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Abstract. Mathematical morphology (MM) is a theory of non-linear
operators used for the processing and analysis of images. Morphological
neural networks (MNNs) are neural networks whose neurons compute
morphological operators. Dilations and erosions are the elementary op-
erators of MM. From an algebraic point of view, a dilation and an ero-
sion are operators that commute respectively with the supremum and
infimum operations. In this paper, we present the linear dilation-erosion
perceptron (¢-DEP), which is given by applying linear transformations
before computing a dilation and an erosion. The decision function of
the ¢-DEP model is defined by adding a dilation and an erosion. Fur-
thermore, training a ¢-DEP can be formulated as a convex-concave op-
timization problem. We compare the performance of the £-DEP model
with other machine learning techniques using several classification prob-
lems. The computational experiments support the potential application
of the proposed ¢-DEP model for binary classification tasks.

Keywords: Mathematical morphology - concave-convex optimization -
binary classification - continuous piece-wise linear function.

1 Introduction

Machine learning techniques play an important role in both pattern recogni-
tion and soft computing. Neural networks, which are inspired by the biological
nervous system, are among the most efficient machine learning techniques used
to solve pattern recognition tasks including, for example, computer vision and
natural language processing [3]. Due to page constraints, we will not provide an
extensive review of the many interesting and effective neural network models
which have been proposed in the last years but focus on the few models relevant
to the development of the linear dilation-erosion perceptron addressed in this

paper.
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First of all, it is widely know that the perceptron, introduced by Rosenblatt
in the late 1950s, can be used for binary classification tasks [18]. Precisely, the
perceptron yields one class if the weighted sum of the inputs is greater than or
equal to a threshold and returns the other class otherwise. Furthermore, Rosem-
blatt proposed a learning rule that converges whenever the samples of the two
classes are linearly separable [10]. The multi-layer perceptron (MLP) network,
with at least one hidden layer and trained using backpropagation algorithms,
overcomes the limitations of the Rosenblatt’s perceptron for non-linearly sepa-
rable classification tasks [10]. The support vector classifiers (SVCs) developed
by Vapnik and collaborators also overcomes the limitations of the perceptrons
for binary classification tasks. Like the perceptron, an SVC also predicts the
class of a sample by computing a weighted sum. However, training an SVC is
performed by maximizing the margin of separation between the two classes [25].
Furthermore, the classification performance of an SVC increases significantly by
using the kernel trick. The kernel trick allows an SVC model to be effectively
applied to non-linearly classification problems. For comparison purposes, in this
paper, we consider both linear and radial-basis function SVC models as well as
an MLP network.

In the late 1980s, Ritter and collaborators developed the so-called image al-
gebra as an attempt to provide a unified framework for image processing and
analysis techniques [16]. Using the image algebra framework, both linear and
morphological operators are defined analogously. By replacing the usual linear
dot-product in Rosemblatt’s perceptron model with the corresponding lattice-
based operation used to define morphological operators, Ritter and Sussner de-
rived the morphological perceptron in the middle 1990s [14, 15]. The elementary
operations from mathematical morphology are dilations and erosions [20]. The
maximum of additions yields a dilation while the minimum of sums yields an
erosion. Hence, a dilation-based perceptron classifies a pattern by computing the
maximum of its components plus the corresponding weights. Dually, the decision
function of an erosion-based morphological perceptron is given by the minimum
of the pattern’s components plus the weights.

Such as the MLP, a multi-layer morphological perceptron (MLMP) with at
least one hidden layer with both dilation-based and erosion-based neurons can
theoretically solve any binary classification tasks [17]. From a geometric point
of view, an MLMP discriminates two classes by enclosing patterns in hyper-
boxes [17,22]. The non-differentiability of the lattice-based operations, however,
makes training morphological neural networks difficult for gradient-based al-
gorithms. Thus, some researchers developed training algorithms in which the
network structure grows by adding hyper-boxes to fit the training data [17, 22,
23]. On the downside, growing algorithms usually overfit the training data.

Recently, Charisopoulos and Maragos formulated the training of a morpho-
logical perceptron as a concave-convex optimization problem which, in some
sense, resembles the training of a linear SVC [4]. Despite the encouraging per-
formance in simple classification tasks, both dilation-based and erosion-based
morphological perceptrons implicitly assume a relationship between the input
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features and their classes [24]. Using concepts from vector-valued mathematical
morphology, one of us proposed the reduced dilation-erosion perceptron (r-DEP),
which overcomes the limitations of the morphological perceptron [24]. In a few
words, the r-DEP first transforms the input into a feature vector. The feature
vector is then classified using a linear combination of a dilation-based and an
erosion-based perceptron.

In this paper, a linear transformation is used to map the input to the feature
vector. The resulting model is referred to as a linear dilation-erosion perceptron
(¢-DEP). We point out that a ¢-DEP model can also theoretically solve any
binary classification task. Furthermore, inspired by the works of Charisopoulos
and Maragos, we formulate the training of a £-DEP classifier as a convex-concave
optimization problem.

The paper is organized as follows. The next section provides the mathemat-
ical background necessary to understand the models presented in this paper.
Section 3 briefly reviews the morphological perceptron as well as the r-DEP
model. The ¢-DEP model and its training algorithm are introduced in Section
4. Computational experiments comparing the performance of the /-DEP model
with other classical models from the literature are given in Section 5. The paper
finishes with some concluding remarks in Section 6.

2 Basic Concepts on Mathematical Morphology

Mathematical morphology is a non-linear theory widely used for image pro-
cessing and analysis [12,20]. From the theoretical point of view, mathematical
morphology is very well defined on complete lattices. A partially ordered set
(L, =) is a complete lattice if any subset of L has both a supremum and an
infimum, which are denoted respectively by sup X and inf X.

The elementary operators from mathematical morphology commute with the
lattice-based operations. Formally, given complete lattices L and M, a dilation
6 : L — M and an erosion € : . — M satisfy respectively the following identities
for all X € L [11]:

0 (sup X) = sup{d(x)} and e(infX)= xlg({e(x)} (1)

xeX

Ezample 1. Let R = R U {—o00,+0c0} denote the extended real-numbers. The
cartesian product R™ is a complete lattice with the partial ordering given by
x 2y & x; <y,Vi =1:n. Given a,b € R", the operators da,cp : R" — R
given by

0a(x) = max{a; +o;} and ep(x) = min {b; +x;}, (2)

for all x € R™, are respectively a dilation and an erosion [23].

The lattice-based elementary operations of mathematical morphology can be
extended to more abstract sets using the concept of reduced orderings [8]. Let
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us briefly review the concepts of reduced dilation and reduced erosion as defined
recently in [24]. Let V and W be an arbitrary sets, not necessarily complete
lattices. Also, let p : V. — L and o : W — M be surjective mappings, where
L and M are both complete lattices. An operator 6" : V — W is a reduced
dilation and an operator " : V — W is a reduced erosion if there exist a dilation
6 : L — M and an erosion ¢ : . — M such that

0 (6"(x)) = d(p(x)) and o("(x)) =e(p(x)), VYxeV. 3)

Reduced morphological operators, such as the reduced dilation and the reduced
erosion defined above, have been effectively used for processing vector-valued
imagens such as color and hyperspectral images [26, 27].

3 Reduced Dilation-Erosion Perceptron

Morphological neural networks (MNNs) are neural networks whose induced local
field of the neurons are given by an operation from mathematical morphology
[23]. The morphological perceptrons, introduced by Ritter and Sussner in the
middle 1990s for binary classification tasks, are one of the earliest MNNs [14].
In a few words, the morphological perceptrons are obtained by replacing the
usual affine transformation A(x) = (w,x) + b, for all x € R", by an elementary
morphological operator in Rosenblatt’s perceptron given by y = f(A(x)) =
fA(x), where f denotes a hard limiter activation function [9]. Formally, the two
morphological perceptrons are given by the equations y = f (6a(x)) = fa(x)
and y = f(eb(x)) = feb(x), for all x € R". Specifically, the dilation-based
perceptron and the erosion-based perceptron are given respectively by

y=1r (;g?;;{aj + wj}) or y=f (j@;gl{bj + l‘j}) . XER™ (4

For simplicity, in this paper we shall consider the signal function as the hard
limiter activation function of the morphological perceptrons, i.e., f(x) = +1 if
x > 0 and f(x) = 0, otherwise. Note that a morphological perceptron model is
given by either the composition fd, or the composition fep, where 5 : R™ — R
and €, : R” — R denote respectively the dilation and the erosion given (1),
for a,b € R". Because of the maximum operation, a dilation-based perceptron
given by y = fd, favors the positive class whose label is +1 [24]. Dually, an
erosion-based perceptron defined by y = fep, favors the negative class, i.e., the
class label —1, because of the minimum operation.

In [1], Araujo proposed an hybrid MNN called dilation-erosion perceptron
(DEP). For binary classificaiton tasks, a DEP computes the convex combination
of a dilation and an erosion followed by a hard-limiter function. Intuitively, the
DEP model allows for a balance between the two classes. In mathematical terms,
given f € [0, 1], a DEP model is defined by y = f(7(x)) = f7(x), where

7(x) = Bda + (1 — Blep, VxR, (5)
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is the decision function of the DEP model.

Despite the successful application of the DEP model for times series predic-
tion [1], the DEP classifiers have a serious drawback: as a lattice-based model,
the DEP classifier presupposes a partial ordering on the input space as well as on
the set of classes. To overcome this problem, Valle recently proposed the so-called
reduced dilation-erosion perceptron (r-DEP) using concepts from vector-valued
mathematical morphology [24]. An r-DEP classifier is defined as follows: Let V
be the input space and let C = {c¢1, c2} be the set of class labels of a binary clas-
sification task. The input space V is usually a subset of R™, but we may consider
more abstract input spaces. Also, consider the complete lattice L = R", equipped
with the usual component-wise ordering, and let us denote M = {—1, +1}. Given
a one-to-one correspondence o : C — M and a surjective mapping p : V — R", an
r-DEP model is defined by the equation y = o' (f(7"(x))) = o' f7"(x), where
7" 1V — R is the decision function given by the following convex combination
for g € [0, 1]:

(%) = Bba(p(x)) + (1~ Blen(p(x)), Vx € V. (6)

Finally, let us briefly comment on the training of an r-DEP classifier. Consider
a training set T = {(x;,d;) : i =1,...,m} C Vx C. From equation (6), training
an 7-DEP is done simply training a DEP classifier using the transformed training
data T" = {(p(x:),0(d;)) : ¢ = 1,...,m} C L x M. At this point, we would
like to recall that Charisopoulos and Maragos formulated the training of the
morphological perceptrons as well as the hybrid DEP classifier as the solution
of a convex-concave programming (CCP) problem [4]. Training r-DEP classifier
using convex-concave procedures yielded encouraging results on classification
tasks [24].

4 Linear Dilation-Erosion Perceptron

The main challenge in defining a successful r-DEP classifier is how to determine
the surjective mapping p : V — R". In this paper, we propose linear trans-
formations as the mapping p, resulting in the so-called linear dilation-erosion
perceptron ((-DEP) classifier. Precisely, a ¢-DEP model is defined as follows. Let
the input space be the n-dimensional vector space V. =R" and let C = {¢1,c2}
be the set of class labels of a binary classification task. Also, let L; = R™ and
Ly = R™ be complete lattices with the usual component-wise partial ordering.
Given linear mappings p1 : V — Ly and py : V — Lo, the application of linear
mappings before the evaluation of an elementary morphological mapping yields
the decision function 7' : V — R given by

(x) = 55a(01(x)) +(1- ﬂ)ﬁb(Pz(X))a xeV.

Finally, such as the previous model, the /~-DEP model is defined by the equation

y=o0"(f(7'(x))) =07 fr'(x), (7)
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where f is the sign function and o : C — {—1,+1} is a one-to-one mapping.

In contrast to the decision function 7" of the r-DEP model given by (6), the
decision function 7! of the ¢-DEP is defined using two linear mappings p1 and po.
As a consequence, 7' is a continuous piece-wise linear function which is able to
approximate any continuous-valued function from a compact on R™ to R [7,21].
Let us formalize this remark. The linear mappings p; and py satisfies p;(x) =
Rix and ps2(x) = Rox for real-valued matrices Ry € R™*™ and Ry € R"™*".
Defining W = fR; e R™"*" M = (3—1)Rs € R™*" ¢ = Ba,and d = (8—1)b,
the decision function of the /-DEP classifier can be alternatively written as

7H(x) = BOa(R1x) + (1 — B)ep(Rax)
= fmax{R1x+a} — (f — 1) min{Rex + b}
= max{fR1x + fa} — max{(8 — 1)Rax + (8 — 1)b}
= max{Wx + c} — max{Mx + d}

7=

= max {wlx+¢} - max {m]x +d;}, (8)
Ty J=1r2

where WiT and miT are rows of W and M, respectively. From the last identity, we
can identify 7! with a piece-wise linear function [28]. Moreover, from Theorem 4.3
in [7], 7! is an universal approximator. Thus, a /-DEP classifier can theoretically
solve any binary classification problem. Let us now address the training of a
{-DEP classifier.

Given a training dataset T = {(xx,dg) : k = 1,...,m} CV x C, define the
sets O = {x} : o(dy) = +1} and C~ = {x; : o(dx) = —1} of input samples.
Inspired by the linear SVC and the concave-convex procedure developed by
Charisopoulos and Maragos [4, 10], the parameters W, ¢, M and d of a ¢-DEP
classifier can be determined by minimizing the hinge loss function subject to the
constraints

Tl(Xk)§—1+§k7 ikaGC_7 and Tl(Xk)Zl—fk, ikaEC+. (9)

The terms —1 and +1 in the left-hand side of the inequalities imposes a margin
of separation between the two classes. The slack variables &, for k =1,...,m,
allows some classification errors in the training set. Note that, regardless of its
class, the input sample xj, is well classified if £ < 0. The hinge loss minimizes
the positive values of &, for £ =1,...,m.

Concluding, from (8), a ¢-DEP classifier is trained by solving the following
disciplined convex-concave programming (DCCP) problem [29]:

m

minimize Zmax 0
WeMdg (&.0),

s.t. max (Wlixp4+¢)+1 < max (m?xk +dj) + &, Vx € CT (10)
i=1:rq j=Llirs
max (WiTxk +¢i) + & > max (mjrxk +d;j)+1, Vxz € CT
1=1:rq j=Llro
We would like to point out that we solved the disciplined convex-concave pro-
gramming problem (10) using the algorithm proposed by Shen et. al. [19]. Pre-
cisely, in our computational implementations, we solved (10) using the CVXPY
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Fig. 1. Boxplot of the Fl-score and time required to train the binary classifiers

package [5], which has an extension for solving DCCP problems, combined with
the MOSEK solver [2].

5 Computational Experiments

Let us briefly evaluate the performance of the proposed ¢-DEP classifier on sev-
eral datasets from the OpenML repository available at https://www.openml.org/.
For simplicity, we fixed the parameters r; = ro = 10 of the /-DEP classifier for
all datasets. Let us also compare the proposed classifier with a multi-layer per-
ceptron (MLP), the maxout network, and the linear and the RBF SVCs [6, 7,
9]. We used python’s scikit-learn (sklearn) implementations of the MLP
and SVC classifiers with their default parameters [13]. The maxout network has
been implemented using tensorflow with extra functionalities, that is, the max-
out layer of tensorflow-addons. In our experiments, we used 10 locally affine
regions in the maxout network for all datasets [7].

We would like to point out that we handled missing data using sklearn’s
SimpleImputer () command. Furthermore, we partitioned the data set into train-
ing and test sets using the sklearn’s StratifiedKFold() command with k£ = 5.
Finally, since some datasets are not balanced, we used the F1l-score to measure
the performance of the classifiers.

Table 1 contains the mean and the standard deviation of the Fl-score ob-
tained from the five classifiers using stratified 5-fold cross-validation. The box-
plot shown in Figure 5 summarizes the scores depicted on this table as well
as the execution time for training the clasifiers. Although the MPL yielded the
largest average performance, the -DEP model produced the largest median per-
formance. Furthermore, it is clear from the boxplot on the left of Figure 5 that
the -DEP is comparable to the other classifiers. In particular, .-DEP achieved
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Table 1. Average and standard deviation of the F1-Score.

|| ¢-DEP |Linear SVC| RBF SVC | MLP | MAXOUT
Accute Inflammations 100 + 0.0/100 + 0.0/100 + 0.0| 100 + 0.0 |100 + 0.0
Australian 83.3 +1.9 | 8.2 £+ 3.6 [86.1 + 2.9| 86.1 + 1.9 | 85.5 + 3.1
Banana 89.2 + 3.1 | 55.2 + 0.0 [90.4 + 1.1| 90.1 + 1.4 |84.0 + 10.4
Banknote 100 + 0.0| 98.5 £ 0.5 {100 + 0.0| 100 + 0.0 | 99.5 + 1.0
Blood Transfusion 77T +£24|76.1 205|766 +1.1|79.8+ 1.5|79.5+ 2.0
Breast Cancer Wisconsin|| 96.7 + 1.1 | 97.2 £+ 0.7 |97.7 + 0.5| 97.5 + 1.4 | 97.2 + 0.7
Chess 99.3 + 0.4 96.8 & 0.6 | 98.3 = 0.7 | 99.2 + 0.4 | 99.1 + 0.1
Colic 81.5 & 4.0 | 81.3 + 6.6 |85.1 £ 3.7| 84.8 + 3.2 | 81.6 £ 5.9
Credit Approval 80.4 4+ 3.3 | 85.5 £+ 2.8 [85.7 + 3.0| 84.9 + 0.9 | 83.9 + 2.8
Credit-g 68.4 + 5.0 | 75.8 £ 3.0 |76.5 + 4.4| 73.8 &+ 3.7 | 68.5 + 4.6
Cylinder Bands 76.7 £59 694 +24|77.2+28|77.4+ 58]|72.8 +4.7
Diabetes 70.8 £ 3.6 | 76.4 +3.4|75.2 +4.7|76.7T £ 3.7 | 751+ 3.3
EEG-Eye-State 89.3 + 1.5(61.7+ 1.9 |68.1 £ 50| 8.6 +3.1 |74.1+ 7.5
Haberman 70.3 3.8 | 73.2 +0.8|73.5+26|74.5 £ 2.4|74.2 + 1.8
Hill-Valley 93.6 + 1.83| 60.6 = 1.9 | 50.5 + 1.2 | 62.4 + 2.7 | 51.7 &+ 2.0
Ilpd 64.1 + 4.8 |71.44+04|71.2 £03|73.1 +£3.0]|70.2+3.1
Internet Advertisements || 93.7 + 1.8 | 96.0 £ 0.7 | 96.6 £ 0.3 | 97.2 + 0.4 | 97.0 £ 0.6
Ionosphere 88.9 + 4.5 | 88.6 £ 2.7 [94.3 + 2.3| 92.6 & 3.1 | 91.7 £ 4.5
MOFN-3-7-10 100 + 0.0(100 £+ 0.0|100 + 0.0| 100 + 0.0 {100 + 0.0
Monks-2 88.0 + 3.7| 65.7 = 0.2 | 72.7 + 2.3 | 82.4 + 3.1 | 83.5 + 3.2
Mushroom 100 + 0.0|97.8 £0.9 {100 £+ 0.0| 100 + 0.0 {100 + 0.0
Phoneme 849 + 1.2 | 773+ 1.6 |84.5+1.5|85.6 £ 1.4|81.5+ 3.5
Pishing Websites 95.7 &+ 0.6 | 90.5 £ 0.7 | 95.0 &= 0.9 | 96.9 + 0.5 | 95.6 + 0.6
Sick 97.0 +£ 0.7 | 96.6 &+ 1.0 | 96.3 £ 0.4 | 97.1 £+ 0.7 | 96.8 £ 1.0
Sonar 77.4 4+ 35 |74.5 + 3.9 |84.2 + 4.2 84.2 + 3.5 | 80.8 + 4.4
Spambase 92.8 + 1.5 1929 +£ 0.5 [93.3 +£0.5|94.5 +£ 0.9 | 93.5 + 0.6
Steel Plates Fault 100 + 0.0{100 + 0.0|99.6 & 0.5 | 99.9 + 0.1 | 99.9 £+ 0.1
Thoracic Surgery 76.8 & 3.1 |85.1 £+ 0.0(|85.1 £ 0.0 83.6 + 1.8 | 81.9 + 2.7
Tic-Tac-Toe 92.6 &+ 5.0 | 65.3 £ 0.2 | 88.8 & 2.1 | 86.3 + 3.2 |95.3 £+ 4.5
Titanic 79.0 + 2.3 776 £20|77.8 19| 777 £1.9 |77.6 £ 1.7
MEAN + STD 86.9 + 10.6(82.4 4+ 13.3[|86.0 £ 12.0|87.5 + 10.0(85.7 £ 12.0
MEDIAN 4+ MAD 88.9 + 9.0(82.4 + 11.3|86.1 £ 9.4 | 86.1 + 8.3 | 84.0 £ 9.8

slightly higher performance than the maxout network. As to the training exe-
cution time, the linear and the RBF SVCs are the fasted models. Despite its
longer, the ¢-DEP is not quite different from the MLP and maxout models in
training time.

6 Concluding Remarks

In this paper, we introduced the linear dilation-erosion perceptron (¢-DEP) clas-
sifier which is given by a convex combination of the composition of linear trans-
formations and the two elementary morphological operation. Specifically, given
a one-to-one mapping o from the set of class labels C to {+1,—1}, a ¢-DEP
classifier is defined by means of the equation y = o~ f7! (x), where the decision
function 7' : R® — R is given by (7). Alternatively, 7! can be expressed by
means of (8) for matrices W € R™*™ and M € R™*™ and vectors ¢ € R™ and
d € R™. Except for the one-to-one mapping o : C — {—1,+1}, which can be
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defined arbitrarily, the other parameters W, M, c, and d are self-adjusted in the
training of the /-DEP model. Moreover, the classifier is trained by solving the
disciplined convex-concave programming problem given by (10), which has been
inspired by the works of Charisopoulos and Maragos [4]. From a theoretical point
of view, the decision function 7 of the /-DEP is a continuous piece-wise linear
function [28]. As a consequence, a -DEP model can in principle solve any binary
classification task [7]. Computational experiments with 30 binary classification
problems revealed comparable performance of the proposed /-DEP model with
other classifiers from the literature, namely, the linear and RFB SVCs, MLP,
and the maxout network.

In the future, we plan to investigate further in detail the concave-convex pro-
gramming problem used to train a ¢-DEP classifier. In particular, we intend to
include regularization terms in the objective function to improve the generaliza-
tion capability of the ¢-DEP classifier.
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