode 
indicate that model 1 does not present good results for the data 
not used for training the model, while model 4 is fairly flexible 
in predicting the Fr in such a manner that changing the data 
condition from train to test mode does not lead to a significant 
change in the results of the indices. 

The relative error value, arrived at by using the ANFIS for 
predicting the Fr through the independent data related to 
model 4, is approximately 4 % , while using the ANFIS model 
predicts the Fr with a relative error of almost 9 %, which is 
near double the value presented by the hybrid model applied 
in this study. The other statistical indices deliver similar 
results as well, in such a manner that the results given by the 
proposed ANFIS-GA/SVD model for the test and train modes 
indicate that it has more capability to predict the minimum Fr, 
required to prevent sediment deposition in channel pipes, than 
the ANFIS model. 

Fig. 4 shows the results obtained from a qualitative 
examination of the predictions made by models 1 to 6 through 
using ANFIS and ANFIS-GA/SVD models. In general and at 
first glance, it could be stated that among all the six different 
models, by using both methods mentioned, the models 1 and 
4 predict more accurately than the rest of the models. The 
model 2, which is different from model 1 only in using the 
D2/A parameter instead of d/R as the independent parameter in 
the “transport mode”, shows a greater error in comparison 
with model 1 in a way that ANFIS often overestimates the Fr 
prediction, which would lead to sediment deposition in the 
channel, while predictions are also underestimated with a high 
Fr, which would lead to the design being uneconomical. The 
ANFIS-GA/SVD method presents relatively better results, 
although this method also overestimates the Fr prediction 
sometimes when using the independent parameters of the 
model 2. The results of using the parameters related to model 
3, presents almost the weakest prediction of Fr among all the 
models, in a way that none of the two methods present good 
results. Consequently, on applying the CV and λs parameters 
that are constant in all the models, using the Dgr (=d(s-1)g/ν2, 
dimensionless particle number) parameter from the 
“sediment” group and R/D parameter from the “Transport” 
dimensionless group present the weakest results. Therefore, it 
is not advisable to use model 3 for predicting the Fr in channel 
pipe design. Model 5 presents a relatively similar situation to 
model 3, with the difference that the predictions made for this 
model by ANFIS and ANFIS-GA/SVD methods are more 
accurate than that of model 3. This increase in accuracy is 
more visible in the predictions shown by the use of ANFIS-



GA/SVD in comparison with ANFIS. In fact, this comparison 
indicates that using the d/D parameter is superior to using Dgr, 
when the other parameters are constant. 

Regarding explication about Table 2 and Fig. 4, it could be 
concluded that by using the parameters of d/D and d/R from 
the sediment and transport mode groups, respectively, in 
addition to CV and λs parameters. Belonging to the “transport” 

and “flow resistance” independent groups, respectively, gives 
the best result comparing to the rest of the models. Also 
regarding selection of the superior method, the results 
presented in Table 2 indicate that the ANFIS-GA/SVD (with 
R2=0.986, MAPE=4.397, RMSE=0.206, SI=0.053, ρ=0.026, 
BIAS=-0.025) is the best model when comparing to the ANFIS 
(with R2=0.933, MAPE=9.177, RMSE=0.483, SI=0.123, 
ρ=0.123, BIAS=-0.0147). 

TABLE II.  PERFORMANCE EVALUATION OF ANFIS AND ANFIS-GA/SVD 

 Method Model No. R2 MAPE RMSE SI ρ BIAS 

Train ANFIS Model 1 0.954 12.035 0.599 0.153 0.077 -0.191 

   Model 2 0.802 25.893 1.261 0.321 0.170 -0.129 

   Model 3 0.806 28.124 1.604 0.409 0.215 -0.527 

   Model 4 0.962 9.472 0.496 0.126 0.064 -0.091 

   Model 5 0.805 26.280 1.546 0.394 0.208 -0.405 

   Model 6 0.813 22.825 1.266 0.323 0.170 -0.061 

  ANFIS-GA/SVD Model 1 0.991 2.959 0.227 0.058 0.029 -0.003 

   Model 2 0.743 24.647 1.239 0.316 0.170 0.152 

   Model 3 0.734 22.473 1.176 0.300 0.161 -0.004 
   Model 4 0.995 1.706 0.196 0.050 0.025 0.001 

   Model 5 0.829 18.197 0.945 0.241 0.126 -0.010 

    Model 6 0.893 12.062 0.749 0.191 0.098 -0.037 

Test ANFIS Model 1 0.870 9.986 0.690 0.176 0.176 -0.067 

   Model 2 0.624 25.717 1.426 0.363 0.363 0.634 

   Model 3 0.641 24.701 1.480 0.377 0.377 0.585 

   Model 4 0.933 9.177 0.483 0.123 0.123 -0.147 

   Model 5 0.638 23.947 1.243 0.317 0.317 -0.260 
   Model 6 0.694 16.738 1.015 0.259 0.259 0.129 

  ANFIS-GA/SVD Model 1 0.890 12.064 0.589 0.150 0.084 -0.214 

   Model 2 0.612 23.837 1.360 0.347 0.178 -0.671 
   Model 3 0.478 28.383 1.287 0.328 0.194 0.162 

   Model 4 0.986 4.397 0.206 0.053 0.026 -0.025 

   Model 5 0.738 14.588 0.874 0.223 0.120 -0.141 

    Model 6 0.861 8.861 0.635 0.162 0.084 0.091 

 

  



  

  

Fig. 4. Performance evaluation of ANFIS-GA/SVD and ANFIS for perdition of Fr (test) 

 

With regard to the explanation presented about the six 
different models and the selection of the best model and 
method (i.e., model 4 and ANFIS-GA/SVD), a sensitivity 
analysis was conducted ANFIS-GA/SVD, for examining the 
effect of each of the independent parameters presented in this 
model (i.e., CV, d/D, d/R, λs) on the Fr, in order to prevent 
sediment deposition on the channel bed and also to ensure the 
cost-effectiveness of the design. The results of the sensitivity 
analysis are presented in Table 3. The point to be considered 
in this table is in the case of not considering each of the 
independent parameters from the “sediment”, “transport”, 
“transport mode”, and “flow resistance” groups decreases the 
accuracy of the Fr prediction. In alternative cases, not using 
the λs parameter from the “flow resistance” group reduces the 
Fr prediction the least and not using the d/R parameter from 
the “transport mode” group reduces the Fr prediction the 
most, in such a way that by using Fr = f(CV, d/D, d/R), the 
model increases the relative error by approximately 1%, while 
using Fr = f(CV, d/D, λs), the model almost triples the MAPE 
in comparison with the state where four input parameters are 
considered in predicting the Fr. Also not considering CV and 

d/D in Fr prediction has a considerable and similar effect, 
increasing the value of the relative error significantly. 

TABLE III.  SENSITIVITY ANALYSIS FOR ANFIS-GA/SVD MODEL 

Sensitivity Analysis R2 MAPE RMSE SI ρ BIAS 

Fr = f(CV, d/D, d/R, λs) 0.986 4.397 0.206 0.053 0.026 -0.025 

Fr = f(d/D, d/R, λs) 0.876 9.520 0.612 0.156 0.081 -0.018 

Fr = f(CV, d/R, λs) 0.854 9.491 0.643 0.164 0.085 0.001 

Fr = f(CV, d/D, λs) 0.812 12.768 0.725 0.185 0.097 -0.042 

Fr = f(CV, d/D, d/R) 0.981 5.130 0.245 0.063 0.031 0.091 

 

Table 4 compares the results obtained from the model 
proposed in this study (ANFIS-GA/SVD) with the results 
obtained from the existing regression-based models. Among 
the existing regression-based equations, the Ebtehaj et al. [1] 
equation is more accurate in comparison with the Azamathulla 



et al. [12] and May et al. [7] equations. In such a way that with 
regard to this table, the values of all the indices are better in 
the Ebtehaj et al.’s [1] equation in comparison with the two 
other equations. Also Fig. 5, which shows the error 
distribution for the different models, indicates that the Ebtehaj 
et al. [1] equation predicts almost 80 % of the data with a 
relative error less than 15%. In addition, the maximum error 
given by Ebtehaj et al. [1] equation is equal to 35%, which is 
150% and 140% for the May et al. [7] and Azamathulla et al.’s 
[12] equations, respectively, a difference that indicates the 
incompetence of these models in predicting the Fr for the 
purpose of designing a pipe line. The mean relative error of Fr 
prediction by the ANFIS-GA/SVD model is approximately 
2.5%, a one fifth (1/5) of that of the best existing regression-
based equations [1]. Also the presented model predicts almost 
95% of the data with a relative error less than 5%, while the 
one by Ebtehaj et al. [1] makes only 55% of the predictions 
with a relative error less than 5%.  

TABLE IV.  COMPARISON OF PROPOSE METHOD AND EXISTING 

EQUATION 

Reference R2 MAPE RMSE SI ρ BIAS 

ANFIS-

GA/SVD 
0.991 2.520 0.199 0.049 0.025 -0.007 

Ebtehaj et al. 

[1] 
0.944 10.799 0.616 0.152 0.077 0.122 

Azamathulla 
et al. [12] 

0.738 46.571 1.859 0.457 0.246 -1.377 

May et al. [7] 0.757 12.126 1.341 0.330 0.176 -0.256 

 

 

Fig. 5. Error distribution of ANFIS-GA/SVD and existing regression-based 

equations 

V. CONCLUSIONS 

Having first determined the effect of each of the 
dimensionless parameters influencing the sediment deposition 
in channel pipes, the ANFIS networks along with a hybrid 
ANFIS network, based on genetic algorithm (GA) and 
singular value decomposition (SVD), were applied to predict 
the densimetric Froude number (Fr). The results of comparing 
the ANFIS-GA/SVD (R2=0.986, MAPE=4.397, 
RMSE=0.206, SI=0.053, ρ=0.026, BIAS=-0.025) method with 
ANFIS (R2=0.933, MAPE=9.177, RMSE=0.483, SI=0.123, 
ρ=0.123, BIAS=-0.0147) method in predicting the best model 
(model 4) indicate that the accuracy of the suggested model 
increases. The evaluation of the sensitivity analysis to 
investigate the effect of dimensionless parameters using 
model four shows that none of independent parameters 
decreases the performance of the model, in such a manner that 
not considering the parameter related to the flow resistance 
group (λs) increases the mean relative error by 1% (MAPE= 

5.13), besides, not using the parameter related to the transport 
mode group (d/R) almost triples the mean relative error 
(MAPE= 12.768). The comparison, with the existing 
regression-based equations indicates that the herein proposed 
model ANFIS-GA/SVD performs better than the other 
existing ones. 
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