

Biofuels - Future Prospects and Benefits for India

Saurabh Patwari and Palak Jindal

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

March 3, 2020

Biofuels- Future Prospects and Benefits for India

Saurabh Patwari^[1], Asst. Prof. Palak Jindal^[2]

[1] Mechanical Engineering, Jaipur Engineering College and Research Centre, saurabhpatwari4@gmail.com

[2] Assistant Professor Mechanical Department, Jaipur Engineering College and Research Centre, palak.me@jecrc.ac.in

Abstract-

Energy plays a vital role in the economic growth of any country. The human population is anticipated to surpass 9 billion by 2050 and this will also increase the utilization of Petroleum Oil. Biofuels have emerged as an ideal choice to meet these requirements. Huge investments in research and subsidies for production are the rule in most of the developed countries. All over the world, governments have initiated the use of alternative sources of energy for ensuring energy security, generating employment, and mitigating CO₂ emissions. Similarly, liquid biofuels are of particular interest because of the vast infrastructure already in place to use them, *especially* for transportation. The liquid biofuel in greatest ethanol. biodiesel. production is methane gas and biogas. These all kind of biofuels are playing a crucial role in reducing the use of natural petroleum resources. Finally, we see how biofuels investment enhances growth and poverty reduction despite some displacement of food crops by biofuels. We also discuss about the emission of SO_2 and NO_2 in this because it is

a very important factor that cannot be neglected.

Keywords- Bioenergy, biofuels, agriculture, energy, commodity futures, ethanol.

1. Introduction-

Biofuels which are often considered as environmentally friendly energy have recently attracted the attention of those who want to take actions for the use of fossil fuels and for global climate change. Biofuel, any fuel that is derived from biomass - that is, plant, wood waste, algae material or animal waste. Since such feedstock material can be replenished readily, biofuel is considered to be a source of renewable energy, unlike fossil fuels such as petroleum, coal, and natural gas. Biofuel is commonly advocated as a cost-effective and environmentally benign alternative to petroleum and other fossil fuels, particularly within the context of rising petroleum prices and increased concern over the contributions made by fossil fuels to global warming. Liquid biofuels are of particular interest because of the vast infrastructure already in place them. especially to use for transportation. The liquid biofuel in greatest production is ethanol, which is made by fermenting starch or sugar. Brazil and the United States are among the leading producers of ethanol. The second most common liquid biofuel is biodiesel, which is made primarily from oily plants (such as the soybean or oil palm) and to a lesser extent from other oily sources (such as waste cooking fat from restaurant deep-frying). Biodiesel which has found greatest acceptance in Europe, is used in diesel engines and usually blended with petroleum diesel fuel in various percentages. Other biofuels include methane gas and biogas-which can be derived from the decomposition of biomass in the absence of oxygen-and methanol, butanol and dimethyl ether-which are in development.

Figure 1: Domestic production and import of crude oil in India: 1974-75 to 2008-09^[3]

As we can see in above graph the use and consumption of crude oil is increasing drastically. In year 1980-81 it was about 20 Million tonnes and became 7 times within decades and will become multiple more times if its substitution is not found. So biofuels can replace it for an instance but still they are not enough to replace it completely. Use of biofuels in increasing drastically so that the dependency on traditional fuel sources can be overcome.

2. Literature review-

S. no	Title, author, year of	Methodology/Basic	Scope of work/conclusion
	publication	principles	
1.	publicationNext-GenerationBiofuels—Opportunitiesand ChallengesNaveen Kumar , AnkitSonthalia , Harveer S. Paliand SidharthJanuary, 2020	The human populace is anticipated to surpass 9 billion by 2050 which will increment the calorie admission and push the generation of nourishment crops on rare arable land to its limit. The interest of the vitality will likewise increment. An examination	India is presently the 6th biggest economy of the world and the mechanical alongside the transportation area has seen an amazing development over the most recent two decades. The vitality utilization has expanded multi-overlap and Government of India is pushing inexpandible
		of the world complete essential vitality supply (TPES) in 1973 and 2016. The vitality utilization of the world expanded from 6101 Million tons of oil equal (Mtoe) in 1973 to 13,699 Mtoe in 2016, an expansion of 124%. The petroleum products give amajor piece of the vitality prerequisite, in any case, exhausting saves alongside value instability combined with ecological issues block their use as a primary energy source. Most of the countries are moving toward renewable and cost-effective options which are biodegradable and abundantly available.	advantages. The program

	Biofuels in India:	Biofuels are rising as an	In India, nearly 70 per cent
	Potential, Policy and	inexhaustible and	of the population lives in
	Emerging	eco-accommodating	the rural areas and depends
2.	Paradigms	wellspring of vitality which	on agricultural and related
		could help in improving the	activities for livelihood.
	S S Raju	independence in vitality and	Moreover, in the rural
	Shinoj Parappurathu	limiting reliance of a country	India, around 33.8 percent
	Ramesh Chand	on imported petroleum	people still belong to the
	P K Joshi	products. Towards this try,	below poverty line (BPL)
	Praduman Kumar	the Government of India has	economic status. Food
	Siwa Msangi	started a few projects to	security continues to be a
		enlarge creation and	priority for the Indian
	April, 2012	utilization of biofuels during	government in all its
		the previous decades or	developmental efforts. Even
		somewhere in the vicinity.	though India is
		The National Biofuel	self-sufficient in terms of
		Mission, propelled in 2003,	food production, almost 50
		is the leader of such	per cent of the children and
		activities, with Ethanol	practically the same number
		Blended Petrol Program	of women suffer from
		(EBPP) and Biodiesel	protein calorie malnutrition
		Mixing Program (BDBP) as	in the country as judged by
		its fundamental segments. In	anthropometric parameters.
		these programs, determined,	Therefore, any large-scale
		time-bound targets have been	biofuel programme has to
		laid for mixing of 5 percent,	ensure that it does not
		10 percent and 20 percent	compromise with the food
		biofuels with petroleum and	
		diesel in a staged way in	the nation.
		order to catalyze the change	
		from a totally non-renewable	
		energy source based vehicle	
		framework to a mostly	
		biofuel-driven framework.	

3.	Emissions of SO2 and NOx	Concentrations of oxides of	The evaluation of emission
	from biofuels in india	S and N in the atmosphere	factors, based on the
		are strongly influenced by	laboratory studies carried
	Ranu Gadi,	the emissions taking place	out on various biofuels,
	U. C. Kulshrestha,	from the burning of biofuels.	shows that SO2 emissions
	A. K. Sarkar,	This is particularly important	are lowest from bagasse
	S. C. Garg,	in the developing countries	and highest from
	D.C. Parashar	where most of the energy	dungcakes, while for NOx
		requirement in the rural	it is the opposite. Based on
	8 Nov. 2002	sector is met from biofuels.	the annual consumption for
		An experimental setup has	1990, the budgets for SO2
		been built to carry out	and NOx have been
		controlled biomass burning	estimated as 0.4 ± 0.3 Tg
		and to derive emission	and 1.0 ± 0.4 Tg,
		factors for SO2 and NOx	respectively, for
		(NO and NO2) from various	biofuelscommonly used in
		biofuels commonly used in	India.
		India. Using these emission	
		factors and the consumption	
		data obtained from Tata	
		Energy Research Institute's	
		(TERI) Energy Data	
		Directory and Yearbook	
		1998–99, the budget of SO2	
		and NOx from biofuels used	
		in India has been estimated	
		as 0.4 ± 0.3 and 1.0 ± 0.4 Tg,	
		respectively, for the year	
		1990.	
4.	An Assessment of the	The current manufacturing	The biofuels industry is
	Biofuels Industry in India	cost of ethanol and biodiesel	poised to make important
		in India is about Rs. 21/litre	contributions to meeting
	Joseph B. Gonsalves	(\$0.46/litre), roughly the	India's energy needs by
		same as petrol and diesel.	supplying clean domestic
	18 October 2006	This puts biofuels in a	fuel. The ethanol industry is
		favourable position for	mature, but with efficiency
		meeting India's energy	improvements, the use of
		needs, especially as the cost	alternate crops and the

		of petroleum is expected to	deployment of new
		continue its upward trend. In	technologies like enzymatic
		addition to providing energy	fermentation of cellulosic
		security and a decreased	material, it can easily
		dependence on oil imports,	supply the ethanol
		biofuels offer several	requirements for 5 per cent
		significant benefits such as	or even 10 per cent ethanol
		reduced emission of	blending. As for biodiesel,
		pollutants and greenhouse	R&D work on high
		gases and increased	oil-yielding Jatropha seeds
		employment in the	is complete and pilot
		agricultural sector.	projects for plantations and
		In India ethanol is produced	transesterification plants are
		by the fermentation of	under way. The industry is
		molasses – a by-product of	in the incubation stage, but
		sugar manufacture. India is	large-scale Jatropha
		the fourth largest ethanol	cultivation and the
		producer after Brazil, the	infrastructure for oilseed
		United States and China, its	collection and oil extraction
		average annual ethanol	must be established before
		output amounting to 1,900	the industry can be placed
		million litres with a	on a rapid-growth track. In
		distillation capacity of 2,900	the meantime imports could
		million litres per year. For a	help, as could income
		5 per cent ethanol blend in	generated from the sale of
		petrol nationally, the ethanol	certified emission
		required would be 640	reductions from biodiesel
		million litres of ethanol in	projects approved by the
		2006-2007 and 810 million	CDM executive board.
		litres in 2011-2012. Current	
		capacity can potentially	
		satisfy this demand.	
5.	Biofuels in India: Future	Biofuels are globally	The importance of
	Challenges	considered sustainable and	developing a strong biofuel
		ecofriendly source of energy	industry to tackle the
	P. Shinoj, S.S. Raju,	to enhance national energy	challenges of energy
	Ramesh Chand, Praduman	security and decrease	security and fuel
	Kumar and Siwa Msangi	dependence on imported	selfsufficiency has been
		fossil fuels. During the past	widely acknowledged in

April, 2010	one decade, Government of	India. Even though the food
1 /	India (GoI) has initiated	versus fuel debate is quite
	several measures to augment	1
	production and use of	it is largely irrelevant to the
	biofuels. The National	Indian biofuel production
	Biofuel Mission launched in	program due to the
	2003 is the frontrunner of	country's policy decision
	such efforts in the country.	not to use any edible
	The 'National Policy on	feedstock for bio-energy
	Biofuels' released in 2009,	production. The National
	foresees biofuels as a	Biofuel Policy has been
	potential means to stimulate	designed to harness the
	rural development and	various environmental,
	generate employment	social and economic
	opportunities, as well as	benefitsarising out of
	aspires to reap environmental	large-scale development of
	and economic benefits	biofuels in the country.
	arising out of their	However, the success of the
	large-scale use. The Policy	program would largely
	aims at mainstreaming	depend on the readiness of
	biofuels by setting an	the stakeholders and the
	indicative target of their	government machinery to
	blending up to 20 per cent	tackle the challenges that
	with petrol and diesel in the	the program may face from
	transport sector by the year	time to time. It has
	2017 (GoI, 2009). It is	becomeapparent that
	categorically mentioned in	bioethanol production
	the Policy that the program is	solely based on sugar cane
	to be carried out based solely	molasses is neither
	on the non-food feedstocks	economically viable nor
	that are raised on degraded or	sustainable in the long-run.
	wastelands not suitable for	
	agriculture.	

3. Ethanol and Biodiesel:-

India's biofuel production accounts for only 1% of the global production. This includes 380 million litres of fuel ethanol and 45 million litres of biodiesel. It is worth noticing that India is the second largest producer of sugarcane in the world but accounts for only about 1% of global ethanol production. This can be attributed to the fact that 70-80% of the cane produced in the country is utilized for production of sugar and the remaining 20-30 % for alternate sweeteners like jaggery and khandsari.

Figure 2: Ethanol production by country, 2008

Ethanol is produced from fermentation of molasses which is a by-product in the manufacture of sugar from sugarcane. It is estimated that, out of one tonne of sugarcane, 85-100 kg of sugar and 40 kg of molasses can be recovered. The processing industry experience periodic market gluts of sugarcane, sugar and molasses due to cyclical nature of sugarcane and sugar production in India. Out of the total alcohol produced, 25% is being used for industrial purposes, 30-35% is used for potable purposes and 3-4% for other uses. The surplus available alcohol is being diverted for fuel.^{[4],[7]}

Figure 3: Biodiesel production by country, 2008

India is not self-sufficient in edible oil production and depends upon large quantities of import of palm oil and other vegetable oils to meet the domestic demand. India does not use vegetable oils derived from rapeseed, mustard or palm oil for production of biodiesel. Biodiesel in India is mostly produced from oils extracted from non-edible seeds of shrubs like jatropha and pongamia. ^{[4],[10],[11]} High production cost and overemphasis on one feed-stock also contributes to low production of biodiesel in adequate India. Getting quantity of wastelands is difficult because of its impact on forest conservation. [8],[9]

4. Emissions of SO₂ and NO_x from Biofuels:-

Biofuels are used by more than 50% of the world's population as a major source of domestic energy (Boleij et al., 1989).^[13] In the developing countries biomass energy use is predominant in rural areas, where it often supplies over 70% of the total energy requirements (Hall, 1991).^[14] The major sources of biofuels are fuel wood, crop residues, dungcakes and charcoal. These are burnt in a variety of cooking stoves made locally to suit local needs. These are also burned in rural industries and in the urban service establishments. It is common to use bagasse in the sugar industry and rice husk in rice mills. India is experiencing rapid economic and population growth. It is estimated that by 2010 over four billion people will be living in the Indian subcontinent and eastern Asia. At current growth rates the Asian energy demand in general is doubling every 12 yr. Biomass is major source of energy in India, and 45% of the total primary energy consumption is based on biomass. The household sector is the major end user, consuming 83% of the total biomass energy leading to per capita biomass consumption of 380 kg for the year 1990-91 (Narang et al., 1999).^[12] With the growing population and energy requirement the demand for biofuels will also increase. The use of fuel wood alone in India is predicted to increase by a factor of three from 1985 to 2015 (World Resources, 1993).^[15] Increased energy use will result in a large increase of SO2 and NOx emissions leading to regional increase in precursors to

acid deposition, tropospheric ozone and ambient aerosols. Developing an accurate and detailed picture of nitrogen oxide and sulfur dioxide emissions in India from biofuels serves multiple purposes.

5. Conclusion:-

Currently, India's position in global biofuel map is not very prominent. However, the country has ambitious plans to expand the biofuel sector. After analyzing the 'National Policy on Biofuel' of the Government of India (Ministry of New & Renewable Energy), we would like to make the following recommendations:

1. The Government should take steps in the direction of setting up regulating nurseries for certification of seeds and planting materials and to regulate the mechanism of cultivation.

2. An up-to-date technology policy is central to bring in efficiency in production which is also cost-effective so that the industry would survive on its own without any subsidies or support.

3. The focus on research has to be sustained to explore the feasibility of environment-friendly and economically sustainable feed stocks.

4. Offer opportunities for promoting local level entrepreneurship and enhancement of women's participation.

5. Ambiguity in land rights is also considered as an issue in development of wastelands for biofuel. Therefore, the facts regarding such arguments also need to be verified before opting for a full-fledged expansion of biofuels in the country.

6. Modification in the engines of the vehicles so that it can run on hybrid fuels.

7. The Government should adopt some of the measures from the success of biofuels in countries like Brazil.

6. References:-

- IEA (2017) Key energy world statistics. <u>https://doi.org/10.1017/cbo97811074</u> <u>15324.004</u>
- 2. Azad AK, Rasul MG, Khan MMK, Sharma SC, Hazrat MA (2015) Prospect of biofuels as an alternative transport fuel in Australia. Renew Sustain Energy Rev 43:331–351. <u>https://doi.org/10.1016/j.rser.2014.11</u> .047
- 3. Biofuels in India: Potential, Policy and Emerging Paradigms by S S Raju, Shinoj Parappurathu, Ramesh Chand, Praduman Kumar and Siwa Msangi, NCAP, New Delhi Published April, 2012
- 4. S.S. Raju, P. Shinoj, P.K. Joshi, Sustainable Development of Biofuels: Prospects and Challenges, *Economic & Political WEEKLY, Vol* XLIV No. 52, December 26, 2009
- 5. Vijai Pratap Singh, Indian Biofuel Scenario: An Assessment of Science and Policy
- 6. Planning Commission, Government of India, Report of the Committee on Development of Biofuel, April 16, 2003

- 7. Ethanol India (2009): http://www.ethanolindia.net/ethanol_ demand.htm accessed on September 23, 2011
- 8. Y.C. Sharma and B. Singh, Development of biodiesel from karanja, a tree found in rural India, Fuel (2007)
- 9. P.K. Sahoo, L.M. Das, M.K.G. Babu and S.N. Naik, Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine, Fuel 86 (2007), pp. 448–454.
- 10. J.M. Marchetti, V.U. Migual and A.F. Errazu, Possible methods for biodiesel production, Renew Sustain Energy Rev 11 (2007), pp. 1300–1311.
- <u>11.</u> A. Demirbas, Recent developments in biodiesel fuels, Int J Green Energy 4 (2007), pp. 15–26
- 12. Narang, H. P., Parashar, D. C., hattacharya, S. C. and Abdul Salam, P. 1999. A study of biomass as a source of energy in India. *RERIC Int. Energy J.* 21, 11–23.
- Boleij, J. S. M., Ruigewaard, P., Hoek, F., Thairu, H., Wafula, E., Onyango, F. and De Koning, H. 1989. Domestic air pollution from biomass burning in Kenya. *Atmos. Environ.* 23, 1677–1681.
- 14. Garg, A., Shukla, P. R., Bhattacharya, S. and Dadhwal, V. K.2001. Sub-region (district) and sector level SO2 and NOx emissions for

India: assessment of inventories and mitigation flexibility. *Atmos. Environ.* **35**, 703–713. Hall, D. O. 1991. Biomass energy. *Energy Policy* **19** 711–737.

- World Resources Institute. 1993. World Resources 1992–93. World Resources Institute, New York.
- <u>16.</u> Next-Generation Biofuels—Opportunities and Challenges by Naveen Kumar, Ankit Sonthalia, Harveer S. Pali and Sidharth January, 2020
- <u>17.</u> Biofuels in India: Potential, Policy and Emerging Paradigms by S S Raju Shinoj Parappurathu Ramesh Chand P K Joshi Praduman Kumar Siwa Msangi April, 2012
- 18. Emissions of SO2 and NOx from biofuels in india by Ranu Gadi, U. C. Kulshrestha, A. K. Sarkar, S. C. Garg, D.C. Parashar 8 Nov. 2002
- <u>19.</u> An Assessment of the Biofuels Industry in India by Joseph B. Gonsalves 18 October 2006
- <u>20.</u>Biofuels in India: Future Challenges by P. Shinoj, S.S. Raju, Ramesh Chand, Praduman Kumar and Siwa Msangi April, 2010
- 21. Biofuels: opportunities and challenges in India Mambully by Chandrasekharan Gopinathan & Rajasekaran Sudhakaran 28 May 2009
- 22. Arndt, C., R.C. James, and K.R. Simler (2006), 'Has economic growth in Mozambique been pro-poor?', *Journal of African Economies* **15**: 571–602.
- 23. Arndt, C., E.S. Jones, and F. Tarp (2007), 'Aid and development: the Mozambican case', in S. Lahiri (ed), *Frontiers of Economics and Globalization: Theory and Practice*

of Foreign Aid, Amsterdam: Elsevier.

- 24. Arndt, C. and K.R. Simler (2007), 'Consistent poverty comparisons and inference', *Agricultural Economics* 37: 133–143.
- 25. Fargione, J., J. Hill, D. Tilman, S. Polasky, and P. Hawthorne (2008), 'Land clearing and the biofuel carbon debt', *Science* **319**: 1235–1238.
- 26. Graboski, M.S. and J.M. McClelland (2002), 'A rebuttal to "Ethanol fuels: Energy, economics and environmental impacts" byD. Pimentel', *International Sugar Journal* **104**: 162–163.
- 27. Hausmann, R. (2007), 'Biofuels canmatch oil production', *Financial Times*,November 6.
- 28. Hazell, P. and R.K. Pachauri (2006),
 'Bioenergy and Agriculture: Promises and Challenges', 2020 Focus, 14, International Food Policy Research Institute.
- 29. IEA (International Energy Agency) (2008), *World Energy Outlook 2008*, France: International Energy Agency.
- 30. Oxfam International (2007), 'Biofueling Poverty:Why the EU Renewable Fuel Target May be Disastrous for Poor People', Oxfam Briefing Note, November.
- 31. Pimentel, D. (2003), 'Ethanol fuels: energy balance, economics, and environmental impacts are negative', *Natural Resources Research* **12**: 127–134.
- 32. Econergy (2008), 'Mozambique Biofuels Assessment', Report prepared for Mozambique's Ministries of Agriculture and Energy and the World Bank, Washington, DC.