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Roland Siegwart, Cesar Cadena, and Thierry Peynot

Abstract LiDAR sensors have been very popular in robotics due to their ability
to provide accurate range measurements and their robustness to lighting conditions.
However, their sensitivity to airborne particles such as dust or fog can lead to per-
ception algorithm failures (e.g. the detection of false obstacles by field robots). In
this work we address this problem by proposing methods to classify airborne par-
ticles in LIDAR data. We propose and compare two deep learning approaches, the
first is based on voxel-wise classification, while the second is based on point-wise
classification. We also study the impact of different combinations of input features
extracted from LiDAR data, including the use of multi-echo returns as a classifica-
tion feature. We evaluate the performance of the proposed methods on a realistic
dataset with the presence of fog and dust particles in outdoor scenes. We achieve an
F1 score of 94% for the classification of airborne particles in LIDAR point clouds,
thereby significantly outperforming the state-of-the-art. We show the practical sig-
nificance of this work on two real-world use cases: a relative pose estimation task
using point cloud matching, and an obstacle detection task. The code and dataset
used for this work are available online'.

Fig. 1: Left: Image of an experimental scene with dust behind a car. Middle: LiDAR point cloud
with dust corruption (colored by height). Right: Predicted particles (white) and non-particles (red).
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1 Introduction

LiDAR sensors are used in many areas of robotics such as obstacle detection [2, 10],
localization [3, 9], and semantic mapping [7, 8]. In cases of weak or changing illu-
mination or when high spatial resolution is needed, LiDARs often have an advantage
compared to RADAR sensors or cameras [11]. However, LiDAR sensors are sensi-
tive to particles in the air such as dust, fog, or smoke [13, 14]. This impacts a given
point cloud as depicted in Fig. 1. Present-day algorithms are often suffering from
corruptions of this nature. For instance, Boss - the winner of the DARPA Urban
Challenge - was led to a (temporary) stop because a dust cloud in the LiDAR data
was perceived as an obstacle [24]. This work aims to detect LIDAR points generated
by airborne particles to reduce their impact on robotics algorithms.

Limited work has been done in this field. Gerardo et al. [6] used a RADAR
and LiDAR to perform sensor data fusion and discarded the LiDAR data whenever
there was an inconsistency in the data between the sensors, exploiting the fact that
RADAR data is not affected by airborne particles. Peynot and Kassir [12] used a
similar approach by detecting discrepancies between the LiDAR range and cam-
era intensity gradients. However, both of these approaches require multiple types
of sensors. A classification approach [20] was proposed using a LiDAR sensor,
by predicting individual LiDAR points generated by airborne particles, however,
it was only tested on traditional classifiers (Support Vector Machine and K-Nearest
Neighbor). In our previous work [21], we pursued a similar approach to [20] but
evaluating more modern classifiers. We obtained promising results and showed that
a voxel-based deep learning classifier outperformed traditional classifiers such as
Random Forest or Support Vector Machine.

This paper expands on the LiDAR-based classification approach. Since the im-
pact on LiDAR data across different types of particles is comparable, we do not
make the distinction between types of airborne particle and define two classes for
each LiDAR point: particle (e.g. dust or smoke) or non-particle (e.g. solid object).
We present and compare two deep-learning classification approaches:

Voxel-wise classification: Each point cloud is discretized into 3D voxels. A Neural
Network architecture, significantly improved from our previous work [21], is used
to perform classification on a voxel level.

Point-wise classification: Each point cloud is formatted into a 2D LiDAR image
representation with each pixel corresponding to an individual LiDAR return. A Con-
volutional Neural Network (CNN) based on the U-Net architecture [18] performs
point-wise classification on the 2D LiDAR image.

We explore different classification features extracted from the LiDAR data in-
cluding geometry, intensity and multi-echo information and evaluate the best com-
bination of these features for each classification approach. Additionally, we give
insights into the ability of our classifiers to distinguish between different types of
particles for applications such as autonomous driving where decisions depend on
environmental conditions (e.g snow or fog). We evaluate our work on a realistic
outdoor dataset with the presence of fog and dust particles in LiDAR point clouds.
The dataset is labeled semi-automatically using a background subtraction method
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based on occupancy grids, which allowed for increasing the amount of labeled data
from our previous work [21] by a factor of ten. The two approaches presented in
this work significantly outperform the state of the art in the classification of air-
borne particles in LiDAR point clouds. This is also the first demonstration of a
benefit in using LIDAR multi-echo returns as a classification feature. Additionally,
our point-wise classification approach is a novel use of a CNN on 2D LiDAR images
to detect airborne particles. Finally, we demonstrate the significance of this work on
two robotics use cases; a relative pose estimation task and an obstacle detection task,
both in the presence of airborne particles. We show a clear performance increase in
each task thanks to our approaches.

The remainder of this paper is structured as follows. In Sec. 2 we discuss the
related work. Sec. 3 introduces the methodologies of our classification approaches.
In Sec. 4, we provide details on our experimental setup while in Sec. 5 we present
our experimental results. Finally, in Sec. 6 we conclude and consider future work.

2 Related Work

The choice of input features is an important part of any classification approach and
LiDAR data contains various types of information. The geometry information is
contained in the 3D position of each LiDAR point. Lalonde et al. [8] used the ge-
ometry information in the form of a Principal Component Analysis (PCA) to differ-
entiate ground surfaces from non-ground surfaces and unstructured elements. The
3D position information of each LiDAR point was also used in [27] as part of a deep
learning approach. The intensity (also referred to as remittance) information is partly
correlated to the type of material hit by a LiDAR return. This was used in multiple
terrain classification applications [23, 25] as well as for object detection [1, 27]. Fi-
nally, most modern LiDAR sensors are capable of returning multiple echos for each
LiDAR ray (multi-echo). This was used as a classification feature in [17] in a terrain
classification task. However, the authors did not find this feature to be beneficial due
to the low proportion of meaningful multi-echo returns in their experiments. In our
previous work [21] we used a combination of geometry and intensity information to
detect airborne particles in LiDAR point clouds. In this work we investigate various
combinations of geometry, intensity and multi-echo information.

Multiple deep learning approaches have been used to classify LiDAR point
clouds. A voxel-based approach was developed by Zhou et al.[27], achieving state-
of-the-art performance on the object detection task in the KITTI dataset [5]. 3D
voxels are used to aggregate classification features from LiDAR points. Using vox-
els provides the ability to change the resolution of the data representation. This ap-
proach was adapted in our previous work [21] to perform the voxel-wise classifica-
tion of airborne particles in LIDAR point clouds. While the results were promising,
the classifier could not exploit the geometry information. In this work, we improve
this architecture by adding three sequential 3D convolutions to learn the spatial
structure of the data. Alternatively, Qi et al. developed a point-based classification
approach on unordered LiDAR point clouds for semantic segmentation of indoor
scenes [15]. However, this approach does not make use of the local structure of the
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data. Although this shortcoming was later addressed with a hierarchical recursive
approach [16], this increased the computational cost of inference. Another point-
based classification approach was proposed by Zhang et al. [26] using a Convolu-
tional Neural Network (CNN) based on the U-Net architecture [18] on a 2D image
representation of the LiDAR point clouds. Their image representation was based on
abird’s eye view of a 3D voxel grid with the vertical axis as the feature channel. This
approach outperformed the aforementioned point-based approach from Qi et al. on
semantic segmentation tasks in two different datasets. In this work, we also use the
U-Net architecture to perform point-wise classification, however, our LiDAR im-
age representation is a 2D projection of the 3D point cloud into a 2D image where
each pixel corresponds to a LiDAR return. This representation is advantageous with
constant size and density regardless of the observed scene.

3 Airborne Particle Classification in LIDAR Point Clouds

We structure our binary classification approach as a four step process illustrated in
Fig. 2, taking a LiDAR point cloud as input and returning the same point cloud with
a class label associated to each point. First, the features are selected from the point
cloud information returned by the sensor, followed by a formatting step to prepare
the data for a particular representation depending on the classification approach. The
neural network then predicts the class of the input. Finally, a post-processing step
is applied to convert the data from the prediction representation back to the original
point cloud format with predicted labels added.

L] Feature Data Network Post L]
Computing Formatting Prediction Processing

Fig. 2: The four stages of the point cloud classification process.

3.1 Classification Input Features

One of the main objectives of this work is to evaluate the best combination of
LiDAR-based features for the classification of airborne particles. We investigate
three different types of features:

Geometry: With the high density of the point clouds provided by modern 3D Li-
DAR sensors, the geometry (i.e. 3D position of points) provides information on the
shape of elements in the scene. This information is especially useful when using
convolutions in a neural network architecture. Airborne particles will generally pro-
duce an unstructured cloud while other elements will be more structured (e.g walls,
cars).

Intensity: Intensity values depend on the amount of light measured by the LiDAR
sensor. Airborne particles tend to return very low intensity values due to their small
size, scattering most of the light emitted by the sensor. This helps to differentiate
particles from surfaces made of a material with higher reflectivity such as grass,
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concrete, and wood.

Multi-Echo: Different echoes can be measured when multiple peaks are detected
in the light intensity of a single light ray at distinct ranges. This phenomenon is
common for airborne particles where a first echo can be returned from a cloud of
particles, while a subsequent one can go through that cloud and hit an object be-
hind it [14]. Fig. 3 shows that most non-particle elements (red) have both echoes
matching (green) whereas particles (white) tend to return a first echo (blue) while
the obstacles behind return a second echo (purple).

Fig. 3: LiDAR point cloud from the example scene from Fig. 1. Left: Colored by label with parti-
cles in white and non-particles in red. Right: Colored by echo feature with green when both echoes
match, blue for the first echo return, and purple for the second echo return.

3.2 Voxel Classification Approach

Representing a LiDAR point cloud with voxels enables various levels of abstraction
in the data, as well as concatenating features between neighboring points. This ap-
proach is an incremental improvement of the voxel-based approach presented in our
previous work [21].

Data Representation: We discretize each LiDAR point cloud into equally spaced
non-overlapping 3D voxels of equal size [vx,vy,vz]. We only create a voxel if there
is at least one LiDAR point inside it. This forms a sparse voxel grid containing N
voxels for a given LiDAR point cloud, with a maximum number of voxels in each
dimension defined by [W,H, D]. The voxel grid is centered around the LiDAR sen-
sor. Each voxel contains a maximum of T LiDAR points p = [x,y,z,qa,e] with x,y,z
being the absolute position, a the intensity with values in the range [0; 100], and e the
echo status with three possible values: 0 when both strongest and last echoes match,
and when the echoes are different: 1 when the echo is the strongest and 2 when it
is the last echo. The input feature vector of our voxel classification architecture is
defined as

Fin = {{{xi —%,yi —9,2i— 2,ai,e0,,e1,,€2,] }i=1..7, }n=1..N, e))

where %, 9, Z is the average of the position of all points in the voxel. x; —X,y; —J,z; — 2
is the position of each LiDAR point relative to the other points in the same voxel. g;
is the intensity return, and e, e ;, e ; are the one-hot encoded values correspond-
ing to the echo value each taking the binary value O or 1. This makes our input
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feature tensor Fj, of shape [N, T,7] corresponding to one scan of the LiDAR sensor
where N (the number of voxels created from the scan) is used as batch size. Finally,
the predicted label of each voxel is assigned to all LIDAR points inside to provide a
label per LiDAR point for this evaluation.

Network Architecture: Our network architecture is based on the VoxelNet archi-
tecture from Zhou et al. [27] and is depicted in Fig. 4. Each voxel in the input tensor
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Fig. 4: Left: Voxel Feature Encoding (VFE) layer [27]. Right: Voxel classification architecture.

F;, is passed to two Voxel Feature Encoding (VFE) modules and a fully-connected
layer (see Fig. 4) to learn features within each voxel. We apply a maxpool opera-
tion on the output of the fully-connected layer to concatenate the features over all T
points. Batch-normalization and Relu-activation is used after each fully-connected
layer inside the VFE modules. We apply 3D convolution to the sparse tensor of
shape 128 x W x H x D formed with the computed features of each voxel. We apply
three 3D convolutions sequentially with ConvI(128,64.k,s,p), Conv2(64,64.k,s,p),
and Conv3(64,2.k,s,p), where k=(1,1,1) is the kernel size, s=(1,1,1) is the stride,
and p=(1,1,1) is the padding. The output of the network is a sparse tensor of shape
2 x W x H x D to which we apply a Softmax operation on the prediction score. The
predicted label for all N voxels in each scan is obtained from this output. We apply a
standard scaling operation by removing the mean and scaling to unit variance on the
input values of each voxel. We reduce the imbalance in the training data by using a
small voxel map around the zone with particles with W = H = 100 and D = 15 and
a voxel size of vy = vy = vz = 0.2m during training.

3.3 Point Classification Approach

Data Representation: We render each 3D LiDAR scan in a 2D LiDAR image with
each pixel corresponding to an emitted ray and the rows and columns of this image
correspond to the vertical and horizontal angular resolution of the LiDAR sensor
respectively. This is possible thanks to the inherent LiDAR property of sequentially
scanning the environment. Using the angular resolution of the 3D LiDAR sensor,
an image-width C can be computed while the height R is dependant on the number
of vertical rings of the LiDAR sensor. The horizontal pixel coordinate is obtained
by mapping the polar angle of the ring to the image space. Each pixel contains up
to four channels corresponding to the range and intensity of both echo returns for a
given LiDAR beam. We define this LIDAR image representation as:
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Fin = {pij = [Fechol,ij>Qechol ijs Techod,ijs Gecho2,ij] Yi=1..R,j=1...C’ 2

where Fjj, is the LIDAR image used as input tensor to the network, p;; is the pixel
corresponding to the vertical angle index i and horizontal angle index j. recpol,ij
and a1 ,ij are the range and intensity values for the first echo, while 7e¢p02 ;; and
Qecho2,ij are the range and intensity values for the last echo. R and C are the number
of vertical and horizontal angle increments respectively. An example of the mask
for the presented representation as an outcome of the labeling can be seen in Fig. 5.

% X - i
0 250 500 1000 1250 1500 1750 2000

Fig. 5: Mask of LiDAR image (class for each of the pixels). White: particle, black: non-particle.

Network Architecture: Due to spatial correlations of neighboring pixels, we use
the U-Net architecture [18] to perform 2D convolutions on the input data. Fig. 6
depicts the structure of this network. Maxpool layers are used in the encoder to cre-
ate smaller features with high expressiveness. In the decoder, the network extracts
information from these meaningful features to classify each of the pixels. Maxpool
and up-sampling operations are only performed along the input columns whereas
convolutions are applied on both rows and columns with 3x3 filters.

By having four pooling layers, the horizontal resolution is reduced by a factor
of 2* = 16 in the encoder. Therefore, the width of the input LIDAR image has to
be a multiple of 16 for the output to have the same shape as the input. Since the
network is fully convolutional, it is able to process inputs of variable sizes. To train

4. .................................................................................... R %
4xHXW - 16x3x3 ’ ............................................ 16x3x3 3xHXW
32X3x3 . 32X3%3 )
=«=p Softmax Convolution

===pConvolution (+ Max Pooling)
-==» Deconvolution

128x3x3 128x3%3

256X3X3

Fig. 6: The U-Net Architecture used for point classification.

the network, we take a sample of size R =32 and C = 512 as an input vector to the
network chosen randomly from the original LiDAR image. Additionally, the im-
age is horizontally flipped with a probability of 50%. These two data augmentation
methods prevent the network from overfitting the training data. To mitigate dataset
imbalance, we only use frames with a high ratio of particles for training and a com-
bination of the binary cross entropy and the Dice Loss [22] as cost function. The
latter has shown advantages for training neural networks on imbalanced data.
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4 Experimental Setup

4.1 Dataset

To evaluate our methods, we use the dataset from our previous work [21] containing
dust and fog particles in 19 different outdoor scenes with elements such as cars, hu-
mans, buildings, shrubs, and trees. The sensor data were collected using a Velodyne
HDL-32E LiDAR sensor mounted on a Clearpath Husky platform and contains po-
sition, intensity, and multi-echo information in the point clouds. Each scene was
recorded statically with and without particles to allow for semi-automated labeling
using background subtraction. The noise in the LiDAR point 3D position makes a
simple point-to-point background subtraction inappropriate. Therefore, we used an
occupancy grid representation where a particle-free reference grid was subtracted to
the grid generated for each scan to be labeled. We use a Polar representation with
logarithmic resolution on the radial axis for the occupancy grid to accommodate for
the circular structure of the LiDAR scans and the lowering point density in the far
field. This labeling implementation is included with the code for this work. Overall,
our labeled dataset contains 16,247 fully-labeled LiDAR scans, which is an increase
by a factor of ten from our previous work. Images of the scenes in the dataset are
provided with the code for this work.

To evaluate our approaches, we used nine scenes as a training set, two scenes as a
validation set, and the remaining eight scenes as a test set. We made sure the scenes
were sufficiently different configurations from training to testing to prevent overfit-
ting. All results were computed on the entire test set unless specified otherwise.

4.2 Performance Metrics

We evaluate the performance as a binary classification problem with a positive pre-
diction (P) corresponding to a particle and a negative prediction (N) corresponding
to a non-particle. We compute the precision and recall scores as precision = 75 rp
and recall = TPQ%. TP and TN denote the number of true positives and true neg-
ative predictions respectively and F'P and F'N the number of false positive and false

negative predictions. Finally, we compute the F1 score as F 1 = 2 Lrecision recall
precision+recall

4.3 Evaluation Parameters
We evaluate the voxel-based approach with a map size of W = H =400 and D = 15

and a voxel size of vy = vy = vz = 0.2m. An overview of the parameters for both
neural network architectures are noted in Table 1.

5 Experimental Results

Each evaluation is computed by training multiple networks on our training and val-
idation sets and averaging their performance on the prediction of our test set. This
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Table 1: Parameters configurations for both classification approaches.

Voxel Classification Point Classification
Optimizer Adam Adam
Learning Rate 0.001 0.001
Optimizer B1/2=(0.9,0.9), e=107%, B1/2=(0.9,0.999), £=0,
Parameters weight decay=0 weight decay=0
Training 10,000 iterations, batch size=N 271,150 iterations, batch size=32
Loss Function Binary Cross Entropy Combination of BCE and DL
Trainable Parameters | 355,052 1,857,859
Input size T =35 R =32, Cpreq = 2160, Ciyyin = 512

provides a more meaningful performance interpretation by reducing the influence
of statistical training outliers.

5.1 Voxel Classification Evaluation

We evaluate the performance of this approach for six different configurations of
input features. For each combination, we train five models and average their per-
formance on our test set. The results are presented in Table 2. We compare the per-
formance to the voxel classification approach from our previous work evaluated on
the dataset used in this paper. Most combinations of features outperform the archi-

Table 2: Averaged voxel classification performance for all six input configurations and our previous
work.

Previous |Geometry|Intensity |Geometry |Geometry |Intensity |Geometry
Work [21] Intensity |Multi- Multi- Intensity
Echo Echo Multi-
Echo
Precision |[{0.37 0.53 0.64 0.42 0.77 0.31 0.89
Recall 0.97 0.90 0.91 0.97 0.95 0.97 0.93
F1 0.54 0.65 0.75 0.58 0.85 0.44 0.91

tecture from our previous work. The intensity and geometry features perform better
on their own than combined. Adding multi-echo to the intensity feature decreases
performance, however, it increases performance when added to the geometry fea-
ture. Finally, this approach performs best by combining all three features achieving
a maximum F1 score of 91%.

5.2 Point Classification Evaluation

The averaged performance of our point classification approach for different input
feature combinations is presented in Table 3. The multi-echo feature improves per-

Table 3: Averaged point classification performance for all six input configurations.

Geometry |Intensity Geometry |Geometry |Intensity Geometry
Intensity Multi-Echo |Multi-Echo |Intensity

Multi-Echo
Precision 0.65 0.87 0.87 0.94 0.82 0.92
Recall 0.96 0.90 0.96 0.95 0.93 0.96

F1 0.73 0.89 0.91 0.94 0.87 0.93
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formance when combined with geometry. The geometry is needed to make the best
of this architecture. We obtain the highest scores for our point classification ap-
proach using Geometry and Multi-Echo achieving an F1 score of 94%. We observe
F1 scores of more than 85% for using intensity values only.

5.3 Performance Comparison

In Table 4, we present the classification performance using the best input feature
combination for each approach and compare them to the state-of-the-art. The per-
formance of the voxel-based classification and the point-based classification is com-
parable while both are clearly outperforming the state of the art. The input features
used to obtain these results will be used in the rest of this paper.

Table 4: Comparison of classification results between our approaches with the best configurations
of input features and the state of the art.

Previous Work [21]|Voxel Classification |Point Classification
Precision 0.37 0.89 0.94
Recall 0.97 0.93 0.95
F1 score 0.54 0.91 0.94

5.4 Differentiate Dust from Fog Particles

For some applications, it is beneficial to differentiate between different types of
particles. For instance, firefighters might only be interested in smoke clouds when
assessing a bush fire while removing other types of particles. We evaluate whether
our approaches are able to differentiate the type of particle by defining three classes
dust, fog, and non-particle. Our voxel-based approach was not able to successfully
learn the difference between the fog and dust particles. This is likely due to the
simpler structure of the network. However, our point classification architecture was
successfully detecting the difference between the two types of particles with F1
scores of 96% for the fog class and 92% for the dust class.

5.5 Use Cases
5.5.1 Pose Estimation Task

LiDAR sensors are widely used for robot localization tasks [3]. A well-known ap-
proach to perform pose estimation using LiDAR data is using Point Cloud Matching
to estimate the transformation between two point clouds taken from different posi-
tions. However, this matching process can be altered by the presence of moving
airborne particles in the point cloud. We demonstrate the significance of our work
by showing a decrease in pose estimation error and faster convergence when re-
moving airborne particles detected in LiDAR point clouds prior to performing the
matching step using a point-to-point /CP algorithm [19].
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Fig. 8: Left: averaged translational error. Right: averaged rotational error. Different configurations:
original point cloud, and filtered point cloud using ground truth, voxel classification, point classi-
fication.

We introduce an erroneous translation and rotation to our statically recorded
dataset to produce corrupted scans and compare them to a reference scan of the
scene free of particles. We apply the ICP algorithm to match the corrupted scan to
the reference and measure the remaining translation and rotation error. The error
introduced in each scan is a random rotation in the interval of [0°,45°] around the
vertical axis followed by random translations in the interval of [Om, 1m] along the
vertical and horizontal axes. We perform this evaluation on 10% of the total scans
in our test set and compute the average error in translation and rotation. This eval-
uation is performed on the original point cloud containing all particles and three
filtered point clouds for which particles have been removed according to: 1) the
ground truth, 2) the point classification approach, and 3) the voxel classification ap-
proach. The ground truth was obtained by performing ICP on a point cloud from
which particles have been removed (filtered) using the ground truth labeled data.
The results are presented in Fig. 8 where the ideal value is a nil translation and ro-
tation since the sensor is static between scans. The impact of airborne particles in
LiDAR point clouds on the translational matching of the ICP algorithm generates
an error of 17cm after convergence, compared to 2.5¢m when using the particle-free
point clouds from the ground truth. The impact of airborne particles on the rota-
tional error is less important than for the translational error with the original point
cloud providing comparable performance to the particle-free point clouds. For both
translational and rotational errors, removing particles in the LiDAR point cloud us-
ing our approaches provides a gain in performance comparable to the ground truth.

5.5.2 Obstacle Detection Task

LiDAR sensors are widely used to perform obstacle detection in mobile robotics ap-
plications [24]. However, airborne particles in LIDAR point clouds can lead to false
obstacles being generated, inducing loss of performance. We evaluate how remov-
ing airborne particles in LIDAR point clouds can help obstacle detection in outdoor
scenarios using an occupancy grid [4]. The occupancy grid we compute is a 2D ar-
ray of 30m x 30m and 0.4m resolution, with each cell either unobserved, occupied,
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or free. All cells are initially unobserved. A cell is considered occupied if a LIDAR
point in its 2D boundary is higher than 2m or if the height difference between the
lowest and highest point is greater than 0.3m, otherwise it is free. Fig. 9 shows the
difference between an occupancy grid with the original LiDAR points in the pres-
ence of airborne particles and an occupancy grid for which the points detected as
particles have been removed. Most false obstacles generated by the particles in the
original point cloud are removed in the occupancy grid generated from the filtered
point cloud. The cells behind the particles are still considered unobserved, leaving
the same opportunity to the system to later detect an obstacle that might be hidden
behind the particles as before the removal of LiDAR points. We evaluate two as-

Fig. 9: Occupancy grids (occupied: black cells, free: light grey cells, unobserved: dark grey) and
predicted point cloud with particles in white and non-particles in red for the scene in Fig 1. Left:
Original point cloud. Right: Point cloud with predicted particles removed.

Table 5: Performance of our classification approaches on the obstacle detection task.
Original Point Cloud| Voxel Classification |Point Classification

False Obstacle Prevented 0% 89% 96%
(higher is better)
True Obstacle Removed 0% 0.1% 0.4%

(lower is better)

pects when filtering LiDAR point clouds for obstacle detection: the percentage of
false obstacles removed by correctly identifying the particles, and the percentage of
true obstacles removed due to misclassification of a non-particle for a particle. Ta-
ble 5 shows the performance of each approach. Both approaches are able to prevent
the majority of false obstacles by detecting and removing airborne particles, with
the point classification approach preventing up to 96% of false obstacle cells in the
occupancy grid. Only a small percentage of true obstacles cells are removed from
the occupancy grid, with the voxel classification approach only removing 0.1% of
true obstacles.

6 Conclusion and Future Work

In this paper we proposed two deep-learning approaches to classify airborne par-
ticles in LiDAR point clouds, based on voxels and on points (projected into a LI-
DAR image), respectively. We also presented a thorough validation on realistic ex-
perimental dataset containing fog and airborne dust. First we evaluated the best
combination of input features for each approach. The point classification approach
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performed best using geometry and multi-echo features with an F1 score of 94%,
while the voxel classification approach performed best when combining geometry,
intensity, and multi-echo features with an F1 score of 91%. Both approaches signif-
icantly outperformed the state of the art. These results indicate that the multi-echo
returns of the LiDAR sensor is beneficial as an input feature for classifying airborne
particles. Both approaches provide comparable classification performance overall;
however, the choice between the two strategies depends on the data representation,
size of the network. We also show that it may depend on the task to perform. We
can recommend the use of the voxel-based approach for a system already using a
voxel representation or requiring a smaller network size due to hardware limitation.
This approach seems to be well suited for obstacle detection tasks: in this paper the
proposed method was able to clear a significant number of false obstacles (created
by airborne particles), while removing only a very small number of true obstacles
cells in an occupancy grid. We recommend the point classification approach to get
the best possible classification performance at the cost of a bigger network. We also
showed that this was the only approach of the two capable of differentiating between
types of particles. When filtering a point cloud prior to a pose estimation task, both
approaches provide a similar performance gain. Limits of the two approaches are
symptomatic of deep learning and given as generalization to other particles, sensors
and environments.

Future work will evaluate the proposed methods on other types of particles such
as smoke or snow. Evaluating the uncertainty of the prediction would also be bene-
ficial, as in any robotics application. Finally, adding a notion of time in the network
prediction is likely to be useful to learn and predict the movement aspects of air-
borne particles.
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