
EasyChair Preprint

№ 421

Substructural Calculi with Dependent Types

Zhaohui Luo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 10, 2018



Substructural Calculi with Dependent Types

(Extended Abstract)

Zhaohui Luo∗

Royal Holloway, Univ of London
zhaohui.luo@hotmail.co.uk

1 Introduction

In this paper, we investigate how to introduce dependent types into the substructural
calculi such as the Lambek calculus [8] and linear logic [6]. The motivations of such
a move include facilitating a closer correspondence between syntax and semantics in
natural language analysis, especially when modern type theories are employed in formal
semantics [14, 10, 2], and developing promising applications such as that to concurrency
through dependent session types (cf. [5] among others).

Combining resource sensitive types with dependent types has been an interesting
but difficult research topic and many researchers have worked on this, mainly with
motivations to apply such calculi to programming and verification problems in computer
science (see early work such as [1] and recent developments such as [7, 16]). However,
how such a combination should be done is still widely open, on the one hand, and very
much depends on the motivations in their applications, on the other.

We shall present two substructural calculi with dependent types: the first containing
dependent Lambek types and the second dependent linear types. Technically, the
former adheres to the usual assumption that types do not depend on substructural
variables (in this case, the Lambek variables), which makes the technical development
easier, while the latter allows type dependency on linear variables, which makes the
development more challenging as well as more interesting in applications.

2 Dependent Lambek Types

Dependent types have been used in various contexts in computational linguistics (see,
for example, [14, 3, 12] among others). In [15] that formalises the Lambek calculus in
(a proof assistant that implements) Martin-Löf’s type theory, Ranta discussed the idea
of introducing type dependency into directed types and gave an inspiring example to
represent directed types of quantifiers, although the paper did not formally propose such
an extension. De Groote et al [4] studied how to extend the underlying type system for
ACGs by (intuitionistic) Π-types so that type families can be used to represent syntactic
categories indexed by linguistic features, but they did not study substructural Π-types.

∗Partially supported by EU COST Action CA15123 and CAS/SAFEA Inter. Partnership Program.

1



Substructural Calculi with Dependent Types Luo

We present a Lambek calculus with dependent types. Besides the type constructors
in the Lambek calculus [8], we shall introduce directed types for dependent products
(Πr and Πl) and dependent sums (Σ∼ and Σ◦). Also considered is how to introduce
type universes into the calculus. These are some of the type constructors in a modern
type theory found useful in formal semantics and, therefore, their introduction at the
syntactic level helps to facilitate a closer syntax-semantics tie as mentioned above. A
focus of the current paper is to formulate the rules for these types in ordered contexts
so that their meanings are correctly captured.

2.1 The Lambek Calculus

Introducing dependent types into a Lambek calculus, we consider a calculus with con-
texts having two parts:

Γ; ∆

where Γ is an intuitionistic context (whose variables can be used for any times in a
term) and ∆ is a Lambek context (or ordered context). Types may only depend on
ordinary variables in Γ, but not on Lambek variables in ∆.1 Since we are going to
introduce dependent types in which objects may occur, we need the following equality
typing rule which says that computationally equal types have the same objects:

Γ; ∆ ` a : A Γ; ∗ ` A = B

Γ; ∆ ` a : B

Contexts of the above form obey the following validity rules where, in the last two
rules, x 6∈ FV (Γ,∆):

∗; ∗ valid
Γ; ∆ valid Γ; ∗ ` A type

(Γ, x:A); ∆ valid

Γ; ∆ valid Γ; ∗ ` A type

Γ; (∆, x:A) valid

For variables, we have

Γ, x:A,Γ′; ∗ valid

Γ, x:A,Γ′; ∗ ` x : A

Γ; y:A valid

Γ; y:A ` y : A

We can now present the directed types in the Lambek calculus. The rules for
the directed type B/A are given in Figure 1. The directed type A \ B has the term
constructor \x:A.b and its rules are symmetric with those for A/B and are omitted
(and so are the rules for ordered conjunctions).

2.2 Dependent Lambek Types: Examples

Directed Dependent Products. Dependent product types (Π-types) are split into
directed dependent products (Πr and Πl). The rules for Πr-types are given in Figure 2.

2



Substructural Calculi with Dependent Types Luo

(/-F)
Γ; ∗ ` A type Γ; ∗ ` B type

Γ; ∗ ` B/A type
(/-I)

Γ; (∆, x:A) ` b : B Γ; ∗ ` B/A type

Γ; ∆ ` /x:A.b : B/A

(/-E)
Γ; ∆1 ` f : B/A Γ; ∆2 ` a : A

Γ; (∆1,∆2) ` f a : B
(/-C)

Γ; (∆1, x:A) ` b : B Γ; ∆2 ` a : A

Γ; (∆1,∆2) ` (/x:A.b) a = [a/x]b : B

Figure 1: Rules for directed Lambek types B/A.

(Πr-F)
Γ; ∗ ` A type Γ, x:A; ∗ ` B type

Γ; ∗ ` Πrx:A.B type
(Πr-I)

Γ, x:A; ∆ ` b : B Γ; ∗ ` Πrx:A.B type

Γ; ∆ ` λrx:A.b : Πrx:A.B

(Πr-E)
Γ; ∆ ` f : Πrx:A.B Γ; ∗ ` a : A

Γ; ∆ ` appr(f, a) : [a/x]B
(Πr-C)

Γ, x:A; ∆ ` b : B Γ; ∗ ` a : A

Γ; ∗ ` Πrx:A.B type

Γ; ∆ ` appr(λrx:A.b, a) = [a/x]b : [a/x]B

Figure 2: Directed Πr-types.

The rules for Πl-types, omitted here, are symmetric with term constructors λlx:A.b and
appl(a, f).

Type Universes. In type theory, a type universe is a type whose objects are (names
of) types. For instance, in formal semantics in modern type theories [14, 10, 2], common
nouns are interpreted as types (rather than predicates). In a similar fashion, we may
introduce a universe CN of common nouns:

∗; ∗ ` CN type

Γ; ∗ ` A : CN

Γ; ∗ ` TCN(A) type

where TCN maps any common noun to a type (we often omit TCN and just write A
for TCN(A)). Note that CN is closed under several type constructors including the
directed dependent sum types below.

Example 2.1. Here is a simple example in syntactic analysis (as in categorial gram-
mar). Consider the following sentence (1):

(1) Every student works.

The words in the sentence can be given the following types:

(2) every : ΠrX:CN. S/(X \ S)

(3) student : CN

1As mentioned in the Introduction, this design choice follows most of the existing work on introducing
dependent types into resource sensitive calculi and makes the resulting calculus simpler to study. This
is not the case anymore when we consider dependent linear types in §3.

3



Substructural Calculi with Dependent Types Luo

(Σ∼-F)
Γ; ∗ ` A type Γ, x:A; ∗ ` B type

Γ; ∗ ` Σ∼x:A.B type

(Σ∼-I)
Γ; ∗ ` a : A Γ; ∆ ` b : [a/x]B

Γ; ∆ ` pair(a, b) : Σ∼x:A.B

(Σ∼-E)
Γ; ∆ ` p : Σ∼x:A.B Γ, x:A; ∆′, y:B ` e : C Γ; ∗ ` C type

Γ; (∆,∆′) ` let pair(x, y) = p in e : C

(Σ∼-C)
Γ; ∗ ` a : A Γ; ∆ ` b : [a/x]B Γ, x:A; ∆′, y:B ` e : C Γ; ∗ ` C type

Γ; (∆,∆′) ` let pair(x, y) = pair(a, b) in e = [a/x, b/y]e : C

Figure 3: Rules for Σ∼-types.

(4) works : human \ S

where S is the type of sentences and student is a subtype of human (and, hence by
contravariance, human \ S is a subtype of student \ S). It is then straightforward to
derive that

appr(every, student) works : S

In other words, (1) is a sentence.

Directed Dependent Sums Dependent sum types (Σ-types) are split into reverse
dependent sums (Σ∼) and concatenation dependent sums (Σ◦). The rules for Σ∼-types
are given in Figure 3, while the rules for Σ◦-types are symmetric and omitted. We
remark that the universe CN is closed under Σ∼ and Σ◦. For example, directed depen-
dent sum types may be used to analyse modified common nouns when the modifying
adjectives are intersective or subsective. To illustrate this with an example, assuming
that B : A \ S, let’s use Σ∼(A,B) to abbreviate Σ∼x:A.(x B) and Σ◦(A,B) to abbre-
viate Σ◦x:A.(x B). Now, with diligent : human \ S, we can use Σ∼(student, diligent)
to describe the modified common noun diligent student, and Σ◦(student, diligent) to
analyse student who is diligent.

3 Dependent Linear Types

When introducing dependent types into a substructural calculus, a most challenging
decision to make is whether to allow types to depend on substructural variables. For
instance, for f : A( A, the equality type EqA(f x, x) depends on the linear variable
x of type A. In most of the existing research so far except [13, 11], types are only
allowed to depend on intuitionistic variables, but not on substructural variables such
as the linear variables (or Lambek variables, as in the calculus described in the previous

4



Substructural Calculi with Dependent Types Luo

Intuitionistic Π-types (Conversion: (λx:A.b)(a) ' [a/x]b)

Γ, x : A ` B type

Γ ` Πx:A.B type

Γ, x : A ` b : B

Γ ` λx:A.b : Πx:A.B

Γ ` f : Πx:A.B Γ̄ ` a : A

Γ ` f(a) : [a/x]B

Linear Π-types (Conversion: (λx::A.b) a ' [a/x]b)

Γ, x::A ` B type

Γ ` Πx::A.B type

Γ, x::A ` b : B

Γ ` λx::A.b : Πx::A.B

Γ ` f : Πx::A.B ∆ ` a : A Merge(Γ; ∆) ↓
Merge(Γ; ∆) ` f a : [a/x]B

Figure 4: Intuitionistic and linear Π-types

section). In this section, we follow [11] to present LDTT, a linear dependent type theory
where types may depend on linear variables.

A context in LDTT may contain two forms of entries: the usual (intuitionistic)
entries x:A and the linear ones y::A, where y is called a linear variable. For any
term t, FV (t) is the set of free variables occurring in t and, for any context Γ, if
FV (t) ⊆ FV (Γ), then DΓ(t) is the set of dependent variables of t w.r.t. Γ, defined as
follows: (1) FV (t) ⊆ DΓ(t), and (2) for any x ∈ DΓ(t), FV (Γx) ⊆ DΓ(t). In LDTT,
we have the following variable typing rule:

(V )
Γ, x̄:A, Γ′ valid (for all y::Γy ∈ Γ, y ∈ DΓ(x)) Γ′ intuitionistic

Γ, x̄:A, Γ′ ` x : A
(̄: ∈ {:, ::})

where ‘Γ′ intuitionistic’ means that Γ′ does not contain any linear entries.
We have two forms of Π-types: the intuitionistic Πx:A.B and linear Πx::A.B, whose

rules are given in Figure 4. For both, the formation and introduction rules are not
unusual, although their elimination rules need some explanations. For intuitionistic
Π-types, in order to type f(a) under context Γ, a is required to be typable in Γ̄, the
intuitionistic part of Γ, obtained from Γ by removing all the entries whose variables
are in FVLD(Γ), the set of linear dependent variables in Γ.2 The elimination rule for
linear Π-types involves the operation Merge(Γ; ∆), which is only defined, notation
Merge(Γ; ∆) ↓, if Γ̄ ≡ ∆̄ and FVLD(Γ) ∩ FVLD(∆) = ∅: (1) Merge(〈〉; 〈〉) = 〈〉; (2) If
x ∈ FVLD(Γ,∆), Merge(Γ, x̄:A; ∆) = Merge(Γ; ∆, x̄:A) = Merge(Γ; ∆), x̄:A, where
:̄ is either : or ::; and (3) Merge(Γ, x:A; ∆, x:A) = Merge(Γ; ∆), x:A.

LDTT also contains equality types EqA(a, b), whose rules are given in Figure 5. The
Eq-formation rule involves another context merge operation merge(Γ; ∆), which is only
defined, notation merge(Γ; ∆) ↓, under the condition that, if x̄:A ∈ Γ and x̄:B ∈ ∆,
then (1) :̄ is either both : or both :: and (2) A ≡ B: (1) merge(Γ; 〈〉) = Γ, and (2) for
:̄ being either : or ::, merge(Γ; x̄:A,∆) is equal to (i) merge(Γ; ∆), if x ∈ FV (Γ), and

2Formally, FVLD(Γ) is defined as follows: (1) FVLD(〈〉) = ∅; (2) FVLD(Γ, x::A) = FVLD(Γ) ∪ {x};
(3) if FV (A) ∩ FVLD(Γ) = ∅, then FVLD(Γ, x:A) = FVLD(Γ); otherwise, FVLD(Γ, x:A) = FVLD(Γ) ∪
{x}.

5



Substructural Calculi with Dependent Types Luo

Equality types (Conversion: subst(refl(a), q) ' q)

Γ ` a : A ∆ ` b : A merge(Γ; ∆) ↓
merge(Γ; ∆) ` EqA(a, b) type

Γ ` a : A

Γ ` refl(a) : EqA(a, a)

Γ ` p : EqA(a, b) ∆ ` q : B[a] Merge(Γ; ∆), x̄:A ` B[x] type (̄: ∈ {:, ::}) Merge(Γ; ∆) ↓
Merge(Γ; ∆) ` subst(x.B, p, q) : B[b]

Figure 5: Equality types

(ii) merge(Γ, x̄:A; ∆), otherwise. Its elimination rule involves the Merge-operation
defined earlier.

In linear logic, every linear variable occurs free for exactly once in a typed term.
In LDTT, every linear variable occurs essentially for exactly once in a typed term
– a property we call weak linearity. More precisely, for Γ ` a : A, the multiset of
variables essentially occurring in a under Γ, EΓ(a), is defined by induction on derivations
(we omit the part of the definition for Eq-types): (1) for (V) above, EΓ, x̄:A, Γ′(x) =
DΓ, x̄:A, Γ′(x); (2) for the λ-typing rules, EΓ(λx̄:A.b) = EΓ,x̄:A(b)\{x}, where :̄ ∈ {:, ::};
(3) for intuitionistic applications, EΓ(f(a)) = EΓ(f)∪EΓ̄(a); (4) for linear applications,
EMerge(Γ;∆)(f a) = EΓ(f) ∪ E∆(a).

Theorem (weak linearity) If Γ ` a : A and x::Γx ∈ Γ, then x ∈ EΓ(a) only once.

4 Conclusion

The developments in this paper are based on the author’s work reported in previous
talks [9, 11] about this topic. Future work includes studies in two fronts: one is to
employ dependent Lambek types in the study of NL syntactical analysis and related
issues in the syntax-semantics interface with MTT-semantics, and the other is to apply
dependent linear types to the study of dependent session types for further development
in theory of concurrency and concurrent programming languages.

References

[1] I. Cervesato and F. Pfenning. A linear logical framework. Information and Computation,
179, 2002.

[2] S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. Wiley &
ISTE Science Publishing Ltd., 2018. (to appear).

[3] P. de Groote and S. Maarek. Type-theoretic extensions of abstract categorial grammars.
Proc. of the Workshop on New Directions in Type-theoretic Grammars. ESSLLI 2007,
2007.

6



Substructural Calculi with Dependent Types Luo

[4] P. de Groote, S. Maarek, and R. Yoshinaka. On two extensions of abstract categorial
grammars. LPAR 2007, LNAI 4790, 2007.

[5] S. Gay. Session types: Achievements and challenges. Invited Talk at TYPES16, May 2016.

[6] J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50, 1987.

[7] N. Krishnaswami, P. Pradic, and N. Benton. Integrating dependent and linear types.
POPL 2015.

[8] J. Lambek. The mathematics of sentence structure. The American Mathematical Monthly,
65(3), 1958.

[9] Z. Luo. A Lambek Calculus with Dependent Types. TYPES 2015.

[10] Z. Luo. Formal semantics in modern type theories with coercive subtyping. Linguistics
and Philosophy, 35(6):491–513, 2012.

[11] Z. Luo and Y. Zhang. A linear dependent type theory. TYPES 2016. Novi Sad, 2016.

[12] S. Martin and C. Pollard. A dynamic categorial grammar. Formal Grammar 2014, 2014.

[13] C. McBride. I got plenty ońuttiń. In S. Lindley and C. McBride and P. Trinder and D.
Sannella (eds.) A List of Successes That Can Change the World, LNCS 9600, 2016.

[14] A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.

[15] A. Ranta. Syntactic calculus with dependent types. J of Logic, Language and Information,
7, 1998.

[16] M. Vákár. A categorical semantics for linear logical frameworks. FoSSaCS 2015.

7


	Introduction
	Dependent Lambek Types
	The Lambek Calculus
	Dependent Lambek Types: Examples

	Dependent Linear Types
	Conclusion

