ﬁ EasyChair Preprint

Ne 4000

HS-AUTOFIT: a Highly Scalable AUTOFIT
Application for Cloud and HPC Environments

Antonio Corradi, Giuseppe Di Modica, Luca Evangelisti,
Anna Fiorini, Luca Foschini and Luca Zerbini

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 2, 2020

HS-AUTOFIT: a highly scalable AUTOFIT
application for Cloud and HPC environments

Antonio Corradi, Giuseppe Di Modica, Luca Evangelisti, Anna Fiorini, Luca Foschini, Luca Zerbini
Department of Computer Science and Engineering
University of Bologna, Italy
Email: {firstname.lastname} @unibo.it

Abstract—Technological progress is leading to an increase
of instrument sensitivity in the field of rotational spectroscopy.
A direct consequence of such a progress is the increasing
amount of data produced by instruments, for which the currently
available analysis software is becoming limited and inadequate.
In order improve data analysis performance, parallel computing
techniques and distributed computing technologies like Cloud or
High Performance Computing (HPC) can be exploited. Despite
the availability of computer resources, neither Cloud computing
nor HPC have been fully investigated for identifying unknown
target spectra in rotational spectrum. This paper proposes the
design and implementation of a Highly Scalable AUTOFIT (HS-
AUTOFIT), an enhanced version of a fitting tool for broadband
rotational spectra that is capable of exploiting the resources
offered by multiple computing nodes. With respect to the old
program version, the new one scales on multiple computing
nodes thus guaranteeing higher accuracy of the fit function and
consistent boost of execution time. The result of tests conducted
in real Cloud and HPC environments demonstrate that HS-
AUTOFIT is a viable solution for the analysis of huge amount
of data in the addressed scientific field.

I. INTRODUCTION

Technological progress is increasingly improving data col-
lection and analysis in many scientific fields. Particularly,
the recent development of high-speed digital electronics pro-
vides new results from chirp pulsed Fourier transform mi-
crowave (CP-FTMW) spectrometers, thus producing broad-
band rotational spectroscopy measurements of molecular clus-
ters with unprecedented sensitivity. Much better sensitivity
means denser spectra and more precision in target spectra
identification, but also huge amount of data to analyze [1].

Despite the high density of lines in spectra and the problem
of analyzing them, high computing power technologies, like
Cloud and High-Performance Computing (HPC), have not yet
been fully investigated by researchers in the field of quan-
tum chemistry. With these systems, it is possible to process
data through distributed computing, improving efficiency and
maximizing performance of data analysis. Many applications
originally developed to run on personal computers can leverage
distributed computing. The improvement in performance is
bound to hardware availability, such as number of computing
nodes, number of CPUs, CPU frequency, number of CPU
cores, memory and so on. So, the switch from a a single
node system to a scalable system with conceptually unlimited
resources will greatly increase the available computing power.

This research focuses on improvement of an automated
fitting tool, namely AUTOFIT [2], for the identification of
unknown target spectra in a broadband rotational spectrum.

The program takes as input the rotational constants A, B and
C, a set of dipole moments predetermined thanks to quantum
chemistry and some experimental parameters like a frequency
interval, limits on the intensity of the transitions and the
rotation temperature of the analyzed molecular sample. From
these data, AUTOFIT will search an input microwave data
set for an experimental spectrum consistent with the predicted
parameters. The data exploration process is committed to mul-
tiple "workers” (computing threads) that are assigned portions
of the whole input data to explore. Trreads are able to do their
work independently of each other and run in a parallel fashion.

Firstly, we analyze the structure of AUTOFIT algorithm,
and in particular, the branch that enforces parallel computation
to speed up the performance. Secondly, we propose a new
version of the algorithm, named Highly Scalable AUTOFIT
(HS-AUTOFIT), that is designed to fit distributed computing
environments. Finally, to show the potential of HS-AUTOFIT,
we present the result of experiments run on both Cloud and
HPC environments. Results prove that the enhanced algorithm
is capable of scaling in both environments, though different
performance gains were observed.

The rest of the paper is structured in the following way.
In Section II, we briefly recall the basic principles of the
distributed and parallel programming, as well as provide an
insight on AUTOFIT and the issues addresses in the field of
rotational spectroscopy. In Section III, we analyze AUTOFIT
algorithm and propose a modification that will enable it to
scale on distributed computing environments. In Section IV,
we discuss some tests carried out to evaluate the performance
gain of the enhanced algorithm both in Cloud and in HPC
environments. Finally, Section V concludes the work.

II. BACKGROUND AND RELATED WORK
A. AUTOFIT application

Rotational spectroscopy (or microwave spectroscopy) con-
cerns measurement of energy transitions between quantized
rotational states of molecules in the gas phase. In rotational
spectroscopy, molecules are classified following their sym-
metry in spherical, linear and symmetric rotors. For these
rotators, analytical expressions can be derived that describe the
energetic terms. Rotational levels are theoretically obtained by
considering molecules as rigid rotators and subsequently ap-
plying corrective terms. The comparison between spectra and
theoretical expressions provides numerical values of angular
moments of inertia from which it is possible, in favorable

cases, to derive accurate values of angles and bond lengths
of molecules.

Thanks to the development of high-speed digital electron-
ics, a new tool for identification of rotational spectrum called
Chirped-Pulse Fourier Transform Microwave Spectroscopy
(CP-FTMW) has emerged. This spectroscopy produces a
significant amount of data, increasing the sensitivity of the
instrumentation. This increase has in fact produced spectra
with a very high density of molecular transitions that can go
up to 1 Mhz. With such a high band density, manual fitting of
spectra is really inefficient since the models associated with
the different combinations of rotational transitions are difficult
to identify. Consequently, new solutions need to be devised.
An approximation of the rotational spectrum can be obtained
by fitting at least three transitions in order to calculate the
rotational constants A, B and C. The validity of the predicted
spectrum can be verified by predicting other rotational transi-
tions and checking their presence in the experimental spectrum.

In order to analyze the complex spectra from these broad-
band measurements, an automated spectral assignment pro-
gram called AUTOFIT was developed [2]. AUTOFIT was
originally conceived by Prof. Brooks H. Pate at the University
of Virginia (USA) and subsequently developed by Prof. Steve
Shipman of College of Florida (USA) and his collaborators.
The program implements an algorithm that searches for all
possible combinations of three transitions in a given frequency
range. This algorithm is able to determine the rotational
constants even without the use of the initial spectroscopic
parameters derived from computational chemical software (ex-
ample: ab initio [3] or density functional theory (DFT) [4]
calculations). The spectrum is calculated using both predicted
intensity and frequency values of rotational transitions. The
program takes as input the rotational constants A, B and C, a
set of dipole moments dipole predetermined thanks to quantum
chemistry and some experimental parameters like a frequency
interval, limits on the intensity of the transitions and the
rotation temperature of the analyzed molecular sample. From
to these data, AUTOFIT will search in the set of rotational
transitions present in the experimental spectrum consistent
with the aforementioned parameters.

AUTOFIT operates as follows. First, it generates an ini-
tial forecast from the parameters provided in the input file.
AUTOFIT is able to independently choose three transitions on
which to perform the fitting; however it also provides the user
with the option to choose the three transitions manually. AUT-
OFIT then performs the fitting on all possible combinations
of transitions of the spectrum within the three search windows
(frequency range) corresponding to the three transitions.

From an algorithmic point of view, the detection of a
molecule within an experimental spectrum can be implemented
as an exploration of many combinations of triplets. The number
of algorithm steps necessary to the detection purpose varies
according to the accuracy of the goal we need to attain. Specifi-
cally, that number depends on the size of the frequency window
in which to seek for the transitions, therefore it is not rare
that a few thousands or even millions of combinations have to
be checked out. In its original design, AUTOFIT can analyze
35-50 triplets per second per core, therefore a typical 4-core
processor can approximately process 250 triplets per second.
A typical run takes from 2 to 3 hours considering a frequency

window of 200-300 MHz. The increase in the window search
is sometimes necessary because often predictions are not as
accurate as requested (the experimental results go far from
the theoretical predictions). However, enlarging the window
search size can cause unacceptable growths of the execution
time, thus making the tool useless.

Therefore, the challenge addressed in this paper is to
elaborate a new algorithmic approach that can accommodate
any level of accuracy requested and, at the same time, can
provide much better execution times.

B. Distributed and Parallel computing

According to an authoritative definition, ”Distributed com-
puting deals with all forms of computing, information access,
and information exchange across multiple processing platforms
connected by computer networks.” [5]. The distinguishing fea-
ture of distributed computing is the use of multiple processing
platforms, connected by network links, on which a number
of software programs are executed and collaborate with each
other to a given purpose. Distributed computing breakthrough
is dated back to late 1970. Despite the advantages are well
recognized by researchers, it also comes with many issues that
are under investigation by several research communities ever
since. Discussing about advantages and issued of distributed
computing is however out of the scope of this work.

Parallel computing can be recognized under the big um-
brella of distributed computing. As a general definition, par-
allel computing is a type of distributed computation in which
many calculations or the execution of processes are carried out
simultaneously [6]. There exists many parallel programming
models. The one that fits the purpose of this paper inspires to
what is usually referred to as data parallelism [7]. It refers to
the process of decomposing an application into multiple tasks,
assigning them a portion of the application’s workload, running
the tasks in parallel (i.e., at the same time) on a number of
computing resources, collecting and eventually assembling the
tasks output. The expected result of running an application
in a parallel fashion is a speed-up of the application execution
time in comparison to running the same application on a single
computing resource.

High Performance Comuputing (HPC) is a technology used
in cluster computer contexts to create processing systems
capable of providing very high performance (in the order
of PetaFLOPS) through the use of parallel calculation. HPC
clusters are usually equipped with a high number of pro-
cessors, large memory capacity and a high-bandwidth and
low-latency interconnections. HPC is widespread in scientific
environments, where huge amounts of data have to be analyzed
by scientific application. HPC offers scientists a way to easily
scale up their application and carry out quick data analysis via
parallelization of the calculus over the cluster nodes. Usually,
cluster nodes communicates via a lightweight protocol called
Message Passing Interface (MPI). MPI is a standard specifica-
tion for communication between nodes belonging to clusters of
computers running a parallel program. MPI mainly addresses
the parallel programming model of message transmission, in
which data is moved from the address space of one process
to that of another through cooperative operations on both
processes.

Finally, in the panorama of distributed computing technolo-
gies, Cloud Computing has delivered the promise of addressing
computing needs in a flexible and dynamic way. Cloud Com-
puting manages to provide computing resources to requesting
users in the form of a public utility such as water and electricity
[8]. Cloud computing offers data center owners a virtualization
paradigm that allows them to address the need of requesting
users in a very accurate way and to optimize the resource
utilization. Computing resources in a Cloud environment are
offered in the form of virtual processors/cores, virtual memory
and virtual storage, thus forming a virfual node on top of which
the user can install any operating system. Communication
among virtual nodes is implemented by Virtual LAN (VLAN).
Processes distributed over multiple cloud nodes may then use
sockets to interface to each other. With respect to the HPI,
which implements a rigid architecture of very powerful and
homogeneous computing nodes, Cloud can offer computation
in a more flexible way.

III. DESIGN AND IMPLEMENTATION OF A HIGHLY
SCALABLE AUTOFIT APPLICATION

The main flaw of AUTOFIT is that it was designed to run
on a single machine. Usually, off-the-shelf Desktop PCs are
used to this purpose. Still, had more powerful machines been
employed, there would not be guarantee that the requested
accuracy can be meet. In other words, vertically scaling is not
the answer to the problem stated in Section II-A.

Instead of counting on powerful single machine (from now
on, computing node), we propose to exploit the horizontal
scaling, i.e., the possibility of adding more nodes whenever
requested, and enforce a simultaneous, parallel run of the
algorithm on all nodes. Yet, to fully exploit the parallel
computing potential, AUTOFIT’s naive algorithm must be
carefully re-designed. The revised algorithm will have to split
the application workload into smaller units and distribute
them to as many “workers” capable of running in parallel
on multiple computing nodes. To this end, it is essential to
understand the inter-dependency of data computed by different
workers and deal with possible issues concerning with the
synchronization and inter-communication.

The flow diagram of AUTOFIT algorithm is depicted
in the Figurel. By design, AUTOFIT does enforce parallel
computation by exploiting the Cores of the node it runs onto
(we can refer to it as ”local parallelism”). Let us focus on the
branch of the algorithm that enforces local parallelism.

The algorithm assumes that N Cores are available on the
Desktop PC. As the reader may notice, the triples generation
step splits up the list of triples into N equally sized sub-lists
that are, in their turn, assigned to as many computing tasks.
Each task, exploiting the computing power of one Core, runs
the fit function against every triple contained in its own sub-
list. At the end of this step, every triple is marked with a Score
and the “triple-score” pair is appended to an output text file.
The last algorithm step gathers all tasks’ output files, merges
the “triple-score” pairs, sorts them by the score and produce
one final Output File.

We remark that the accuracy of the final result can be
improved by increasing the size of the input search window,
which, in turn, increases the number of combinations of

Main Program (N Cores)
X Scoring 3 Fitting
Transitions Transitions

Find Experimental
Peaks in 3 Uncertainty
Windows

Experimental
Peakpick

Generate Triples, Split
Total List into N Lists

Fit A,B,C for a0 Fit A,B,C for
Triples in List N Triples in List N
Sct':re Trip.les, " Ew Score Triples,
Write to File N Write to File N
|]

v

[Concatenate N Files, Sort, Write

to Output File

Fig. 1. Flow diagram of AUTOFIT

transitions (triples) to fit. The longer the input triples list, the
heavier the workload each task is assigned. To alleviate the per
task workload, a viable yet trivial solution might be to increase
the number of tasks. Unfortunately, had the tasks number to
exceed that of the available Cores the benefit achievable in
terms of run-time speed would be less than the expected.

In this paper, we propose Highly Scalable AUTOFIT (HS-
AUTOFIT), a modified version of the AUTOFIT algorithm ca-
pable of scaling to computing nodes other than to local node’s
Cores. Same as with the Cores, the scalability limit of the
new algorithm is imposed by the number of computing units
available for computation. Thanks to consolidated technologies
such as HPC and Cloud, adding computing nodes on demand
is undoubtedly an easy and viable solution.

Adding nodes to computation means to have more power
available to fit triples in a shorter time. Of course, the join of
nodes must be carefully coordinated since services like inter-
node communication and/or sharing of resources needs to be
provided. To this end, we will call on the well known dis-
tributed computing paradigm Master-Slave. In the prospected
context, the Master is committed to receiving the application
workload, distributing it to Slaves, receiving and merging the
output of the Slaves computation. Zooming in the triples fitting
step of the process, each Slave will still be able to exploit
its own Cores and recursively apply parallel computing by
distributing its workload to Cores.

In this specific case study, we decided to assign to the
Master the twofold role of coordinator of distributed comput-
ing operations and worker (Slave) as well. We also embedded
all data entry operations and the loading of experimental
spectra into an “Input” component. The Input component
produces files containing all the triples to fit, and also provides
the specifications to fit them on a predicted geometry and
experimental parameters. The Master-Slave architecture of HS-
AUTOFIT is depicted in Figure 2.

Based on this architecture, we implemented two versions

SLAVE,
File Input
e SRS Fit Triples
Result;
MASTER
INPUT SLAVEy | °
File Inputy File Inputy
set Up 4{ . Fit Triples Fit Triples
Parameters E
File Input,—> Resulty
Input

Fig. 2. The HS-AUTOFIT master-slave architecture

of the HS-AUTOFIT program that run on Cloud and HPC
environments respectively. The two versions mainly differ to
each other on the way communication between the Master and
the Slaves is implemented. Both communication implementa-
tions, though, offer the following services: transfer of generic
data type and, in general, small sized data (e.g., configuration
parameters); transfer/sharing of text files (those containing
the triples to fit); support for synchronized communication
mode. Specifically, we used the Socket interfaces to implement
Master-to-Slave communication in Cloud environments, while
opted for the Message Passing Interface (MPI) protocol to
implement the communication among nodes in HPC environ-
ments. Both Sockets and MPI are supported in Python 2.7,
the language used to code the naive version of AUTOFIT on
which we applied the aforementioned modification.

IV. HS-AUTOFIT PERFORMANCE EVALUATION

To evaluate the performance of HS-AUTOFIT, we ran
several tests in both physical and virtualized systems. Every
node involved in the test was equipped with Python and all
necessary libraries, as well as the fundamental tools needed
by HS-AUTOFIT to execute.

The chosen performance indicator is time HS-AUTOFIT
takes to fit all triples provided in input. Also, different work-
loads were tested by tuning various size of the search window,
which, as mentioned earlier, produced different number of
combinations of transitions to fit.

Tests were run on a physical node, on Cloud nodes and
on HPC nodes respectively. For what concerns the experiment
on a physical node, we chose a Desktop PC Intel Core i7-
4700MQ 2.40 GHz Quad-Core, 12 GB RAM. As for the test
bed on the Cloud, we opted for Amazon Web Services (AWS)
[9], that offer on demand compute and storage services. We
tested HS-AUTOFIT on five EC2 c5d.xlarge instances, each
supplied with 4 vCPU, 8 GB Memory, a clock speed of up to
3.5 GHz, 20 GB Storage (EBS). Instances were connected to
each other through a 10 Gigabit virtual network. Finally, HPC
experiments were conducted on two different clusters hosted

TABLE L. EXECUTION TIMES OBSERVED IN THE CASE OF ONE THREAD
Number of input triples to AUTOFIT
7600 34848 253456 617136
(50 Mhz) (100 Mhz) | (200 Mhz) | (300 Mhz)
\ Execution time Im 20s Tm 20s 50m 30s 2h 4m

by CINECA [10], whose details are disclosed later on in the
paper.

We highlight that all tests run on physical node, Cloud and
HPC nodes were repeated several times and obtained results
were averaged.

A. Test on a physical node

This test is aimed at showing that the scalability of the
naive AUTOFIT application is limited. We measured the
execution time of AUTOFIT for 4 different search windows (50
Mhz, 100 Mhz, 200 Mhz, 300 Mhz), which produced inputs
to the program of 7600, 34848, 253456 and 617136 triples
respectively.

In Table I we reported AUTOFIT execution times observed
in the single-threaded case. As expected, the higher the number
of triples to fit, the longer the execution time. Afterwards,
we tested the multi-threaded cases. Specifically, we repeated
the experiment with 2, 4 and 8 threads respectively. Figure
3 shows that the use of multiple threads generally improves
the performance with respect to the single-threaded case, but
tends to become less relevant in the case of § threads. If we
tried to go further than 8 threads, we would get very poor
performance.

B. Test on Cloud

For this specific test we just report the case of the highest
number of triples (617136). We point out that for each node,
the application is configured to create 4 threads. We wanted
to measure the performance gain as new nodes are added to
the computation. In the case of 1 node the naive AUTOFIT
program was run, while for 2,3, and 5 nodes HS-AUTOFIT
was employed. Test results are reported in Figure 4. In the case

35%

30%
25%

20%./"\

15%
10%
5%
0%
50 MHz 100 MHz 200 MHz 300 MHz
=== 2 Thread == 4 Thread 8 Thread
Fig. 3. Performance improvement when multi-thread is employed

of 2,3 and 5 nodes, we observed an improvement of 68%, 69%,
and 89% respectively.

1.12.00

1.07.00
= 0.57.36
E 04312
E
£ 0.28.48
= 11.49
“5;5 0.14.24 0.07.27 0.04.(
£ 0.00.00 I —
1 2 3 5
Node
Fig. 4. Performance gain when cloud nodes are added to computation

C. Test on HPC

In HPC clusters, nodes are considered as processes of the
entire supercomputer. They are identified by a rank that can
be used for communicate with other nodes/processes. Storage
is designed as a parallel and distributed filesystem, optimized
for infrequent access to large amounts of data. Figure 5 shows
a layered scheme of a HPC cluster similar to those used by
CINECA.

We remind that HS-AUTOFIT follows the Single Program
Multiple Data (SPMD) approach, so that each dedicated node
will perform the same operation (triple fitting) on a given
portion of the data, which is passed to it by means of a file
created by the Input component of the program. Communica-
tion between the various nodes/processes in the HPC is limited
to sending the data from the Master to the various Slaves and
back, via the MPI protocol.

HS-AUTOFIT was tested on two different cluster systems
hosted at CINECA. The objective was to evaluate the per-
formance achievable by HS-AUTOFIT in HPC clusters with
respect to that attained in the Cloud environment. To this end,
same HS-AUTOFIT input parameters of the Cloud test were
used.

In the following we discuss some details of the two systems
and present the results of their respective tests.

TABLE II. MAIN FEATURES OF GALILEO HPC CLUSTER
Model IBM NeXtScale
Architecture Linux Infiniband Cluster
Nodes 360 Iqtgl Broadwell
40 nVidia K80 GPU
2 x 18-cores Intel Xeon ES-2697 2.30 Ghz
Processors 2 x 8-cores Inter Haswell 2.40 Ghz
2 NVIDIA K80 GPUs
Network Intel QDR (40Gb/s) Infiniband switches
Performance 1 TFLOPs
Memory 2TB
RAM 128 GB/node, 8 GB/core
TABLE III. MAIN FEATURES OF MARCONI A2 HPC CLUSTER
Model Intel Server Board
Architecture Intel Omni Path Cluster
Nodes 3600
Intel Knights Landing (KNL) 1 x Xeon Phi 7250 (KNL) at 1.4
Processors GHz
Cores 68 cores/node = 244800
Network Intel OmniPath Edge Switch 100
Performance 10.8 PFlop/s
Memory 17 PB
RAM 96 GB/node
Power 1300 kW

1) GALILEO cluster.: GALILEO is a hybrid HPC Cluster.
Out of its 848 nodes, 768 are equipped with Intel Phi 712p
accelerator, 80 with NVIDIA K80. Table II shows the main
technical characteristics of GALILEO cluster.

For the sake of brevity, we present the result of tests
conducted on a configuration of HS-AUTOFIT parameters that
generated 617136 input triples to fit. In Figure 6 we report
the execution times of a number of program executions over
different computing configurations.

Although execution times get shorter with the increase of
dedicated computing power, the equivalent configuration run
on the Cloud managed to outperform the HPC’s. In fact, if we
focus on the 5 nodes/4 threads configuration, the 4 minutes and
4 seconds recorded in AWS test is far better than the 8 minutes
and 29 seconds observed in GALILEO (twice the execution
time). After a careful analysis of GALILEO’s architecture, we
came to the conclusion that the cause of the slowdown could
lie in frequent reading and writing accesses to the file system.
In fact, as mentioned before, GALILEO uses a distributed
and parallel files system storage solution which is optimized
for supporting few accesses to large amounts of data. HS-
AUTOFIT is based mainly on the exchange of data via text
files: threads read the input files assigned to them and writes
output files which, in turn, are reworked to obtain the final
result file.

2) MARCONI cluster: MARCONI A2 Cluster offers the
scientific community a energy efficient computing facility. The
cluster takes advantage of the new Intel Omni-Path architec-
ture, which guarantees high performance interconnections to
allow efficient scaling of thousands of servers in the system.
One of the objective pursued by the project that sustains the
cluster is to gradually increase the the computational power
up to 50 Pflop/s without ever exceeding the limit of 3MW
of electrical absorption. Table II shows the main technical
characteristics of MARCONI cluster.

For MARCONI Cluster, we present the results of tests run
on input of 617136 and 768586 triples respectively. In Figure
7 execution times of two computing configurations per the two

memory

accelerator (e.g.
GPU)

processor

high performance
/ network

core

vector unit

parallel filesystem

Fig. 5. Scheme of an HPC cluster at CINECA

Fitting 617136
03.50.24

03.21.36

02.52.48

02.24.00

01.55.12

01.26.24

00.57.36 "

00.28.48

00.00.00

Fig. 6. HS-AUTOFIT execution times on GALILEO cluster

inputs are depicted.

Again, looking at the 617136 triples case, execution times
of HS-AUTOFIT on MARCONI A2 are worse than those
recorded on GALILEO and AWS.

D. Final considerations

The test results proved that, in order to boost the per-
formance of a scientific application, several aspects need to
be taken into account. For sure, a good application design
is a nice starting point. Yet, the design must not neglect
the architecture of the parallel computing system that the
application will run onto. Some applications may happen reach
very good performance on a cluster that, instead, turns out

Fitting 768586 Fitting 617136

02.24.00

02.09.36

01.55.12

01.40.48

01.26.24

01.12.00

00.57.36

00.43.12

00.28.48

00.14.24

00.00.00

5N_8T 5N_4T 5N_8T 5N_4T

Fig. 7. HS-AUTOFIT execution times on MARCONI cluster

to be totally inefficient for other applications. For instance,
I/0 bounded applications, for instance, are totally unfit to
run on clusters whose storage are optimized for rare accesses
to very large files. On the other end, it is well known that
an excessive use of message passing in clusters may lead to
poor performance, due to the high latency introduced by the
synchronous communication of MPI. The rule of thumb could
be making a deep analysis of the application algorithm and,
accordingly, finding a correct balance of the two approaches.

V. CONCLUSION AND FUTURE WORK

Broadband chirped-pulse Fourier transform microwave
(CP-FTMW) spectrometers have increased the sensitivity for
molecular rotational spectroscopy. The higher sensitivity in

broadband rotational spectroscopy measurements of molecular
clusters produces huge amounts of data. Scientific applications
exploiting the computing power of a single machine are unfit
to handle and analyze this data. In this paper, we have first
examined AUTOFIT, a fitting tool for rotational spectra that
the scientific community has used for identifying unknown
target spectra in rotational spectrum. Then, we have presented
HS-AUTOFIT, an enhanced version of AUTOFIT that ex-
ploits a parallel computing technique to scale on multiple
computing resources, be them virtual resources offered by a
Cloud provider or nodes of a HPC cluster. Experimental results
showed that HS-AUTOFIT guarantees much shorter execution
times in both computing environments. Future research will
focus on better analysing the performance obtained in MAR-
CONI testbed, and laying down guidelines that help application
designers get the best out of high performance computing
contexts.

REFERENCES

[1] N. A. Seifert, I. A. Finneran, C. Perez, D. P. Zaleski, J. L. Neill, A. L.
Steber, R. D. Suenram, A. Lesarri, S. T. Shipman, and B. H. Pate,
“Autofit, an automated fitting tool for broadband rotational spectra, and
applications to 1-hexanal,” Journal of Molecular Spectroscopy, vol. 312,
pp. 13 - 21, 2015.

[2] U. of Virginia, “Autofit, an automated triples fit-
ting program for broadband rotational spectroscopy,”’
https://faculty.virginia.edu/.archived/bpate-lab/autofit/intro.html, 2013.

[3] Q-chem, “Q-chem 5.2: Facilitating worldwide scientific breakthroughs,”
https://www.q-chem.com/, 2020.

[4] Cp2K, “Open source molecular dynamics,” https://www.cp2k.org/,
2020.

[5] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Princi-
ples, Algorithms, and Systems. Cambridge University Press, 2008.

[6] G. S. Almasi and A. Gottlieb, Highly Parallel Computing. ~ USA:
Benjamin-Cummings Publishing Co., Inc., 1989.

[71 J. O’Donnell, Data Parallelism. London: Springer London, 1999, pp.
191-206.

[8] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities,” in 10th IEEE International Conference on High
Performance Computing and Communications (HPCC’08), Sep. 2008,
pp. 5 -13.

[9] Amazon, “Amazon web services,” https://aws.amazon.com/, 2020.

[10] Cineca, “Consorzio interuniversitario per il calcolo automatico
dell’italia nord orientale,” https://www.cineca.it/, 2020.

