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Abstract. The work is a continuation of the research devoted to the development 

of a multidimensional Kalman filter connected at the output of the built-in heli-

copter’s turboshaft engines mathematical dynamic model to improve the accu-

racy of helicopters turboshaft engines parameters identification and achieve high 

quality automatic control. The main difference is the use of radial basis functions 

neural networks, in which the multivariate Kalman filter is a training algorithm. 

The work illustrates well-known mathematical expressions underlying of optimal 

multidimensional filtering algorithms. The methods of mathematical modeling in 

the Matlab environment tested the proposed algorithms. The simulation results 

showed that the use of neural networks trained by the multidimensional Kalman 

matrix filter as part of the model of helicopters turboshaft engines built into the 

automatic control system allows achieving high indicators of the accuracy of 

identifying the parameters of helicopters turboshaft engines automatic control 

system – up to 0.9975, then in practical analogues. 

Keywords: Helicopter Turboshaft Engine, Neural Network, Kalman Filter, 

Training, Accuracy. 

1 Introduction 

Aircraft helicopters turboshaft engines (TE) are complex nonlinear systems, the 

characteristics of which have a significant scatter [1]. The quality of the built-in math-

ematical models of helicopters TE that are part of the automatic control system (ACS) 

[2] largely determines the quality of control and the possibility of using modern math-

ematical apparatus for the synthesis of ACS, as well as operating tools [3]. Satisfaction 

with the requirements for the reliability and quality of regulation of helicopters TE is 

possible only by expanding the functionality of the controls, in particular, endowing 

them with the ability to quickly adapt to changes in the characteristics of helicopters 

TE and external conditions. The change in the characteristics of helicopters TE is due 
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to many reasons, the main of which are [4]: parameters technological spread due to 

tolerances for the manufacture and units’ assembly; deviation in the similarity of modes 

under various external operating conditions; change in characteristics in the process of 

resource development (failures and units wear). 

External interference is caused by a wide range of external destabilizing factors that 

affect the engine during operation, causing additional errors and reducing the resource: 

a wide range of operating temperatures ranging from –50 to 100 °C; mechanical shocks, 

linear acceleration and vibration corresponding to overloads of 10...15 tons or more; 

instability of ACS power supplies, and also due to the impact of pulses, which are al-

most twice the nominal value; electromagnetic interference; pressure pulsations with 

an amplitude of 20…90 % of the upper limit; chemically aggressive impurities in the 

environment, etc. 

Solving the task of ACS adaptation, as well as real-time condition monitoring and 

failure diagnostics, inevitably requires the use of identification methods using artificial 

intelligence tools (for example, neuron networks) [5]. In this case, the structure and 

accuracy of the applied mathematical model are determined by the nature of the prob-

lem for which they are applied. 

2 Related Works 

The process of ensuring the stability of engine parameters in all operating modes is 

one of the priority tasks at the helicopters TE ACS operation mode. At the same time, 

the ACS performs the following main functions: engine start automatic control, quick 

transition to other operating modes when controlling the engine or in case of a sharp 

change in external conditions, maintaining the specified engine operation mode or 

changing it in accordance with control programs, preventing the engine from entering 

dangerous operating modes. Of particular difficulty are the starting modes and engine 

transient modes operation under conditions of external and internal interference [6, 7]. 

To implement the above functions, a necessary condition is to obtain reliable data 

on the current parameters of helicopters TE at flight modes (in real time), such as fuel 

consumption, temperature, pressure, gas generator and free turbine rotor speeds, etc. 

[8, 9]. Modern helicopters TE ACS operates under interference conditions both in the 

built-in model channel (due to model inaccuracy and interference in the communication 

channel) and in the measurement channel (due to sensor error and communication chan-

nel interference). That’s why an urgent task is to ensure the accuracy of parameter iden-

tification, taking into account calculated data obtained using the built-in model, and 

data from current on-board measurements. The identification accuracy is determined 

by the methods used [10, 11]. 

In connection with the foregoing, the aim of the work is to improve the accuracy of 

helicopters TE parameters identification by using neural network technologies, namely, 

training the multidimensional Kalman filter at the output of the built-in mathematical 

dynamic model of identification, develop on the basis of engine’s dynamic and throttle 

characteristics, which makes it possible to identify the parameters and simulate the op-

eration of the engine in stationary and dynamic modes [12, 13]. It should be noted that 
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this study is a continuation of research in the field of development of helicopters TE 

intelligent on-board automatic control systems, in which it is proposed to integrate a 

multidimensional Kalman filter [14]. 

3 Materials and Methods 

Multidimensional filtering is carried out according to three helicopters TE thermo-

gas-dynamic parameters, which are recorded on board the helicopter: nTC – rotor r.p.m.; 

nFT – free turbine rotor rotational speed; TG – gas temperature in front of the compressor 

turbine, recorded on board of the helicopter, reduced to absolute parameters, according 

to the theory of gas-dynamic similarity [15] (table 1). 

Table 1. Fragment of the training sample during the operation of helicopters TE (on the exam-

ple of TV3-117 TE) [15]. 

Number nTC nFT TG 

1 0.932 0.929 0.943 

2 0.964 0.933 0.982 

3 0.917 0.952 0.962 

4 0.908 0.988 0.987 

5 0.899 0.991 0.972 

6 0.905 0.987 0.979 

7 0.923 0.972 0.983 

8 0.948 0.966 0.989 

9 0.962 0.952 0.997 

… … … … 

256 0.953 0.973 0.981 

According to [14], the recursive Kalman filter for the task posed is the most accurate 

and convenient in modeling, having the necessary properties of adaptation – self-cor-

rection in the process of filtering data. Adaptation is based on the application of a var-

iable optimal Kalman coefficient obtained at the current moment when solving the 

problem of minimizing the mathematical expectation of the squared error of the identi-

fied parameter, taking into account the error at the previous moment (which determines 

the recurrence of the obtained relations) [14, 16]. Kalman filters are used for ergodic 

processes operating under noise conditions, characterized by a known time-independ-

ent dispersion and zero mathematical expectation [17].  

To prove the ergodicity of the process, the feasibility of the Slutsky condition was 

checked, according to which the autocovariance function of the ergodic process should 

tend to zero as the lag value increases [14]. The research results showed the correctness 

of the hypothesis about the ergodicity of the observed processes. The analysis results 

for nTC, nFT, TG are shown in fig. 1–3. 



4 

 

Fig. 1. Diagram of the autocovariance function for nTC (author's research). 

 

Fig. 2. Diagram of the autocovariance function for nFT (author's research). 

 

Fig. 3. Diagram of the autocovariance function for TG (author's research). 
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According to [14], the analysis of real noises obtained from the data of flight tests of 

the TV3-117 engine showed that all of them are characterized by zero mathematical 

expectation, constant dispersion, and the same spectra in the study of one long-duration 

sample and several samples. Thus, the hypothesis of ergodicity of the processes under 

consideration was again confirmed, since the values of the mathematical expectation 

and variance are the same both in time and in the number of realizations. The applica-

tion of the Pearson criterion showed the normal distribution of noise. All this allows us 

to draw a conclusion about the further possibility of using Kalman filters (including 

neural networks trained using the Kalman filter) for this class of processes [18]. In the 

identification problem using the optimal Kalman filtering, according to [14, 16], it is 

required at the current time to eliminate the error as much as possible both in the model 

channel (the predicted value of the identified parameter) and in the measurement chan-

nel (current sensor readings) for the four parameters under consideration. For this, a 

recursive matrix relation is used, which makes it possible to determine the matrix of the 

square of the covariance error over all coordinates [19]: 

2 2 2

1 ;k k −= +E E σ               (1) 

where 2

kE  – column vector of the squared error of the covariance in the coordinates of 

the nTC, nFT, TG at the k-th step, 
2

σ  – matrix of model variances in the coordinates of 

the nTC, nFT, TG. 

The solution of the 2

kE  minimization problem allows us to determine the elements 

of the matrix of the Kalman coefficient: 

1
2 2 2 ;k k k 

−

 = + K E E σ             (2) 

where Kk – column vector of the Kalman coefficient for the coordinates of the nTC, nFT, 

TG at the k-th step, is the variance matrix of the meter (sensor) in the matrix of model 

variances for the coordinates of the nTC, nFT, TG. 

Identification of parameters (obtaining an optimal estimate) is carried out through a 

column vector of Kalman coefficients, which determines in matrix form the ratio of the 

calculated (model) and measured components in the optimal values of the identified 

parameters: 

( )1 ;opt

k k k k k= − +X X K K Z             (3) 

where opt

kX  – column vector of optimal estimates of coordinates nTC, nFT, TG at the k-th 

step; Хk – column vector of model values of coordinates nTC, nFT, TG, calculated at the 

k-th step; Zk – column vector of coordinates nTC, nFT, TG measured by sensors at the k-

th step. 

It should be noted that the problem solved using Kalman filtering is not a smoothing 

problem, but an identification problem [20]. The Kalman filter is not designed for 

smoothing data from the sensor, but is aimed at obtaining the closest to the real coordi-

nates nTC, nFT, TG, the values of their optimal estimates at the current time, obtained 
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under conditions of external and internal interference in the channels of the built-in 

model and measurements and recorded in the column vector opt

kX . 

In order to implement the considered method as part of the onboard neural network 

expert system for monitoring helicopters TE operational status [21] or in the modified 

closed onboard helicopters TE ACS [2, 15], as well as to increase the accuracy of heli-

copters TE parameters identification compared to [14], it is proposed to implement a 

multidimensional filter Kalman using neural networks. 

Neural network training using the multidimensional Kalman filter [22] is the problem 

of estimating the true state of some unknown “ideal” neural network that provides zero 

mismatch, under states, in this case, the values of the weights of the neural network w(k) 

are taken, and under the mismatch, the current error training e(k). The dynamic training 

process of a neural network can be described by a pair of state-space equations, one of 

which is a process model representing the evolution of the weight vector under the in-

fluence of a random process ξ(k), which is considered white noise with zero mathemat-

ical expectation and the known diagonal covariance matrix Q: 

( ) ( ) ( )1 .w k w k k+ = +             (4) 

The output equation is a linearized neural network model (5) at the k-th step, noisy 

with a random process Q(k), which is considered to be white noise with zero mathe-

matical expectation and a known diagonal covariance matrix R: 

( )
( ) ( ) ( )( )

( )
, ,

;
y w k v k x k

h k k
w




= +


         (5) 

where w(k) – neural network weights, v(k) – neurons postsynaptic potentials, x(k) – 

network input values. The instantaneous values of the derivatives 
y

w




 are calculated 

using the backpropagation method. Mismatch e(k) is calculated according to the ex-

pression: 

( ) ( ) ( );e k t k y k= −             (6) 

where t(k) – neural network target value, ( )y k  – neural network actual output, calcu-

lated according to the expression: 

( ) ( ) ( )2 1
;j ji i

j j

y k g w f w x
  

=    
  

              (7) 

where w(1) – hidden layer neurons weights, f(•) – hidden layer neurons activation func-

tions, w(2) – output layer neurons weights, g(•) – output layer neurons activation func-

tions. 

Before training, the neural network goes through the initialization stage. The covar-

iance matrices of measurement noise R = η · I and dynamic training noise Q = μ · I are 
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set, the size of the matrices is L × L and N × N, respectively, where L – output neurons 

number, N – neural network weight coefficients number. The coefficient η has the 

meaning of the training rate, in this work according to [22] η = 0.001, the coefficient μ 

determines the measurement noise; in this work, according to [22], μ = 10–4. Also, a 

single covariance matrix P of size N × N and a zero-measurement matrix H of size L × 

N are set at the initialization stage. The training stage is performed online, the neural 

network correction weights is sequentially performed for each example of the training 

sample. At the k-th step, the following actions are performed: 

1) A neural network output new value ( )y k  is calculated according to (4), a “for-

ward pass” of the neural network is performed. 

2) A "reverse pass" of the neural network is performed: the derivatives are calculated 

using the backpropagation method 
i

y

w




, 1,i N=  . This is done using the same tech-

nique as in the error backpropagation method, but the local gradients for the output 

neurons are set not to the current error e(k), but to the constant 1, which, with all the 

same calculations, provides the neural network outputs Jacobians values 
y

w




 instead 

of gradients 
( )( )

2

e k

w




 because 

( )( )
( )

2

2
e k y

e k
w w

 
=

 
 . Observation matrix H(k) is 

formed: 

( )
1 2

... .

T

N

y y y
H k

w w w

   
=  

   
            (8) 

3) The current error of the network operation e(k) is determined according to (6), a 

deviation matrix E(k) of size 1 × L is formed: 

( ) ( ) .E k e k=                 (9) 

4) New values of the neural network weights w(k + 1) and correlation matrix P(k + 1) 

are calculated according to the expressions: 

( ) ( ) ( ) ( ) ( ) ( )
1

;
T T

K k P k H k H k P k H k R
−

 = +
 

      (10) 

( ) ( ) ( ) ( ) ( )1 ;P k P k K k H k P k Q+ = − +         (11) 

( ) ( ) ( ) ( )1 ;w k w k K k e k+ = +          (12) 

where K(k) – Kalman gain matrix, its dimension is N × L. 

Actions 1 – 4 are performed for all elements of the training sample. The correlation 

matrix P updated at each clock cycle contains second-order information about the error 
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surface, which provides the extended Kalman filter method with an advantage over 

first-order training methods such as gradient descent and its modifications. 

4 Experiment 

Based on [14], a neural network of radial basis functions (RBF) with 5 inputs is taken 

as a neural network, three of which are responsible for the input parameters nTC, nFT, 

TG, and two specify the model error and the measurement error (fig. 4). 
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Fig. 4. Neural network diagram (author's research). 

It is known that RBF-networks model an arbitrary non-linear function using only 

one intermediate layer, thereby eliminating the need to decide on the number of layers 

[23, 24]. Secondly, the parameters of the linear combination in the output layer can be 

optimized using well-known linear optimization methods that are fast and do not suffer 

from local minimum that interfere with training using the backpropagation algorithm. 

Therefore, the RBF-network trains very quickly – an order of magnitude faster than 

using the backpropagation algorithm. 

In order to determine the optimal number of neurons in the hidden layer, an experi-

mental dependence E = f(N) was constructed, shown in fig. 5, where E – neural network 

training error; N – number of neurons in the hidden layer (it is assumed that the number 

of neurons in the input layer is 5, in the output layer is 3) [25]. 
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Fig. 5. Neural network training error diagram the number of neurons in the hidden layer (author's 

research). 

As can be seen from fig. 5, with 18 neurons in the hidden layer, the smallest training 

error of the neural network is achieved, that is, the optimal structure of the neural net-

work is 5–18–3. 

The neural network training was carried out on a personal computer with an AMD 

Ryzen 5 5600 6-Core Processor 3.50 GHz CPU of the Zen 3 architecture, 32 GB of 

DDR-4 RAM and an Nvidia GeForce RTX 3060 GPU times compared to training on 

the CPU. To control of neural network training, we used the accuracy metric and the 

loss function, which was chosen as categorical entropy [26]. The experiment was car-

ried out in laboratory conditions. At the same time, it was proved that under the condi-

tions of on-board implementation, this method can be easily implemented using the 64-

bit Intel Neural Compute Stick 2 neuroprocessor [27]. Diagrams of the dependence of 

the change in these values on the number of the epoch of network training are shown 

in fig. 6. 

 

Fig. 6. Diagrams of changes in accuracy and loss when a neural network training: 1 – train, 2 – 

test (author's research). 
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As can be seen from fig.6, the accuracy indicator approaches one, and loss indicator 

– tends to zero, which indicates the high accuracy of the model and its minimal error 

[28, 29].  

Table 2 contains the values of training and testing errors, as well as the training time, 

for various training algorithms, from which it can be seen that for the task at hand, the 

RBF-network training algorithm based on the multidimensional Kalman filter signifi-

cantly outperforms other RBF-network training algorithms in terms of convergence rate 

(number of epochs) and identification accuracy. 

Table 2. RBF-network training results (author's research). 

Training algorithm Identification error Number of training epochs Training time, s 

Backpropagation algo-

rithm 
0.034 283 14 

Quasi Newton algorithm 

[30] 
0.031 275 12 

Q-learning [31] 0.029 272 12 

Genetic algorithm combi-

nation method [32] 
0.027 268 11 

Expectation-maximization 

algorithm [33] 
0.026 264 11 

Gradient algorithm [34] 0.018 247 8 

Multidimensional Kal-

man filter [14, 22] 
0.009 220 3.25 

5 Results 

Similarly, to [14], the task of developing multidimensional Kalman filtering algo-

rithms using neural network technologies was solved on the basis of a model experi-

ment in the Simulink interactive environment, which allows building dynamic models 

of the researched control objects based on block diagrams in the form of directed dia-

grams [34, 35].  

Its main advantages are the variety of built-in libraries, including those included in 

the Matlab environment, visibility and ease of modeling, the ability to monitor the sys-

tem operational status in real time, and the convenience of an interface that makes it 

easy to influence the designed algorithm and model experiment [36].  

The task of developing an algorithm is reduced to modeling mathematical expres-

sions (1) – (3) to calculate the specified values at each step. Calculations in the multi-

dimensional Kalman filtering algorithms were based on the dispersions of the model 

and sensors along the coordinates nTC, nFT, TG, obtained by statistical processing at 

flight test data of the TV3-117 TE.  

The generalized block diagram of the model of the multidimensional Kalman filter, 

which performs real-time simultaneous identification by three coordinates of nTC, nFT, 

TG, is shown in fig. 7.  
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A detailed functional diagram of filtering along one coordinate is taken from [14] 

and is shown in fig. 8. 

 

Fig. 7. Generalized block diagram of the multidimensional Kalman filter in Simulink (author's 

development based on [14]). 

 

Fig. 8. Single coordinate filtering block diagram in Simulink [14]: 1 – model error, 2 – measure-

ment error, 3 – model, 4 – measurement, 5 – filtered value. 
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Similarly, to [14], in the model experiment, the values of the coordinates of the col-

umn vector of the readings of the sensors Zk under noise conditions were modeled by 

superimposing several types of noise on the calculated values: gaussian noise; real noise 

extracted from experimental data obtained during flight tests of the TV3-117 engine for 

the considered modes and types of input signals; several high frequency sinusoids; com-

bined noise obtained by superimposing several high-frequency sinusoids on real noise. 

The results of filtering under the action of combined noises when applying input signals 

that provide a change in the identified values in the entire operating range for various 

input signals (acceleration – operating mode – reset) along one coordinate are shown 

in fig. 9, 10, where: 1 – change in time of the coordinates of the column vector Xk – 

calculated (model) values of nTC, nFT, TG; 2 – change in time of the coordinates nTC, nFT, 

TG of the column vector Zk – measured by the sensors of the values of the coordinates 

nTC, nFT, TG; 3 – change in time of the coordinates of the column vector 
opt

kX  – optimal 

estimates of the coordinates nTC, nFT, TG. 

 

Fig. 9. The results of applying the multidimensional Kalman filter in the injectivity modes (reset 

under conditions of combined noise) (author's research). 

 

Fig. 10. The results of applying the multidimensional Kalman filter in the operating mode under 

conditions of combined noise (author's research). 
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6 Discussions 

Researches have shown that the relative error of the signals at the output of the mul-

tidimensional Kalman filter neural network model for all researched coordinates nTC, 

nFT, TG does not exceed 0.25 %, which corresponds to the specified technical require-

ments for the accuracy of identification algorithms. The results obtained indicate a two-

fold decrease in the error of signals in the output of the multidimensional Kalman filter 

neural network model compared to the results obtained in [14]. The developed the mul-

tidimensional Kalman filter neural network model operates both in static and dynamic 

modes under the influence of "hard" external and internal disturbances in a wide range 

of helicopter TE operating modes. 

Table 3 shows the results of a comparative analysis of the identification of the pa-

rameters of TV3-117 TE at three coordinates nTC, nFT, TG by determining errors of the 

1st and 2nd kind. It follows from Table 3 that the use of the multidimensional Kalman 

filter neural network reduces errors by an average of 20 % compared to the results ob-

tained in [14]. 

Table 3. Identification 1st and 2nd kind errors calculation results (author's research). 

Identification method 

based on multidimen-

sional Kalman filter 

Probability of error in parameter identification 

nTC nFT TG 

Type 1st 

error 

Type 2nd 

error 

Type 1st 

error 

Type 2nd 

error 

Type 1st 

error 

Type 2nd 

error 

Without the use of neu-

ral networks [14] 
0.84 0.63 0.85 0.64 0.79 0.58 

Using neural networks 0.62 0.38 0.63 0.41 0.56 0.33 

7 Conclusions 

1. The method for helicopters turboshaft engines parameters identification using the 

multidimensional Kalman filter has been further developed, which differs from the ex-

isting one in that due to the use of radial basis functions neural network, it has increased 

the accuracy of helicopters turboshaft engines parameters identification with an accu-

racy of 0.9975. 

2. The method of radial basis functions neural network training has been improved, 

which, due to the use of a training algorithm based on the multivariate Kalman filter, 

has reduced the identification error from 0.034 to 0.009 (3.4 to 0.9 %), the number of 

training epochs from 283 to 220, the training time from 14 to 3.25 seconds, which is 

critical in terms of on-board implementation. 

3. It is proved that the errors of the 1st and 2nd implementations of the method for 

helicopters turboshaft engines parameters identification using the multidimensional 

Kalman filter neural network model did not exceed 0.63 % and 0.41 %, respectively, 

while for the classical method (multidimensional Kalman filter direct application [14]) 

they amounted to 0.85 % and 0.64 %, respectively. The obtained results prove that the 
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use of the multidimensional Kalman filter neural network filter will allow 25 % more 

accurate helicopters turboshaft engines parameters identification at the helicopter flight 

mode. 

4. The prospect for further research is testing the developed multidimensional Kal-

man filter neural network model in the closed control loop of the modified closed 

onboard helicopters turboshaft engines automatic control system [2, 15], the onboard 

neural network expert system for monitoring helicopters turboshaft engines operational 

status [21] and a comparative analysis of the results obtained with the results of apply-

ing the element-by-element model and bench and flight test data in similar modes. 
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