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Abstract—Wheat is an important primary crop that feeds 

billions of people worldwide. Wheat diseases, particularly 

Fusarium Head Blight (FHB) disease often have severe effects on 

wheat yield quantity and quality, and also potentially threaten the 

health of humans and livestock. Traditional field surveying-based 

methods for monitoring and assessment of wheat diseases are 

time-consuming and inefficient. Remote sensing approach, 

particularly aerial imaging using Uncrewed Aircraft Systems 

(UAS) has become an essential tool for fine-scale and rapid field 

scouting and crop disease monitoring in recent years. The work is 

to investigate the potential of combination of high-resolution UAS 

multispectral imagery with machine learning (ML) methods in 

detection of FHB disease severity. Two experimental wheat fields 

are setup in Brookings, South Dakota, USA in 2022. The severity 

of FHB disease was assessed periodically through visual 

observation; and synchronous UAS flights were conducted to 

collect multispectral imagery. UAS multispectral imagery-based 

canopy spectral and texture features were derived, and used as 

input variables to develop ML-based classification and regression 

models for FHB disease severity estimations. Conventional ML 

methods such as Support Vector Machine (SVM), Random Forest 

(RF), along with deep learning models, Deep Neural Network 

(DNN), and One-Dimensional Convolutional Neural Network (1D-

CNN) were employed. The results show that both canopy spectral 

and texture features are important variables for wheat FHB 

disease severity estimations. Additionally, UAS remote sensing, 

coupled with ML-based classification and regression approaches 

is a viable approach to rapidly and accurately estimate and assess 

wheat FHB disease severity at a fine-scale for large areas. 

Keywords—Uncrewed Aircraft Systems (UAS); Fusarium Head 

Blight (FHB); spectral features; texture features; machine learning 

I. INTRODUCTION 

Wheat is the third most cultivated grain crop globally after 
rice and corn, and it ranks third in the United States after corn 
and soybeans in terms of planted acreage, production, and gross 
farm revenues [1]. Wheat production safety is important for 
global food security, economic stability, and effective planning 
for future crop strategies [2]. Various diseases caused by 
bacteria and fungi can significantly affect wheat grain yield and 
quality. Among these, Fusarium head blight (FHB), an intrinsic 
infection caused by Fusarium graminearum (Gibberella zeae), 

has become a globally significant fungal disease that poses a 
major threat to the growth of wheat [3]. FHB infected wheat 
crops can produce mycotoxins such as deoxynivalenol (DON) 
and zearalenone (ZEA), which may persist in wheat spikes. 
These mycotoxins pose significant threats to human and 
livestock health, potentially leading to acute poisoning 
symptoms, the destruction of immunity, and even death. 
Ultimately, FHB can lead to reduced grain yield and quality loss, 
lower fungicide costs, and increased profitability [4, 5]. 

Therefore, rapid and precise monitoring and mapping of 
wheat FHB disease severity is essential for farmers to identify 
infected areas within sub-field level, enabling timely 
management and decision-making; and it is also beneficial in 
terms of plant phenotyping [4]. Traditional method of FHB 
disease scouting and monitoring is often through field visits and 
visual observations. This approach is often time-consuming, 
costly, and inefficient especially when large areas are monitored 
[6].  

In recent years,  the rapid development of low-altitude aerial 
imaging and remote sensing, particularly Uncrewed Aircraft 
Systems (UAS) platforms and sensor technologies, has enabled 
the acquisition of high-resolution RGB, multispectral, 
hyperspectral, LiDAR, and thermal data [7]. UAS remote 
sensing has been widely used for fine-scale crop growth 
monitoring, disease detection and mapping [8], different plat 
traits estimation [9], grain yield and quality estimation [10]. 

In terms of aerial imaging and UAS remote sensing-based 
wheat diseases such as FHB severity estimation, the previous 
studies mainly employed ML-based classification approach [8, 
11], and regression modeling approach is less explored. 
Additionally, spectral features derived from UAS RGB [12], 
multispectral [13], or hyperspectral [8] imagery were utilized as 
input variables for crop disease severity estimation model, the 
potential of UAS imagery-based texture features, as well as 
spectral and texture feature fusion is less attempt for crop disease 
severity estimations [14, 15]. Particularly in the case of wheat 
FHB disease severity prediction [16]. Therefore, this study 
investigates the potential of high-resolution UAS multispectral 
image-derived spectral and textural features, along with their 



combinations, for identifying and estimating wheat FHB disease 
severity using both conventional ML, and deep learning-based 
classification and regression approaches 

II. TEST SITES AND DATA 

A. Test sites and experimental setup 

Wheat experimental fields were established at a research 
farm of South Dakota State University located at Brookings, 
South Dakota (Figure 1). Wheat FHB spray inoculation was 
carried out during the spring 2022. The test site experiences a 
humid continental climate [17], and characterized by typically 
warm summers and freezing, snowy, and windy winters. 
Throughout the year, temperatures generally range from -
13.00°C to 28.33°C and rarely fall below -25.00°C or exceed 
33.33°C. The mean annual precipitation at this site is 
approximately 559 millimeters. The soils are moderately well-
drained and formed in loess overlying glacial till on foot slopes 
and in swales. 

 

Fig. 1. Test site location and field layout map 

B. Data collection and preprocessing 

Periodical field surveying and disease severity rating were 
conducted during June and July of 2022, and the specific 
severity percentage of FHB diseases at each plot was recorded. 
A total of 119 FHB disease severity data samples from the 
winter wheat field and 240 samples from the spring wheat field 
were collected (Figure 1).  

UAS campaigns were synchronized with field surveying to 
collect high-resolution multispectral imagery. A DJI Matrice 
300 RTK (Figure 2 (A)) UAS platform integrated with a 
Micasense Altum multispectral camera (Figure 2 (B)) was used 
to collect multispectral data. The Altum multispectral camera 
features blue, green, red, red-edge, and near-infrared (NIR) 

bands (Fig. 2 (B)) with a 3.2MP sensor resolution and is 
integrated with a real-time downwelling light sensor.  

The UAS flight was conducted at an altitude of 50 meters 
and a flight speed of 5 m/s, with 80% side and frontal overlaps. 
Agisoft Metashape software was used for UAS imagery ortho-
mosaicking and radiometric calibration, while ArcGIS software 
was employed to create plot boundaries, which were further 
used to derive plot-level image features. 

 

Fig. 2. The UAS platform (A) and Altum multispectral sensor (B) used in this 

work; photos of wheat FHB disease infected wheat canopy. 

The field survey-based wheat FHB disease severity data (the 
unit is a percentage) was categorized into five disease levels as 
shown in Table 1, which is used for ML-based FHB disease 
severity level classification modeling. 

TABLE I.   FHB DISEASE SEVERITY (%) CATEGORIES 

Class Severity% range Severity level No. of Samples 

1 0-10% Very low 98 

2 <10-20% Low 110 

3 <20-30% Moderate 71 

4 <30-40% High 29 

5 <40% Very high 51 

III. METHODS 

A. Image feature extraction 

A variety of spectral features such as vegetation indices [18] 
were derived, and plot level mean values of each spectral feature  
were calculated and used as input variables for ML-based wheat 
FHB disease severity estimations [19]. 

In addition to spectral features, the grey level co-occurrence 
matrix (GLCM) canopy texture features were also derived from 
the UAS multispectral imagery. GLCM, introduced by [20], is a 
widely used image texture feature in remote sensing 
applications. It characterizes the joint probability of pixel pairs 
at any grey level and statistically represents an image's texture. 
Eight GLCM-based features, namely mean (M.E.), variance 
(V.A.), homogeneity (H.O.), contrast (C.O.), dissimilarity (DI), 
entropy (EN), second moment (S.M.), and correlation (CC) were 



calculated and used as input variables for ML-based wheat FHB 
diseases severity estimations. 

B. Modeling methods 

UAS multispectral imagery-derived plot-level mean spectral 
and texture features were used as input variables for ML-based 
classification and regression models. Conventional ML 
algorithms, including Support Vector Machine (SVM) and 
Random Forest (RF), along with deep learning methods such as 
Deep Neural Networks (DNN), and One-Dimensional 
Convolutional Neural Network (1D-CNN) were used to predict 
FHB disease severity. The performance of ML-based 
classification and regression models were investigated using 
spectral, textural features, along with their combinations as input 
variables in wheat FHB disease severity estimations, 
respectively. 

C. Model development and assessment 

70% of randomly selected wheat FHB disease data points 
were used as training data, and the remaining 30% of samples 
were used for model testing. Hyperparameter tuning was 
conducted for all ML models to derive optimal modeling results. 
The overall diagrammatic workflow, including UAS image 
processing, model development, and assessment, is presented in 
Figure 3. For the classification method, overall accuracy (Eq. 1), 
kappa coefficient (Eq. 2), and f-score (Eq. 3) were used as 
evaluation metrics. 

  Overall Accuracy =
TP+TN

TP+TN+FP+FN
                            (1)                                            

   𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
p0−pe

1−pe
                                    (2) 

 𝑓 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
Precision×Recall

Precision+Recall
                                (3) 

 Po is the observed accuracy and Pe is the expected accuracy 
by chance, TP represents true positives, TN represents true 
negatives, FP represents false positives, and FN represents false 
negatives. Precision is calculated as TP/TP+TP and recall is 
calculated as TP/TP + FN. 
 For regression, the coefficients of determination (R²) (Eq. 4), 
root mean square error (RMSE) (Eq. 5), and relative RMSE 
(RMSE%) (Eq. 6) were used as model evaluation metrics to 
assess and compare the performance of machine learning 
models. 
 

  𝑅2 = 1 − 
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅)2n
i=1

                                                   (4)                                          

   𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛−1
                                                 (5) 

 𝑅𝑀𝑆𝐸% =
RMSE

y̅
∗ 100                                                 (6) 

Where n is the number of FHB data points used during the 
model testing phase, �̂�𝑖 , 𝑦𝑖  and �̅�  corresponding to the 
estimated, measured and mean of the measured FHB severity 
values. 

 

Fig. 3. Workflow diagram of UAS data collection, processing, feature 

extraction, ML-based modeling, and accuracy assessment 

IV. RESULTS AND DISCUSSION 

A. ML-based FHB severity level classification results 

UAS imagery-derived spectral, texture features and their 
combinations, were used as input variables, respectively, to 
predict FHB disease severity levels (i.e., Very low, Low, 
Moderate, High, and Very high five categories) using SVM, RF, 
DNN, and 1D-CNN based classification models. The model 
testing results, as shown in Table II and Figure 4, demonstrate 
that both spectral and texture features can effectively predict 
FHB severity levels, with overall accuracy ranging from 0.54 to 
0.62 for spectral features and from 0.56 to 0.80 for texture 
features. Spectral features yielded superior results with the RF 
and 1D-CNN methods, while texture features demonstrated 
higher accuracy with the SVM and DNN methods. This suggests 
that both spectral and texture features are important indicators 
for identifying FHB disease severity [16]. 

The combination of spectral and texture features 
outperformed the use of spectral features alone, regardless of the 
classification model. Moreover, the fusion of spectral and 
texture features also demonstrated higher accuracy compared to 
using texture features alone in the case of the RF and 1D-CNN 
models. Spectral and texture features exhibit overlapping and 
redundant information; therefore, combining these two feature 
types may not consistently lead to improved model performance. 
This finding is consistent with previous studies [21].  

In terms of the performance of ML-based classification 

models, the conventional machine learning method RF achieved 

the highest classification accuracy (0.69) when using spectral 

features, while the deep learning method DNN resulted in the 

lowest accuracy (0.54). For texture features, SVM outperformed 

other models with an overall accuracy of 0.80, whereas the deep 

learning method 1D-CNN yielded the lowest accuracy at 0.56. 



The poorer performance of deep learning methods is likely due 

to the smaller sample size for model training [22]. It is worth 

noting that, in the case using combined features, 1D-CNN and 

RF outperformed the case of using the spectral or texture 

features alone, indicating the superior performance of these 

methods in handling high dimensional and redundant features to 

some extent [23]. 

TABLE II.  VALIDATION MATRIX OF FHB DISEASE SEVERITY 

CLASSIFICATION RESULTS 

Features Validation matrix SVM RF DNN 1D-CNN 

 
Spectral 

Overall Accuracy 0.57 0.69 0.54 0.62 
Kappa Coefficient 0.43 0.60 0.38 0.50 

f-score 0.56 0.68 0.53 0.62 

 
Textural 

Overall Accuracy 0.80 0.58 0.67 0.56 
Kappa Coefficient 0.73 0.45 0.54 0.41 

f-score 0.79 0.57 0.67 0.56 

Spectral 
+ 

Textural 

Overall Accuracy 0.70 0.70 0.56 0.72 
Kappa Coefficient 0.62 0.61 0.40 0.63 

f-score 0.70 0.69 0.52 0.72 

 

Fig. 4. FHB severity classification results comparison. 

Figure 5 presents the confusion matrix of different ML 
models at the testing phase when using combined spectral and 
textural features in wheat FHB disease severity levels 
classification. Misclassification primarily occurs among the 
very low, low, and moderate categories of FHB disease severity 
across most ML classification models, resulting in lower 
classification accuracies (from 33% to 70%) for these 
categories. Additionally, most ML models achieved high 
classification accuracy (above 83%) for the high and very high 
FHB disease severity categories. 

The results suggest that at low to moderate levels of FHB 
disease (Table 1 and Figure 2C), the spectral and texture signals 
captured by UAS imagery are similar to some extent. However, 
these signals showed significant differences when the wheat 
canopy experienced severe levels of FHB disease (i.e., High and 
Very high levels of FHB disease severity in our work). 

 

Fig. 5. Confusion matrics of FHB severity classification results from different 

ML models when using combined spectral and texture features. 

B. ML-based regression analysis of FHB wheat disease 

UAS imagery-derived spectral, texture features and their 
combinations, were used as input variables, respectively, to 
estimate FHB disease severity (express as a percentage (Table 1 
and Figure 2C)) using SVM, RF, DNN, and 1D-CNN based 
regression models. The regression model testing results (Table 
III and Figure 6) illustrate that both spectral and texture features 
can estimate FHB severity to some extent, with R2 ranging from 
0.44 to 0.73 for spectral features, and from 0.51 to 0.63 for 
texture features. Spectral features yielded superior results with 
the SVM and RF models, while texture features demonstrated 
slightly higher accuracy with the DNN and 1D-CNN models. 
This suggests that both spectral and texture features are 
important indicators for estimating and assessing FHB disease 
severity in the context of using ML-based regression modeling 
[16]. The combination of spectral and texture features 
outperformed the use of spectral features alone in the DNN and 
1D-CNN models, and outperformed texture features alone in the 
SVM and 1D-CNN models. However, because spectral and 
texture features exhibit overlapping and redundant information, 
combining them did not consistently improve regression model 
performance, as was observed in the classification models. 

When comparing ML-based regression models for FHB 
disease severity estimation, the conventional machine learning 
method SVM achieved the highest estimation accuracy 
(R²=0.73) using spectral features, while the deep learning 
method DNN produced the lowest estimation accuracy 
(R²=0.44). In the case of using texture features, RF 
outperformed other regression models with an R2 of 0.63, 
whereas the deep learning method 1D-CNN yielded the lowest 
accuracy with an R2 of 0.48. In the case of using spectral and 
texture combined features, RF outperformed other regression 
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models with an R2 of 0.63, whereas the deep learning method 
DNN yielded the lowest accuracy with an R2 of 0.50. The 
relatively poorer performance of deep learning methods when 
using different features as input variables, is likely due to the 
smaller sample size for model training [22]. Future work could 
focus on further testing the potential of deep learning models by 
utilizing larger sample sizes, as well as employing pre-trained 
deep learning models through deep transfer learning approach to 
address the challenges associated with small sample sizes. 

TABLE III.  VALIDATION METRICS OF FHB SEVERITY ESTIMATION 

RESULTS USING REGRESSION MODELING APPROACHES 

Features Metrics SVM RF DNN 1D-CNN 

Spectral 

R2 0.73 0.66 0.44 0.45 

RMSE 8.56 8.88 11.6 12.3 

RMSE% 39.7 43.1 58.9 57.2 

Texture 

R2 0.52 0.63 0.51 0.48 

RMSE 10.4 10.1 10.2 12.1 

RMSE% 50.8 46.2 49.1 56.6 

Spectral 

+ 

Textural 

R2 0.57 0.63 0.50 0.52 

RMSE 10.8 10.1 11.7 11.5 

RMSE% 49.6 48.6 53.8 52.6 

 

Fig. 6. Comparison of FHB severity estimation results from different 

regression models. 

Figure 7 presents a scatter plot (also known as a 1:1 plot) that 
comparing the measured FHB disease severity with the 
predicted results from different ML-based regression models 
when using the combined spectral and texture features. FHB 
disease severity below 20% was overestimated across all ML 
regression models, which may have contributed to the relatively 
lower R² values (ranging from 0.50 to 0.63) observed in these 
models. This also highlights the challenges in accurately 
estimating FHB disease at lower severity levels. A certain level 
of underestimation was observed from all ML regression models 
when FHB severity ranged from 20% to 60% from the scatter 
plot (Figure 6). Overall, ML-based regression modeling using 
UAS multispectral imagery is capable of estimating wheat FHB 
disease severity to some extent. The relatively lower accuracy in 
both classification and regression approaches may be attributed 
to a few factors: the small size of wheat spikes, relative to the 
entire wheat canopy of each plot (or sampling spot) captured by 
the UAS multispectral camera, may not significantly influence 
the spectral and texture signals. Additionally, the small sample 
size poses challenges in training machine learning models, 
particularly deep learning models. 

 
Fig. 7. Measured vs. Predicted FHB Disease Severity (%) comparison when 

using combined spectral and texture features 

V. CONCLUSIONS 

This study examines the potential of integrating UAS remote 
sensing with conventional machine learning and deep learning 
models for predicting wheat FHB disease severity through 
classification and regression approaches. Our results show that 
UAS multispectral imagery-derived spectral, textural, and 
combined spectral-textural features are important variables for 
predicting FHB disease severity. Additionally, coupled UAS 
remote sensing with machine and deep learning-based modeling 
is an effective approach for wheat FHB disease severity 
estimation and assessment. It is important to note that UAS 
remote sensing and machine learning-based estimation of wheat 
FHB disease still face challenges. These challenges are 
primarily due to the relatively small sample size available for 
training models, and the limited contribution of FHB-affected 
wheat spikes to the overall canopy signals captured by UAS 
imagery at the plot level. Future work could focus on further 
evaluating the potential of deep learning models by obtaining 
larger training samples or by employing pre-trained models 
through a transfer learning approach. Additionally, acquiring 
higher-resolution UAS imagery (e.g., at the millimeter level) 
and deriving spectral and texture features specifically from 
wheat spike pixels (excluding those of wheat leaves) could lead 
to improved FHB prediction results. 
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