ﬁ EasyChair Preprint
L Ne 8628

SmartDelta: Automated Quality Assurance and
Optimization in Incremental Industrial Software

Systems Development

Mehrdad Saadatmand, Eduard Paul Enoiu, Holger Schlingloff,
Michael Felderer and Wasif Afzal

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 9, 2022



SmartDelta: Automated Quality Assurance and Optimization in
Incremental Industrial Software Systems Development

Mehrdad Saadatmand
RISE Research Institutes of Sweden
Visterds, Sweden
mehrdad.saadatmand @ri.se

Michael Felderer
University of Innsbruck
Innsbruck, Austria
michael.felderer @uibk.ac.at

Abstract—A common phenomenon in software development
is that as a system is being built and incremented with new
features, certain quality aspects of the system begin to deteriorate.
Therefore, it is important to be able to accurately analyze and
determine the quality implications of each change and increment
to a system. To address this topic, the multinational SmartDelta
project develops automated solutions for quality assessment of
product deltas in a continuous engineering environment. The
project will provide smart analytics from development artifacts
and system executions, offering insights into quality degradation
or improvements across different product versions, and providing
recommendations for next builds.

Index Terms—Research project, ITEA, EUREKA, software
product lines, software variants, continuous system engineering,
software quality

I. INTRODUCTION

Industrial software-intensive systems are typically not de-
signed and built from scratch for each new customer and
order, but rather as increments over an existing product or
as a modified version tailored for the needs of a particular
customer, market, or region (e.g., in product line engineering).
Similarly, for a single product and considering a continuous
integration/continuous delivery context with frequent builds
and commits, a system gets built incrementally and iteratively.
This results in many intermediate builds and versions (e.g.,
in agile development). At Google, for example, on a typical
workday 16,000-24,000 changes are made to the codebase
[1. Such an incremental development approach essentially
leads to the emergence of different product versions, whether
as intermediate versions or final ones ready for delivery.
This means that over time companies end up having a big
range of product versions and components that need to be
maintained, and analyzed for re-use possibility whenever a
new product is to be built. Moreover, each version can have
different quality characteristics, for instance, due to addition,
removal, or modification of some features or components.
This, however, poses important problems in the development
of industrial software systems, some of which are highlighted
below:

Eduard Paul Enoiu
Milardalen University
Visterds, Sweden
eduard.paul.enoiu@mdu.se

Holger Schlingloff
Fraunhofer FOKUS
Berlin, Germany
holger.schlingloff @fokus.fraunhofer.de

Wasif Afzal
Milardalen University
Viisterds, Sweden
wasif.afzal @mdu.se

o Usually, the process of re-use analysis (to identify what
artifacts can be selected and re-used from previous prod-
uct versions, and what new ones need to be implemented)
is still done manually. This is prone to human errors and
not scalable.

o A manual re-use analysis also means that the process is
heavily dependent on the experience and availability of
those key engineers who have knowledge of how previous
versions were built and why certain design decisions have
been taken.

e As new customer requirements arrive requesting new
features to be added to an existing version of the prod-
uct, system complexity also grows. This is often at the
price of quality, sacrificing key characteristics such as
performance and security. This issue can well exacerbate
considering the constant pressure on companies to shorten
the time-to-market to be able to stay ahead of the com-
petition. In this regard, there are many incidents where,
for instance, patching a bug has caused additional issues,
at times making the system even crash and become unre-
sponsive (as an example, consider a recent Windows 10
update [2]).

o Guaranteeing quality characteristics which are technically
referred to as extra-functional or non-functional proper-
ties (EFPs or NFPs) is also a huge challenge in itself:
EFPs are mostly interdependent and cannot be analyzed
and addressed in isolation [3|]. For instance, adding more
security features such as encryption algorithms and com-
ponents to a system can impair its performance. Vice
versa, optimizing a system for performance may have
negative impacts on its security or energy consumption.
Therefore, in automating re-use analysis and making de-
sign decisions for development of new product versions,
it is essential to have solutions for trade-off analysis to
assess the impact of different EFPs on each other, and
establish a desired level of balance among them.

To reduce the feedback cycle and optimize the development
process, currently there are three main relevant paradigms:



i) product line engineering, to enable efficient production
through reusing a set of shared assets across different product
versions; ii) agile practices, advocating faster and shorter de-
velopment cycles to facilitate accommodation of new customer
requirements and providing faster feedbacks; and iii) DevOps,
which is seen as complementary to agile methodologies and
as a development method aimed at bridging the gap between
Development (Dev) and Operations (Ops). However, all three
paradigms fall short in addressing the above-mentioned in-
dustrial challenges, in particular with respect to guaranteeing
quality characteristics across different product versions and
builds. What is needed is an automated re-use solution that is
driven by quality. This solution should be able to identify qual-
ity improvement or degradation patterns to construct trends
of software quality characteristics across previous versions,
derive mandatory quality assurance measures aligned with the
identified quality trends, and ultimately provide recommenda-
tions for the next builds to improve or at least preserve the
quality characteristics of interest.

SmartDelta' is an ITEA3 international project which aims
to build automated solutions for quality assessment of product
deltas in a continuous engineering environment by providing
smart analytics from development artifacts (e.g., source code,
log files, requirement specifications) and system executions,
offering insights into quality improvements or degradation
both in and of different product evolutions, and providing
recommendations for next builds.

It should be noted that the frequency and timespan between
each build and version can vary significantly between different
domains and industries. Examples are frequent nightly builds
in enterprise software applications, in contrast to months
or years between subsequent versions in the automotive or
railway domain. Therefore, in this project, we use the term
delta to refer in a general manner to any product version
that is built as an update to a previous one, regardless of the
frequency of builds and whether it is an intermediate version
or final ready for delivery.

To solve the aforementioned challenges, SmartDelta devel-
ops solutions for

« verification and validation of quality characteristics in
industrial-scale systems based on techniques such as
static analysis, formal methods, and model-based testing;

o automating re-use analysis by machine learning tech-
niques such as natural language processing (NLP) for
processing of different development artifacts such as
textual requirement specifications and test reports; and

« automated trend analysis and build recommendation with
respect to quality characteristics using AI/ML for pattern
recognition, optimization, and fault prediction techniques.

To facilitate industrial adoption of SmartDelta solutions, the
project also builds a dashboard for visualization of software
quality. This can greatly aid end-users of the project, such as
system architects, and test and quality assurance engineers.
Applying SmartDelta solutions enables them to accurately

Uhttps://itea4.org/project/smartdelta.html, |https://smartdelta.org/

monitor the quality of the products that are being developed.
Among different quality characteristics, SmartDelta explicitly
targets performance, energy, and security, but is not be limited
to these.

Considering the relevance and importance of the project
topic for a wide range of industries offering software-intensive
products, the project has attracted and brought together various
partners from different sectors and market domains with com-
plementary expertise, knowledge, and technologies to develop
the proposed solutions and verify their technology readiness
levels. In particular, the consortium consists of a well-balanced
mix of partners from Sweden, Germany, Canada, Turkey, Bel-
gium, Spain, Czech Republic, and Austria, including industrial
use-cases from the railway, telecommunication, logistics and
mobility, FinTech and banking, cybersecurity, and enterprise
software domains.

The remainder of the paper is structured as follows. Sec-
tion [l provides a detailed description of the technological
and business challenges that the project targets, as well as an
overview of the solutions that the project intends to develop
to solve those challenges. In Section the work structure
of the project in terms of different work packages and their
relationship and inter-dependencies is explained. Section
describes the targeted industrial impact of SmartDelta, and in
Section [V] SmartDelta is localized in the context of related
projects. A summary in Section concludes this work.

II. CHALLENGES AND SOLUTIONS

Quality attributes are aspects that have to be addressed
holistically from the early phases of the development process
and ensured across all phases of agile development (i.e., in
DevOps practices).

[Challenge 1] Traditionally, quality attributes are often
treated after delivery on the code or at infrastructure
level with specific changes to the standard product.

The challenge is to automatically address these aspects
continuously from design to operations. Since agile practices
promote frequent software deliveries, analysis and verification
methods artifacts should be automatically updated in a timely
fashion to cope with the pace of the process. As companies
embrace continuous integration and delivery, the number of
delta version artifacts created increases, resulting in ever-
increasing quantities of data.

[Challenge 2] The challenge for many companies stems
from analysing, visualizing, and transforming this huge
volume of data into actionable knowledge that can im-
prove software quality of their developed systems.

Product line engineering in agile practices is about fast,
flexible system engineering that efficiently integrates develop-
ment, delivery, and operations, thus aiming at quality deliveries
with short cycle time to address ever-evolving product variants.
Current system development practices are increasingly based


https://itea4.org/project/smartdelta.html
https://smartdelta.org/

on using both off-the-shelf and legacy components, which
make such systems prone to quality issues.

[Challenge 3] The challenge is to identify quality as-
surance measures that can be used to demonstrate the
essential quality attributes without having to completely
redesign test cases.

A common industrial practice to adopt product lines is
through the incremental development of overloaded assets,
which are re-used. Deriving a new product from a product line
requires re-use analysis to avoid redundancy and to support a
high degree of assets re-use, by taking into account quality
attributes.

[Challenge 4] Traditional re-use analysis approaches
lack the automated support for optimization of quality
characteristics (i.e., especially when taking into account
the trade-offs between different interdependent properties
such as performance, resource consumption and secu-
rity), is time-consuming, and is heavily based on the
experience of engineers.

More often than not, the number of non-functional scenar-
ios to be ensured explodes. For example, in the embedded
software domain, the number of system interactions with the
environment that are subject to security attacks is increasing
and may result in vulnerabilities that can cause not only
losses for end-users but also drastic increase in production
and maintenance costs, especially if iterations are long and
feedback comes late between different versions of the same
system.

[Challenge 5] Many traditional analysis and verification
approaches do not support continuous feedback loops.

Even if automated testing, nightly testing and continuous
integration facilitate more rapid feedback, poor feedback on
test results combined with the lack of traceability between
quality attributes and artifacts can results in slower or missing
feedbacks. This has an impact on quality (for example, a test
engineer waiting for feedback on a system change could break
the code implementation).

SmartDelta brings together fast analysis and verification
solutions through modelling as well as static analysis, test
generation, selection, execution and visualization capabilities
to enable companies to deliver quality systems with confidence
in a fast-paced agile environment. Figure [T] depicts the overall
concept of the project.

SmartDelta is focusing on optimizing the analysis and
verification activities of a series of product versions and deltas,
by automatically creating and adjusting verifiable models
directly from development artifacts like requirements, logs,
code, test logs, and using these models to check extra-
functional properties against system models and generate
artifacts such as tests or monitors that can be used later on in
the product-line process for future variants. More concretely,
to leverage the quality assurance in continuous development of

industrial systems, it brings together European and Canadian
industrial and academic communities in order to develop and
demonstrate SmartDelta technologies ranging from processes,
methodologies to tools and demonstrators. The project pursues
the following technical objectives (mapped to the SmartDelta
overall concept in Figure |I)):

1) Creating and extracting models from different software
artifacts as well as consistency checking between deltas
into a model chain architecture. This includes develop-
ing techniques for creating and extracting models for
different software artifacts from usage scenarios and
logs.

2) Automated consistency checking and validation based
on model testing and model checking techniques. The
project brings novel techniques supporting automated
verification of delta products through the use of model
specifications both at development and runtime.

3) Developing an automated approach for delta-aware re-
use analysis of product line features as well as trade-off
analysis between different extra-functional architectural
properties of interest.

4) Automated test generation and analysis for extra-
functional properties (e.g., resource consumption, secu-
rity, performance) based on the model specification of
the corresponding requirements that target real industrial
continuous development challenges.

5) Intelligent/adaptive and ML-based analysis, visualiza-
tion and recommendations for the next system delta
versions. Shortening the development, deployment, and
feedback loops by using quality checks and trend analy-
sis to provide actionable recommendations and identify
vulnerabilities in system models early in the developed
product.

III. WORK STRUCTURE

The work in the SmartDelta project is structured into
seven work packages. Detailed specification of industrial use-
cases and elicitation of their requirements, establishment of a
baseline of use-cases, and set-up of industrial demonstrators
for evaluation of project results with respect to the defined key
performance indicators are done as part of the work in WPI.
The SmartDelta use-cases are depicted in Table

In WP2 on model generation and evolution, automated
solutions are provided for identifying and extracting different
software artifacts representing different product versions and
deltas, for creating product models from these artifacts, for
maintaining and managing their evolutions across different
versions and builds using model repositories, and for auto-
mated consistency checking and model validation. From this
perspective, WP2 has a close dependency and collaboration
with WP1 to identify and extract relevant software artifacts
from industrial use-cases based on their requirements and the
problem domain.

Development of solutions for automated verification and
validation of quality attributes is done in WP3. In this work
package solutions such as model-based testing for automated



Product

A\ Y2 7 7% Variants
X/ \ (2}—>

System k AN
v \\ ,' So *\ Build Recommendations
Artifacts \ / ~ \
\ ’ Se \ Quality Trends
\ ,' ~ N “
\ ~
\ ,/ o .
~7/
<Y -3 Dashboard for Quality

Maintenance and Optimization

Architecture, Design, Requirements,

Test Cases, Code, Logs Analysis | |Visualization

NLP, patterns
a
Modelling of Delta Artifacts IE
Automated
Consistency Checking |( 2 Quality Assurance
. | |Regression Testing
Model Validation
Automated
¥ Test Generation 4
Delta Analysis
Simulation
LTradeoff Analysis ‘
3 Static Analysis

I Reuse Analysis ] J

Fig. 1. SmartDelta Overall Concept. SmartDelta is focusing on optimizing the analysis and verification activities of a series of product versions and deltas,
by leveraging system artifacts to analyze extra-functional properties and generate tests or monitors that can be used in the product-line process.

TABLE 1
SMARTDELTA INDUSTRIAL USE CASES.
Country Company Domain Use Case Topic
Sweden Alstom Railway Quality in agile model-based system and product
line engineering
Germany AKKA eMobility Charging communication controller software for
electrical vehicle
Canada eCAMION eMobility High quality and cybersecure software in deploy-
able energy hubs
Turkey NetRD Telecomunication Al based fault and performance analysis in cloud
communication services
Turkey Kuveyt Turk Bank Banking and Finance Continuous improvement of code quality, security
and performance in core banking software
Germany Software AG Enterprise Software Continuous security and quality improvement in
enterprise software
Austria c.c.com Logistics and Personal mobility | Continuous quality monitoring & improvement in
automated traffic detection software
Canada GlassHouse Systems | Cybersecurity Continuous improvement of cybersecurity solu-
tions




generation of test cases, static analysis targeting performance,
security or energy consumption issues, and tailored and op-
timized solutions for delta-oriented testing in a continuous
engineering context are developed.

In WP4 novel methods are developed to analyze and predict
software quality trends across different product deltas, to
perform similarity and change impact analysis, and to offer
analytics results and recommendations on re-use and design
decisions for optimizing desired quality characteristics of the
system in the next builds (based on industrial requirements
from WP1). AI/ML-based techniques for pattern recognition,
prediction, natural language processing, and optimization are
of special interest in this WP.

In WP5 a SmartDelta visualization dashboard and integra-
tion is derived. The research is focused on techniques for
software quality visualization and presentation of the results
coming from other work package techniques and tools in
appropriate formats for end-users. Integration of the solutions
that are developed in the aforementioned work packages will
also take place as part of the work in WP5, e.g., through
a set of interfaces and APIs. Additionally, inclusion and
presentation of training materials and user guides as part of the
SmartDelta visualization dashboard will be considered here.

Finally, dissemination of the project results is done as part
of the work in WP6. This includes the production of training
materials, and the planning for exploitation during and after the
end of the project including activities for commercialization
and industrial adoption of project results beyond the project
consortium. Management of the project and coordination of
the activities ensuring successful collaboration among partners
and interfacing the communication with the ITEA office is the
focus of WP7.

IV. INDUSTRIAL IMPACT

Currently, the European software market is extensive (esti-
mated revenue of approximately 100 billion US$ per year?),
and further growth is expected. Thus, enhancing the overall
performance of software development processes can lead
to considerable economic gain. The demand for automated
software quality assurance solutions is massive. In particular,
Al, ML, and predictive analytics are playing an increasingly
important role in quality assurance and automation of software
development activities®. This is especially true for applica-
tions developed in highly iterative development processes
with strong feedback to and from operations and users. By
monitoring and recording end-user interaction with software
systems, frequently performed application scenarios can be
identified and captured in terms of data. In addition, end-to-end
automation and the extensive use of repositories and databases
in the development process provide extensive opportunities to
access development data and metadata. All of this provides
a rich basis for evaluation of software repositories using Al

2 According to a report by Statista Research Department: https:/www.
statista.com/aboutus/our-research-commitment

SWorldwide Automation Testing Market 2018-2023, https://tinyurl.com/
yrevh7h8§

and ML algorithms, as well as automation based on them. A
particular high potential is given in the context of DevOps
processes.

However, there is currently a lack of market-ready solu-
tions that realize such automation of quality assurance, in
particular for non-functional requirements. Complexity and the
implementation of critical use cases makes security testing a
top priority for enterprises. Moreover, software vendors have
begun to favor a user-centric approach to quality across the
software development life cycle. This includes solving and pre-
venting potential performance problems right at the beginning
of the product lifecycle. Consequently, the analysis of non-
functional characteristics such as scalability and stability of the
application under various operating conditions is of increasing
importance.

SmartDelta addresses this need for Al-based quality as-
surance solutions and automation specifically with respect to
non-functional requirements. The innovative tools developed
within the project can flexibly bring customized solutions to
the market and sustainably influence software industries.

SmartDelta’s topic is of strategic importance for both
small and large software enterprises. SmartDelta’s consortium
is competent to fulfill the aim of optimizing the system
development process characterized by continuous changes.
The expected results will be an increase in the generated
value out of digitalization including productivity, increased
revenues, and market shares of involved companies through
quality enhancements and the creation of jobs. SmartDelta also
provides a uniform platform for tool providers from diverse
backgrounds, to get feedback and to share experiences. For
example, Belgium looks forward to having an early access to
tools in the domain of Industry 4.0, while Canada looks for-
ward to improving quality of the control software in mobility
systems. Similarly, German industrial use cases are from the
domains of enterprise and automotive software development,
both representing strategic important application areas for
Germany. Through SmartDelta’s solutions, all participating
countries expect to strengthen their delivery of high-quality
software systems.

V. RELATED WORK AND PROJECTS

SmartDelta develops automated solutions for quality assess-
ment of product deltas in continuous engineering environ-
ments by providing smart analytics from development artifacts
and system execution. Besides software quality engineering
in general, SmartDelta is related to software product line
engineering, continuous software engineering and machine
learning in software quality engineering in particular.

Software product line engineering (SPLE) refers to soft-
ware engineering methods, tools and techniques for creating
multiple variants of the same software product [4]. The SPLE
process consists of two main sub-processes known as domain
engineering and application egineering. In the domain engi-
neering phase, the domain of the product is analyzed, and
domain knowledge is created. In the application engineering,
the focus is on deriving product variants from the knowledge


https://www.statista.com/aboutus/our-research-commitment
https://www.statista.com/aboutus/our-research-commitment
https://tinyurl.com/yrevh7h8
https://tinyurl.com/yrevh7h8

TABLE 11
RELATED EUROPEAN PROJECTS.

Project Name Program | Time Period

Technical Focus

AIDOaRt ECSEL 2021-2024

Model-Driven Engineering (MDE) principles and
techniques to provide a framework offering proper
Al-enhanced methods and related tooling for build-
ing trustable CPSs

VALU3S ECSEL 2020-2023

Verification and validation of automated systems,
safety, and security

IVVES ITEA3 2019-2021

Industrial-grade verification and validation of
evolving systems

XIVT ITEA3 2018-2021

Method and toolchain for testing highly config-
urable, variant-rich embedded systems

TESTOMAT ITEA3 2017-2020

Test automation in agile development, mutation
test, test selection and prioritization for single-
system development

MegaM @Rt2 ECSEL 2017-2020

Scalable model-based framework for continuous
development and runtime validation of complex
systems

ENABLE_SE ECSEL 2016-2019

Automation of verification and validation methods
for automated cyber-physical systems

DiSIEM H2020 2016-2019

Improvement to SIEM systems based on diversity
related technology

REVaMP2 ITEA3 2016-2019

Round-trip engineering and variability manage-
ment platform and process

STAMP H2020 2016-2019

Pushing automation in DevOps through innovative
methods of test amplification

MEASURE ITEA3 2015-2019

Implementation of a comprehensive set of tools
for automated and continuous measurement of soft-
ware engineering activities

HyVar H2020 2015-2019

Scalable hybrid variability for distributed evolving
software systems

ATAC ITEA2 2011-2014

Advanced test automation for complex and highly-
configurable software-intensive systems

MBAT ARTEMIS | 2011-2014

Combined model-based analysis and testing of
embedded systems

SecureChange EU FP7 2009-2012

Methods and tools for ensuring compliance to
evolving security requirements for long-running
software systems

base created in the domain engineering phase. Approaches
supporting the application engineering aid different activities
in the process, such as product configuration [5], test re-
use [6f], and feature re-use [7[]. However, product deltas (i.e.,
micro-variants) in continuous software engineering, as consid-
ered in SmartDelta, so far have not been considered.

Continuous software engineering, which mainly comprises
continuous integration (CI), continuous deployment (CD) and
continuous delivery (CDe), aims to accelerate the development
and deployment of software [8|]. While CI addresses the inte-
gration of ongoing development and internal quality assurance,
CD and CDe are about the ability to quickly pass results to
customers in order to enable rapid customer feedback [9]. In
CI, the application is built and tested with every change to the

codebase to achieve shorter and more frequent release cycles.
DevOps is a culture shift towards lean principles, for the
purpose of continuously delivering software [[10]]. It integrates
development and operations, aiming at shortening the lead
time between a change request and deployment. Continuous
software engineering and the DevOps paradigm provides the
context for SmartDelta.

Machine learning plays an important role in modern soft-
ware quality engineering. For instance, different machine
learning models have been applied to predict defects [11].
Machine learning is also the basis for recommender sys-
tems. Recommender systems in software development so far
have focused mostly on the implementation and maintenance
phases, but not so much on the software testing phase [[12].



SmartDelta is one of the first projects to apply recommender
systems to this phase. Natural language processing [[13]] and
visualization [14] have not sufficiently been investigated in
the context of software product deltas in continuous software
development. These techniques play an important role in
SmartDelta.

Table [l| shows European projects related to SmartDelta. For
each project, the funding program, the time period, and the
technical focus that links it to SmartDelta is provided.

VI. SUMMARY AND CONCLUSIONS

SmartDelta is a 3-year ITEA3 international project which
focuses on the challenges of quality assurance and optimiza-
tion in incremental industrial software systems development.
To solve the challenges, SmartDelta builds automated solutions
for quality assessment of product deltas in a continuous
engineering environment by providing smart analytics from
development artifacts and system execution, offering insights
into quality improvements or degradation of different product
versions, and providing recommendations for next builds.
Towards this goal, the project will optimize the development
process of systems that are built in an incremental manner,
e.g., in a continuous engineering environment, as part of a
product line, or based on previous legacy systems. Therefore,
the outcomes of the project can have strategic significance
for industries producing software-intensive products, and to
improve their market competitiveness. To facilitate industrial
adoption of the project results, the SmartDelta consortium
intends to produce training materials, and organize interna-
tional workshops and tutorials, which will be announced on
the project’s web page.

ACKNOWLEDGMENT

This work has been supported by and done in the scope
of the ITEA3 SmartDelta project which has been funded by
the national funding authorities of the participating countries:
https://itea4.org/project/smartdelta.html.

(1]

(2]

3

—

[4]

(51

(6]

[7

—

(8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

R. Potvin and J. Levenberg, “Why google stores billions of lines of
code in a single repository,” Commun. ACM, vol. 59, no. 7, p. 78-87,
jun 2016. [Online]. Available: https://doi.org/10.1145/2854146

Darren Allan, “Windows 10 update is reportedly freezing
or crashing some PCs (and even causing boot loops),”
https://www.techradar.com/news/windows- 10-update-is-reportedly-
freezing-or-crashing-some-pcs-and-even-causing-boot-loops, Aug 23,
2020.

M. Saadatmand, A. Cicchetti, and M. Sjodin, “Toward model-based
trade-off analysis of non-functional requirements,” in 2012 38th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), 2012, pp. 142-149.

K. Pohl, G. Bockle, and F. van der Linden, Software product line
engineering: foundations, principles, and techniques. Springer, 2005,
vol. 1.

Y. Li, T. Yue, S. Ali, and L. Zhang, “Enabling automated requirements
reuse and configuration,” Software & Systems Modeling, vol. 18, no. 3,
pp. 2177-2211, 2019.

R. Ramler and W. Putschogl, “Reusing automated regression tests for
multiple variants of a software product line,” in 2013 IEEE Sixth In-
ternational Conference on Software Testing, Verification and Validation

Workshops. 1EEE, 2013, pp. 122-123.
M. Abbas, M. Saadatmand, E. Enoiu, D. Sundamark, and C. Lindskog,

“Automated reuse recommendation of product line assets based on
natural language requirements,” in International Conference on Software
and Software Reuse. Springer, 2020, pp. 173-189.

J. Humble and D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education,
2010.

B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176-189, 2017.

C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE
Software, vol. 33, no. 3, pp. 94-100, 2016.

T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp.
1276-1304, 2011.

M. Gasparic and A. Janes, “What recommendation systems for software
engineering recommend: A systematic literature review,” Journal of
Systems and Software, vol. 113, pp. 101-113, 2016.

V. Garousi, S. Bauer, and M. Felderer, “NLP-assisted software testing:
A systematic mapping of the literature,” Information and Software
Technology, vol. 126, p. 106321, 2020.

S. Diehl, Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media, 2007.


https://itea4.org/project/smartdelta.html
https://doi.org/10.1145/2854146
https://www.techradar.com/news/windows-10-update-is-reportedly-freezing-or-crashing-some-pcs-and-even-causing-boot-loops
https://www.techradar.com/news/windows-10-update-is-reportedly-freezing-or-crashing-some-pcs-and-even-causing-boot-loops

