ﬁ EasyChair Preprint

Ne 6937

SPIRIT: a Microservice-Based Framework for
Interactive Cloud Infrastructure Planning

Spiros Koulouzis, Riccardo Bianchi, Robin van der Linde,
Yuandou Wang and Zhiming Zhao

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 26, 2021

SPIRIT: A microservice-based framework for
interactive Cloud infrastructure planning

Spiros Koulouzis!:2[0000-0001-8652-315X] ' Riccardo Bianchil*2, Robin van der

Linde', Yuandou Wang!, and Zhiming Zhao! 2[0000—-0002—6717—9418]

!Multiscale Networked Systems research group,
University of Amsterdam, the Netherlands
2LifeWatch ERIC, Virtual Lab Innovation Center, Amsterdam, the Netherlands
z.zhaoOuva.nl

Abstract. The IaaS model provides elastic infrastructure that enables
the migration of legacy applications to cloud environments. Many cloud
computing vendors such as Amazon Web Services, Microsoft Azure, and
Google Cloud Platform offer a pay-per-use policy that allows for a sus-
tainable reduction in costs compared to on-premise hosting, as well as
enable users to choose various geographically distributed data centers.
Using state-of-the-art planning algorithms can help application owners to
estimate the size and characteristics of the underlying cloud inveterate.
However, it’s not always clear which is the optimal solution especially
in multi-cloud environments with complex application requirements and
QoS constraints. In this paper, we propose an open framework named
SPIRIT, which allows a user to include cloud infrastructure planning al-
gorithms and to evaluate and compare their solutions. SPIRIT achieves
this by allowing users to interactively study infrastructure planning al-
gorithms by adjusting parameters via a graphical user interface, which
visualizes the results of these algorithms. In the current prototype, we
have included from the IaaS Partial Critical Path algorithm. By taking
advantage of SPIRIT’s microservice-based architecture and its generic
interfaces a user can add to the framework, new planning algorithms.
SPIRIT can transform an abstract workflow described using the CWL
to a concrete infrastructure described using the TOSCA specification.
This way the infrastructure descriptions can be ranked on various key
performance indicators.

Keywords: virtual infrastructure planning - IaC - microservice - IaaS - workflow
- IC-PCP

1 Introduction

The cloud computing paradigm allows for on-demand IT service delivery via
the internet. The main benefits of cloud computing are dynamic scalability and
elasticity, which is achieved via virtualized resources [1].

The TaaS model enables enterprises to migrate their in-house software stack to
remote cloud data centers. The TaaS model also provides virtual infrastructures

2 S. Koulouzis et al.

for applications with specific performance requirements [2]. However, selecting
Cloud infrastructure services and configuring them for specific objectives is time-
consuming for an enterprise. It can also be costly when an enterprise consumes
more resources than its application requires.

Most cloud providers offer a pay-per-use policy, which allows for a substan-
tial reduction in costs compared to on-premise hosting. However, cloud providers
do not offer tools for estimating and comparing the cost of an application as a
function of its requirements, QoS, QoE, etc., and the size of the infrastructure.
For instance, Azure!, Google?, and Oracle® offer similar pricing calculators, that
allow for the estimation of costs given a selection of cloud services. The cost of
each service is displayed as well as the total costs. However, these tools are lim-
ited to just calculating the total costs and cost per service. They only work for
their corresponding providers and therefore are not cloud-agnostic. Additionally,
they do not help decide which services are needed for an application to preserve
performance or other QoS demands. Moreover, the choice of services and their
characteristics have to be done manually, since there is not an automated in-
frastructure recommendation. Moreover, some services may be only available in
specific data centers.

The process of designing and formally describing a customized Cloud infras-
tructure for an application with specific requirements can be described as Vir-
tual Infrastructure planning [3-5]. Virtual infrastructure planning is also often
referred to as Infrastructure as a Service planning or even simply infrastructure
planning. To elaborate on this definition, application developers want to select
cloud resources while optimizing certain QoS, such as performance and costs.
Furthermore, they want to do this is in a time-efficient way. Within infrastruc-
ture planning, resource utilization is an important objective. This is usually
achieved by: resource sharing, minimum resource allocation, and load balanc-
ing [6].

Infrastructure planning is important in various contexts, such as the cloud
computing context, and scientific computing context. There are many approaches
to tackle this problem that depends on the context. The most obvious way is
manual configuration. This usually involves running the application in the cloud,
and keeping adding resources until the performance of the application meets the
requirements specified. This method is not efficient, as it requires several time-
consuming manual iterations. Also, for more complex applications, such as a
complex workflow with many tasks, this approach becomes even less viable [7].
If infrastructure planning is used to migrate an existing on-premise application
to the cloud, one can pick services in the cloud with similar specifications as the
on-premise services. This is often referred to as resource mapping *. Nevertheless,
this approach is only viable if there is already an on-premise solution available.

! https://azure.microsoft.com/en-us/pricing/calculator/

2 https://cloud.google.com/products/calculator/

3 https://www.oracle.com/cloud/cost-estimator.html

4 https://cloud.google.com/solutions/resource-mappings-from-on-premises-hardware-

to-gep

SPIRIT: Interactive Cloud infrastructure planning 3

For other types of applications, such as (scientific) workflows, it is often
the case that a list of interdependent tasks needs to be executed. These tasks
usually process large data sets and require a specific amount of servers with
certain properties [8]. This problem requires a different TaaS planning approach,
such as estimating required resources through the use of scheduling algorithms,
such as the partial critical path algorithm [4]. We will be looking at existing
solutions more extensively in this research.

Aside from the planning itself, it is can also be difficult to effectively compare
two TaaS solutions and make decisions suitable for a specific application and its
context [9]. This is because there may be differences in performance and QoS in
each solution, which can be hard to evaluate [10].

To tackle the above issues, we propose an open framework with the following
requirements: 1. the proposed open-framework should allow various infrastruc-
ture planning algorithms to be used and analyzed simultaneously, 2. it should
be user-centered with an intuitive user interface, 3. it should adhere to DevOps
principles by outputting [aC, 4. and it should implement a model to rank the
generated infrastructure plans.

Analyzing the above requirements we offer an implementation with the fol-
lowing key contributions: 1. A framework that via its intuitive user interface, al-
lows users to interactively study infrastructure planning algorithms. 2. A frame-
work that can generate multiple infrastructure descriptions for time-critical ap-
plications. 3. A framework that is extendable by allowing developers to add
their planning algorithms. This allows for a wide range of application types to
be planned for. 4. A framework that allows the user to dynamically compare
planning results.

The remainder of this paper is organized as follows. Section 2 reviews state-
of-the-art infrastructure planning and workflow scheduling algorithms. Section 3
presents the requirements and architecture design of our proposed tool, namely
SPIRIT. In section 4, we focus on our usability study results . Finally, Section
5 presents our conclusions and a description of future work.

2 State-of-the-art

The infrastructure planning problem can be approached via the use of scheduling
algorithms. Workflow scheduling tries to solve the problem of mapping each task
in a workflow to a suitable resource and to order the tasks on each resource
to satisfy some performance criterion [11]. However, in this paper, we will use
workflow scheduling only to generate infrastructure solutions instead of mapping
tasks to virtual machines at run-time.

Abishami et al. [11] introduce the IC-PCP and the IC-PCPD2 algorithms.
Where the critical path, is the longest of all execution paths from the begin-
ning to the end in a task graph. [12]. Both algorithms are workflow scheduling
algorithms for the cloud.

4 S. Koulouzis et al.

Taal et al. [4] proposed different implementations, greedy and more stringent,
of the IC-PCP algorithm designed by [11]. The paper focuses on getting the
cheapest cloud infrastructure while adhering to the deadline of the workflow.

Wang et al. [13] proposed a machine learning-based approach called deep-
Q-network to schedule multi-workflows in the cloud. To improve the completion
time and user’s cost of this approach, a Markov game model is applied, which
has the number of workflow applications and VM’s as state input and the max-
imum completion time and cost as rewards. The proposed model is tested via
scientific workflows and Amazon EC2, as well as several other algorithms such
as non-dominated sorting genetic algorithm-II, multi-objective particle swarm
optimization, and game-theoretic-based greedy algorithms.

Rimal et al. [14] proposed a workflow scheduling algorithm for multi-tenant
cloud computing environments. The algorithm focuses on minimizing the makespan
of workflows, tardiness, cost of execution of workflows, and make use of idle cloud
resources.

Wu et al. [15] proposed a task scheduling algorithm based on QoS-driven for
cloud computing. The algorithm works by creating a sorted list of tasks based
on task attributes, including user privilege, expectation, task length, and the
pending time of task in the queue. Then the algorithm will traverse the list and
assign the tasks to the services that will complete them the fastest.

Jain et al. [16] compare four static workflow scheduling algorithms, FCSS,
Round-Robin, Min-Min, and Max-Min. These algorithms are compared based
on a set of parameters, such as makespan, and costs such as communication cost
and computation cost. The algorithms are compared by the use of workflows
generated by the Pegasus workflow generator and cloud resources.

Visheratin et al. [17] introduce a new, improved algorithm for workflow
scheduling called CDCGA. They compared their algorithm to the IC-PCP [11]
and the LDD-LS algorithms by running it on the same workflows.

Workflow scheduling algorithms generally require performance models to do
their calculations. A performance model contains the execution time, for each
task in the workflow, on one of the available machines. So to get useful calcu-
lations, we need to make sure that this model is accurate. These performance
models are quite ambiguous in the sense that it is hard to predict these for tasks
without actually running them. There are existing benchmarking solutions that
can be used to obtain performance values [18]. The user of these algorithms
might want to know how much of an impact a change in this parameter has on
the overall costs and makespan. This is something we will further analyze during
the design of our framework.

3 SPIRIT: A microservice-based framework for
interactive Cloud infrastructure planning

In this section, we describe requirements and system architecture.

SPIRIT: Interactive Cloud infrastructure planning 5

3.1 Requirements

From a developer’s perspective, we identified which features to be included in the
open framework by identifying user stories. To be specific, the tool should offer
one or more laaS solutions for planning applications. Since we are building an
open framework that should provide value to application developers, we need to
identify what features should be included from their point of view. This can be
achieved by identifying user stories. As a developer, I want: — one or more IaaS
solutions for my application, to I save time and costs. — to apply QoS constraints
on the provided solution, so my application will behave as intended when it is
run on the generated infrastructure. — to generate IaaS solutions that are cloud
agnostic, so I can deploy it on various cloud providers. — several IaC solutions,
so I have the option to run my application on a different infrastructure. — to
add my planning algorithm to the tool, so if I have a better planning approach
for my application. — TaaS solutions, in the form of an IaC template,so it can be
automatically deployed. — to compare various price and performance models so
I can evaluate the impact of these parameters on the result(s). — to customize
the virtual machines used by the planning algorithms. — to compare the results
on one or more key performance indicators so I can select the solution that is
best suited. — to automatically generate planning parameters so I can use the
planner without having this data.

Functional Requirements Here we list the functional requirements that we
want our framework to fulfill. These requirements describe the desired behavior
of our system. We did a MoSCoW analysis on these functional requirements, such
that the requirements have an assigned priority. Therefore the system: 1. must
integrate planning approaches for at least one type of application, 2. must have a
web interface that is accessible via most common browsers, 3. must use common
standards for APIs, such as REST, 4. must apply at least two different planning
approaches, 5. must provide an IaaS solution in the form of IaC if the QoS
demands can be satisfied, 6. must allow the user to configure virtual machines
to be considered by the planner, 7. must provide a ranking scheme, in which a
recommendation can be made based on KPIs, 8. should allow users to specify the
preferred cloud provider, 9. could allow users to insert their planning approach,
10. should allow the user to generate planning parameters based on empirical
values, 11. could automatically select the correct planning algorithm based on
user input, 12. could visualize the recommended infrastructures.

Non-functional Requirements Besides the functional requirements we also
designed some non-functional requirements for our system. These requirements
focus on the technical aspects of our system. 1. The graphical user interface
should focus on accessibility and usability. 2. The web interface should load
within 10s, given an internet speed of >10 mb/s 3. The system should be able to
handle at least 1000 simultaneous requests. 4. The system should provide solu-
tions at least 70% of the time if the parameters are within acceptable boundaries.

6 S. Koulouzis et al.

5. The processing time of the systems should not exceed 5s. 6. The software will
be open source and adhere to the software design principles that are included in

SOLID.
3.2 Architecture

To fulfill the proposed requirements, we designed an architecture of our system,
as can be viewed in Figure 1 and is composed by the elements listed below:

[TOSCA Generator|

i Backend
[Python Flask]

File Metadata

Qos Evaluator Cloud Data Puller

Planning Wizard

HTTP Requests/
Responses

cinterface»
API_Backend

VM's (sizes and count)

i
Frontend Farameteroptmzer

Developer Portal

Algorithm Parameters

«interface»
API_Planner

sinterfacex
API_Parser

Parser Planner

Fig. 1: Architecture Diagram

Planning Wizard Frontend, Backend Endpoint Registry Backend, Parser
Application file is
Based on
IGet p\annmg_ input S?ggupt‘?’_g[%ng planning input asg";\d‘g‘; Ip;r:leﬁr‘e
via planning . parser and . .
wizard. frontend to algorithm information is
backend. clection is made returned
- (metadata).
The metadata and)
[TOSCA templates If muttiple results Based on user specified
are sent to the are present, returned VM sizes| parameters are
End frontend and results are and types, sent to planning
presented in the evaluated based TOSCA template algorithm(s). Vm
user interface lon QoS demands.| is generated. types and sizes
are retumed.
Backend, Frontend QoS Evaluator TOSCA Generator Backend, Planner

Fig.2: Process Flow and Architectural components

Backend: It provides a RESTful API to the Frontend and allows for the
registration of infrastructure planning algorithms

Frontend: This is the web user interface that allows the user to select the
type of application they want to plan for (workflow application, time-constrained
workflow application, microservice-based application, IOT based application),

SPIRIT: Interactive Cloud infrastructure planning 7

= SPIRIT: Planning your cloud infrastructure = SPIRIT: Planning your cloud infrastructure

@ selectyour application type @ Select your application type

ct your type of application @ select application file

n of the usability study form
Regular Workflow

‘Time-Constrained Workflow

@ Microservices PREVIOUS
QO or ()
o o
o (-]
P o
(a) Select type of application. (b) Upload application description file.

Fig. 3: SPIRIT wizard for selecting application type and description.

= SPIRIT: Planningyourcl rastructure = SPIRIT: Planning your

Select VM's you would like the planner to use

o
o
o
o

»»»»»»

(a) Select the cloud provider. (b) Select types of VMs.

Fig. 4: SPIRIT wizard for selecting cloud provider and VMs.

specify their performance model, and present to the user the results of the plan-
ning algorithm. Developers can register additional planning services via the de-
veloper portal.

Parser: This component is responsible for analyzing the application descrip-
tion and extracting the parameters need for the planning algorithm. In our proof
of concept, we implemented a parser for the CWL.

Planner: This component generates the infrastructure plans. In our proof
of concept, we implemented two versions of the IC-PCP algorithm: A greedy
version and a greedy version with a repair cycle, as proposed by Zhao et al. [4].

Cloud Data puller: This component retrieves available virtual machines
and corresponding prices from several cloud providers. Data are displayed in the
user interface, from which the user can make a selection. The selection will be
used by the planning algorithms.

8 S. Koulouzis et al.

(a) Select (optional) configuration parame- (b) Select (optional) the relevant parame-
ters. ters for the planning algorithm.

Fig.5: SPIRIT wizard for selecting parameters for the planning algorithm.

= SPIRIT: Planning your cloud infrastructure = SPIRIT: Planning your cloud infrastructure

Filter on available KPI's Filter on available KPI's
The planner has generated 2 infrastructure plans. The planner has generated 2 Infrastructure plans.
O Makespan @ Makespan
© Total costs O Total costs
O Custom O Custom
Furer | ADJUST PARAMETERS.
Lowest cost Highest cost Lowest makespan Highest makespan
File name: generated_tosca_desc File name: generated_tosca_desc File name: generated_tosca_desc File name: generated_tosca_desc
Total costs: 90 Total costs: 165 Total costs: 90 Total costs: 165
Makespan: 9 Makespan: 24 Makespan: 9 Makespan: 24
(a) Compare the solutions (b) Compare the solutions

Fig.6: The SPIRIT infrastructure plan results

QoS Evaluator: It has the responsibility to process QoS demands from
the user. The component will find infrastructure solutions that comply with the
specified QoS demands. If there is no solution available that complies, the user
will be notified accordingly.

TOSCA Generator: This component is responsible for generating a TOSCA
description based on the output from the planning algorithms. This information
can be used by a provisioner to automatically set up the infrastructure.

Endpoint Registry: It is used to store the available (external) services.

To illustrate how the components are used and interact with each other,
we describe a process flow which is shown in Figure 2, for planning a cloud
infrastructure for an application.

According to the flow diagram in Figure 2 a user takes the flowing steps to
generate an infrastructure plan: 1. Select type of application you want to plan
for (Figure 3a) 2. Upload the application description file. Currently that is a
CWL file (Figure 3b). 3. Select the cloud provider (Figure 4a). 4. Select type of

SPIRIT: Interactive Cloud infrastructure planning 9

What is your background?

12 responses
Cloud application developer 2 (16.7%)
laas researcher 2 (16.7%)

Cloud consultant 4 (33.3%)
DevOps engineer

cloud architect

Researcher

Software engineer
Consultant

Computer Science Student
Student

Researcher ICT

(a) Survey participants background information

Did you manage to complete planning process of the given examples?
12 responses

@ Yes

@ Not all, no yaml file available
| didn't get any feedback, and didn't
really know what | was doing.

@ | used compile1.cwl as an example,
without having an idea what it
represents

(b) Results on completed planing task

VMs for in the infrastructure plan (Figure 4b). 5. Select (optional) configuration
parameters to generate a planning input model. This model contains the costs
and the performance characteristics of the VMs (Figure 5a). 6. Select (optional)
the parameters for the planning algorithms. In the current version, this includes
the price and performance model (Figure 5b). 7. Compare the solutions, based
on the selected KPIs. In our proof of concept, the user can compare the available
solutions on makespan and costs (Figure 6a and 6b).

4 Usability Study

To evaluate the usability of our GUI we surveyed Cloud and DevOps experts. By
following the presented guidelines, the user was expected to complete a planning
process. The planning process is considered complete when the user has down-
loaded at least one of the proposed infrastructure descriptions. We also expected
the participants to use our ranking scheme to rank the presented output on the

10 S. Koulouzis et al.

Is the user interface intuitive?
12 responses

10.0
9 (75%)

7.5

5.0

25 3 (25%)

0.0 ‘ ‘

(a) Results on how intuitive the user interface is

Is SPIRIT easy to use?

12 responses
6

5 (41.7%)

4(33.3%)

2 (16.7%)

(b) Results on how easy to use the user interface is

Fig. 8: Survey results.

available key performance indicators. After completion of the planning process,

the user was asked to answer the questions in the survey.

A total of twelve people participated in the experiment. Although the overall
volume of participants is low, nearly all the participants have a background
relevant to work. As can be seen in Figure 7a, most participants work in the
field of Cloud consultancy, or they are Cloud application developers or even

TaaS researchers.

Figure 7b indicates that the majority of users were able to complete the
planning process except one. According to that user, they did not have enough

information to complete the task.

Figure 8a shows how intuitive the user interface is considered by the partic-
ipants. A score of 1 means it is not intuitive, and a score of 5 means it is very

intuitive.

SPIRIT: Interactive Cloud infrastructure planning 11

Figure 8b presents the results considering the ease of use of SPIRIT. A linear
scale is applied, where a score of 1 means it is hard to use, and a score of 5 very
easy to use. The majority is in the range from 3 to 5, which can be considered
positive.

5 Conclusion and Future Work

In this paper, we elaborated and implemented an open framework with a user-
friendly GUI that can create cost-effective infrastructure plans for various appli-
cation types. Our proof of concept can transform an abstract workflow defined
in CWL to a concrete infrastructure defined using the TOSCA standard. Our
microservice-based architecture and generic interfaces make our framework ex-
tendable for other planning algorithms, and thus other application types. Our
tool also allows for the ranking of the generated infrastructures on various key
performance indicators, therefore, allowing for essayer migration of in-house ap-
plications to the Cloud while reducing operating costs. In this paper, we have
implemented two versions of the IC-PCP algorithm: A greedy version and a
greedy version with a repair cycle. In the future, we aim to use SPIRIT as a
platform to integrate and compare more planning algorithms.

Acknowledgment

This work has been partially funded by the European Union’s Horizon 2020
research and innovation programme by the project CLARIFY under the Marie
Sklodowska-Curie grant agreement No 860627, by the ARTICONF project grant
agreement No 825134, by the ENVRI-FAIR project grant agreement No 824068,
by the BLUECLOUD project grant agreement No 862409, by the LifeWatch
ERIC.

References

1. M. Carroll, A. Van Der Merwe, and P. Kotze, “Secure cloud computing: Benefits,
risks and controls,” in 2011 Information Security for South Africa. IEEE, 2011,
pp. 1-9.

2. Y. Hu, H. Zhou, C. de Laat, and Z. Zhao, “Concurrent container scheduling on het-
erogeneous clusters with multi-resource constraints,” Future Generation Computer
Systems, vol. 102, pp. 562-573, Jan. 2020.

3. M. P. Anastasopoulos, A. Tzanakaki, and K. Georgakilas, “Virtual infrastructure
planning in elastic cloud deploying optical networking,” in 2011 IEEE Third Inter-
national Conference on Cloud Computing Technology and Science. IEEE, 2011,
pp. 685-689.

4. A. Taal, J. Wang, C. de Laat, and Z. Zhao, “Profiling the scheduling decisions for
handling critical paths in deadline-constrained cloud workflows,” Future Genera-
tion Computer Systems, vol. 100, pp. 237-249, 2019.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Koulouzis et al.

Y. Hu, J. Wang, H. Zhou, P. Martin, A. Taal, C. de Laat, and Z. Zhao, “Deadline-
Aware Deployment for Time Critical Applications in Clouds,” in Euro-Par 2017:
Parallel Processing, F. F. Rivera, T. F. Pena, and J. C. Cabaleiro, Eds. Cham:
Springer International Publishing, 2017, vol. 10417, pp. 345-357, series Title: Lec-
ture Notes in Computer Science.

K. N. Georgakilas, A. Tzanakaki, M. Anastasopoulos, and J. M. Pedersen, “Con-
verged optical network and data center virtual infrastructure planning,” Journal
of Optical Communications and Networking, vol. 4, no. 9, pp. 681-691, 2012.

7. Zhao, P. Grosso, J. van der Ham, R. Koning, and C. de Laat, “An agent based
network resource planner for workflow applications,” Multiagent and Grid Systems,
vol. 7, no. 6, pp. 187-202, Dec. 2011.

K. Vahi, M. Rynge, G. Juve, R. Mayani, and E. Deelman, “Rethinking data man-
agement for big data scientific workflows,” in 2013 IEEFE International Conference
on Big Data, 2013, pp. 27-35.

S. Koulouzis, P. Martin, H. Zhou, Y. Hu, J. Wang, T. Carval, B. Grenier, J. Heikki-
nen, C. de Laat, and Z. Zhao, “Time-critical data management in clouds: Chal-
lenges and a dynamic real-time infrastructure planner (drip) solution,” Concur-
rency and Computation: Practice and Experience, p. €5269, 2019.

J. Frisch, “Comparison of iaas solutions: how companies find the right solution,”
https://docs.microsoft.com/en-us/learn/modules/predict-costs-and-optimize-
spending/2-estimate-costs-with-the-azure-pricing-calculator, 2017, [Online;
accessed 15-may-2020].

S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds,” Future Generation
Computer Systems, vol. 29, no. 1, pp. 158-169, 2013.

M. Rahman, S. Venugopal, and R. Buyya, “A dynamic critical path algorithm for
scheduling scientific workflow applications on global grids,” in Third IEEE Inter-
national Conference on e-Science and Grid Computing (e-Science 2007). 1EEE,
2007, pp. 35-42.

Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, and H. Xie, “Multi-
objective workflow scheduling with deep-g-network-based multi-agent reinforce-
ment learning,” IEEE Access, vol. 7, pp. 39974-39982, 2019.

B. P. Rimal and M. Maier, “Workflow scheduling in multi-tenant cloud computing
environments,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 1, pp. 290-304, 2016.

X. Wu, M. Deng, R. Zhang, B. Zeng, and S. Zhou, “A task scheduling algorithm
based on qos-driven in cloud computing,” Procedia Computer Science, vol. 17, pp.
1162-1169, 2013.

A. Jain and R. Kumari, “A review on comparison of workflow scheduling algo-
rithms with scientific workflows,” in Proceedings of International Conference on
Communication and Networks. Springer, 2017, pp. 613-622.

A. A. Visheratin, M. Melnik, and D. Nasonov, “Workflow scheduling algorithms
for hard-deadline constrained cloud environments,” Procedia Computer Science,
vol. 80, pp. 2098-2106, 2016.

O. Elzinga, S. Koulouzis, A. Taal, J. Wang, Y. Hu, H. Zhou, P. Martin, C. de Laat,
and Z. Zhao, “Automatic collector for dynamic cloud performance information,” in
2017 International Conference on Networking, Architecture, and Storage (NAS).
IEEE, 2017, pp. 1-6.

