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Abstract 
Direct Metal Laser Sintering (DMLS) is a metal additive manufacturing process, which can build parts with any complexity from a wide range 
of metallic materials. Research in DMLS predominantly focuses on the impact of few parameters on the ultimate properties of the printed part. 
The lack of a systematic approach to optimizing the process parameters for a better performance of given material results in a sub-optimal 
process. This process needs a comprehensive study of all the influential parameters and their impact on the mechanical and microstructural 
properties of a fabricated part. Furthermore, there is a need to develop a quantitative system for mapping the material properties and process 
parameters with the ultimate quality of the fabricated part to achieve improvement in the manufacturing cycle as well as the quality of the final 
part produced by the DMLS process. To address the aforementioned challenges, this research proposes a framework to optimize the process for 
Ti-6Al-4V material. This framework characterizes the influence of process parameters on the microstructure and mechanical properties of the 
fabricated part using a series of experiments. These experiments study the significance of process parameters and their variance as well as study 
the microstructure and mechanical properties of fabricated parts by conducting tensile, impact, hardness, surface roughness, and densification 
tests, and ultimately obtain the optimum range of parameters. This would result in a more complete understanding of the correlation between 
process parameters and part quality. Furthermore, these experiments provide the required data needed to develop an Artificial Neural Network 
model to optimize process parameters (for achieving the desired properties) and estimate fabrication time. 

Keywords: Additive manufacturing; selective laser sintering; DMLS; artificial neural network (ANN); optimization framework; parameter optimization; 
sensitivity analysis 

 
1. Introduction 

DMLS is the most widely used additive manufacturing technology 
for metal printing and functional parts [1]. A wide range of metallic 
powder can be used as raw material for this process [2]. As with 
any other additive technology, DMLS fabricates parts directly from 
3D CAD data (STL file) and eliminates the use of expensive tooling 
[3, 4]. STL file slices the overall part into many layers with respect 
to the layer thickness and a laser beam sinters each layer. Unlike 
the Selective Laser Melting (SLM) process, where the powder is 
completely melted down to form a homogeneous part, DMLS 
partially melts the material (sinter the powder) layer-by-layer at the 
molecular level [5]. The schematic diagram in Fig. 1 shows the 
overall process of the DMLS process [6]. The 3D printer machine 
consists of a supply station for the metal powder and a sintering 
unit. A laser selectively sinters the powder with respect to the layer 
geometry along a prescribed pattern. After sintering of a layer, the 
powder dispenser platform moves upward a distance equals to the 
thickness of a layer to supply the material required for printing a 
new layer and a recoater arm or a roller transfers the material 
powder to the sintering zone. The same process continues until the 
fabrication of the last layer [7]. 
 Due to the ability of DMLS to produce homogeneous parts with 
high strength alloys and allowable free-form fabrication [4], it has 
found applications in various sectors such as aerospace, defense, 
medical etc. [8, 9]. Aerospace industry widely employs the DMLS 
process because of advantages such as timesaving and the ability to 
produce functional assemblies [8, 10]. A wide range of metals such 
as Inconel 625, Inconel 718, 316L stainless steel, cobalt chrome, 

                                                                 
† Corresponding author 
E-mail address: emalekip@purdue.edu  

 
Fig. 1. A schematic diagram of direct metal laser sintering (DMLS) process 
[6]  
aluminum, titanium, and many alloys including Ti-6Al-4V   
are excellent materials for aerospace industry, which are offering a 
significant cost and weight reduction [11, 12]. 

The DMLS process has been employed in various industries 
however it still suffers from some process drawbacks. To overcome 
these drawbacks, the research in the DMLS process nowadays 
concentrated on the impact detection of few parameters on the 
ultimate properties of the printed part [1, 5, 10, 13-18]. The ultimate 
goal is to develop a system linking manufacturing process, material 
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properties, and the ultimate quality of a fabricated part to optimize 
the process parameters. Fulfilling this objective needs a 
comprehensive study on all the influential parameters with their 
significance on the mechanical and microstructural properties of a 
fabricated part. Furthermore, it needs to develop a quantitative 
system for mapping material property and process parameters to 
achieve improvement in the manufacturing cycle and quality control 
of the parts produced by DMLS process. 

More than fifty parameters exist and have an influence on the 
ultimate quality of the product [19-21]. Scholars classify the process 
parameters into different groups [20, 22]. In one approach, 
Malekipour et al. classified the parameters into three main 
categories. The first category is pre-processed parameters including 
environmental conditions such as an inert gas, oxygen level, ambient 
temperature, powder specifications, and machine 
capabilities/limitations. The second category is the controllable 
parameters, which include process parameters, namely, laser 
specifications and scan strategy, and some few manufacturing 
specifications such as layer thickness. The last category includes the 
post-processed parameters, which quantify the ultimate quality of 
the fabricated part such as the yield strength, fatigue resistance, etc. 
[22]. Van Elsen named some of the important parameters in each 
classification. He mentioned that the powder specifications and 
deposition include morphology, the surface roughness of the 
generated grains, particle size distribution, and the deposition system 
of powder on to the bed. The laser specifications include spot size, 
wavelength, peak power, mode of the laser, and laser pulse length. 
The process parameters include part placement, scan strategy, build 
direction, laser power, scan speed, scan strategy, layer thickness, 
preheating temperature, hatch distance, and energy density [23]. 

The aforementioned parameters influence the process and the 
fabrication cost [20]. For instance, the process utilizes Argon instead 
of Helium as an environment for Ti-6Al-4V because Helium is 3 to 
4 times more expensive than Argon [23]. However, previous 
literature shows that among all the factors affecting the sintered part 
few parameters, namely, laser power, scan speed, hatch spacing, 
layer thickness, beam diameter, and preheating temperature have a 
tremendous impact on mechanical efficiency, economy, and ultimate 
quality of the entire sintering process [5, 9, 18, 24]. 

The objectives of the study are first, to determine the optimal 
range of the process parameters and the way that different 
parameters affect the microstructure, densification, and mechanical 
properties of the printed part. Second, to specify the sensitivity of 
different parameters and identify which ones affect the overall 
performance the most, within the optimal range. Third, to optimize 
these parameters to be able to print a part with a better ultimate 
quality; and finally, to develop a system for quality control, and an 
intelligent network for suggesting optimized process parameters. 

 
2. The current state of knowledge and gaps 
Although Laser Sintering (LS) technology has significantly 
developed and is employed in different industries, many challenges 
and issues still remain. These challenges hinder the process 
repeatability, consistency, and stability of the process. Several 
research works have studied the influence of process parameters on 
quality for different materials and machines; however, it has proven 
very difficult to control all aspects of the process or evaluate the 

collective influence of all the parameters on the properties of a 
fabricated part. 

Some previous work studied the effect of different process 
parameters on the ultimate surface quality. Yasa et al. [2] studied 
the staircase effect for nickel-based alloy parts manufactured by the 
DMLS process. This research took the total waviness as the 
objective function and developed a predictive model. This model 
considered a few process parameters to develop it. Related to this 
work, Arasu et al. [1] and Hanzl et al. [3] studied the surface 
roughness of a part printed by the SLS process and conducted 
Analysis of Variance (ANOVA) to obtain the optimal parameter 
settings to achieve a better final surface finish. Similarly, Read et 
al. [25] used the response surface method to analyze various process 
parameters statistically and developed optimal parameters for 
surface roughness. This method has the advantage to consider a 
greater number of process parameters and conduct statistical 
analysis with a smaller number of experiments to print. 
Furthermore, Fox et al. [14] studied the effect of the process 
parameters on the surface roughness of overhanging structures in a 
powder-bed fusion process. This work covers a range of overhang 
angles and process parameters to determine a relationship between 
process parameters, the angle of the overhanging surface, and the 
surface roughness. 

There is more research, which focused on other aspects of the 
process. Sufiiarov et al. [26] studied the effect of the layer thickness 
on the parts printed by the SLM process. This study found that the 
microstructure, tensile strength, and elongation at the break 
depending on the layer thickness. Asgari et al. [9] used different 
process parameters available in a DMLS system, such as laser 
power, scan speed, hatch distance, and laser offset distance for three 
different AlSi10Mg samples in 200 C with different surface 
roughness levels. This work employed Optical Microscopy (OM) 
and Scanning Electron Microscopy (SEM) techniques to study the 
microstructure of the printed samples. Moreover, Elsen [23] 
developed a genetic algorithm to perform variance analysis to study 
the complexity of the SLM process for a limited number of process 
parameters. The proposed methodology presented the synergistic 
possibilities of the mass-spring-damper system to optimize the 
density of fabricated parts by varying the selected parameters. 

Konecna et al. [17] printed Ti-6Al-4V specimens by the SLM 
process in different orientations to determine the crack propagation 
and presented a stress intensity threshold for the growth of long 
cracks. In another study, Zhao et al. [27] evaluated the heat transfer 
and residual stress evolution in the parts produced by the DMLS 
process and developed a numerical model by using COSMOL multi-
physics environment for Ti6Al-4V. This study performed a thermo-
mechanical simulation to study the change of residual stresses of a 
single layer, and physics and temperature of melt pool, which give a 
clear understanding of the thermo-mechanical evolution of a laser 
sintered additive process. 

Hofland et al. [28] studied the mechanical properties of PA12 
parts printed by the SLS process. In this work, they printed 480 
tensile samples with 17 different sets of the process parameter. The 
part properties selected as output are a tensile strength, tensile 
modulus, elongation at the break, and part density. Monte Carlo 
performed a simulation to determine the linear correlation between 
the coefficients and the sensitivities of the process parameters. This 
simulation derived some interesting parameters properties, which 
influence the ultimate mechanical properties of the printed parts. 
Finally, Munguia et al. [29] employed a neural network-based model 
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for the estimation of the build time in the SLS process as well as a 
MATLAB simulation to validate the results with the existing cost 
estimation models. 

However, these research studies focused on identifying the 
influence of few process parameters, predominantly laser 
specifications, on the surface quality or selective mechanical 
properties of the printed part; few research works studied the 
correlation between the parameters and the ultimate properties of 
the printed part. Optimizing the machine setting by controlling of 
the aforementioned parameters is a prerequisite for a near flawless 
fabrication process. Furthermore, there is a lack of a consistent 
system considering/optimizing all the controllable parameters and 
mapping the process, material, and parameters and ultimate 
properties of the fabricated parts. The major contribution of this 
work is to examine the effect of a set of parameters instead of the 
effect of their individual impact on the selected properties of a 
fabricated part. This will help to fill the existing gap for 
development of a standardized system, which considers all 
contributing and controllable factors starting from the design phase 
to the end-product services and testing the fabricated parts for 
compliance. 

 

 

Fig. 2. Proposed framework and corresponding workflow for developing 
ANN model 

3. Methodology and results 
Researchers have been studying the influence of every contributing 
parameter on the ultimate properties of a fabricated product. 
However, a collective system, which considers all the controllable 
parameters, is missed. The framework introduced in this paper will 
help in achieving a comprehensive understanding of the process and 
the importance of each parameter as well as obtaining the optimal 
range of a significant parameters such as laser power, scan speed, 
hatch spacing, and beam diameter in the manufacturing process. As 
Fig. 2 shows, first, we select the parameters according to the 
prioritized and influential order cited in the literature [21, 28] and 
then, this system conducts the Sensitive Analysis (SA) to figure out 
the importance of each individual parameters from the selected ones 
setting up the levels for next step. Then, this system conducts two 
sets of Design of Experiments (DOE) in the next steps and tests the 
consequent properties of the fabricated parts. The system will 
finally employ the acquired results to train an intelligent system 
suggesting the optimized process parameters for obtaining a better 
ultimate quality as well as estimating fabrication time of the parts 
printed by the sintering process with the Ti-6Al-4V material. The 
following sections explain the details of the proposed framework. 

3.1. Material properties 
Ti-6Al-4V is the material considered for this research, which is an 
alloy consisting of alpha-beta phase. Ti-6Al-4V has excellent 
properties, such as a corrosion resistance, lightweight, and a high 
strength at low to moderate temperatures [30]. Medical devices, 
aircraft structural components, automotive parts, the engine 
components of aircraft turbine, and marine applications are some of 
the many applications where this alloy is used [9, 31]. Depending 
on the field of application, the composition of the alloy (Table 1) is 
controlled to achieve the required properties (Table 2). The amount 
of oxygen and nitrogen in the alloy plays an important role in 
obtaining the ultimate strength and mechanical properties. 

Production of alloy with a higher strength requires higher 
concentrations of nitrogen and oxygen. Conversely, lower 
concentrations of nitrogen and oxygen increase the ductility, fracture 
toughness, stress corrosion resistance, and resistance to crack growth 
[32]. 

3.2. Design of specimen 
This work employs the ASTM E8 standard specimen (Table 3) [33] 
to test the tensile properties. We extend the specimen length on both 
sides to perform more mechanical testing, namely, hardness, and 
impact as well as to study the microstructure more. The quality and 
precision of the specimens are vital to get some more accurate 
metallographic analysis. Fig. 3 shows the designed specimen, which 
includes three sections for the tensile testing specimen (the middle 
section), the impact test (the left section), and the hardness test (the 
right section) of the specimen. All the dimensions are modified 
according to the ASTM standards.  

 
Figure 3: Designed specimen 

3.3. Sensitivity analysis 
Sensitivity analysis (SA) quantifies the correlation between the 
given model and its input parameters [34]. The main objective of 
conducting SA are to understand (1) which parameters require 
additional research for strengthening the knowledge base, thereby 
reducing output uncertainty; (2) which parameters are irrelevant and 
can be eliminated from the final model; (3) which inputs contribute 
most to output variability; and (4) which parameters are most highly 
correlated with the output [34]. 
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Fig. 4. Schematic for global sensitive analysis [35] 
 

The laser power, scan speed, layer thickness, beam diameter, 
and the hatch spacing are commonly cited in the literature as the 
crucial controllable parameters in the DMLS process influencing 
the ultimate quality of the fabricated part [21, 28]. The correlation 
between the above parameters with volumetric energy density is 
shown in equation 1 [36]. Employing SA within the working range 
of parameters in this work, the sensitivity of each parameter in the 
range is calculated which guides in selecting the levels and their 
distribution for the DOE. 

                                 𝐸𝐷 =  
௉

ௌ ∗ ௏ ∗ ௧
                                           (1) 

where P is laser power, S is hatch spacing, V is scan speed, and 
t is layer thickness, which is set to a constant value of 30 µm in this 
research. Fig. 4 shows the schematic process of the global SA 
employed by MATLAB [37]. The SA results evidently show the scan 
speed as the most sensitive parameter, which drastically changes the 
energy applied per volume and might influence the ultimate 
properties of the fabricated part predominantly [36]. In a similar way, 
the laser power and hatch spacing also have a considerable effect. 
The effect of layer thickness is not calculated as it is set to a constant 
value throughout this research. Fig. 5 shows the values of the total 
global sensitivity coefficient obtained by SA. 

 

Fig. 5. Total Global Sensitivity (GS) Coefficient 

 
Previous literature also confirmed the significant influence of 

laser power and scan speed, as two main parameters that affect the 
energy transferred to the powder, on the ultimate quality of the 
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printed part. D. Gu and Y. Shen [8] conducted experiments with 
different combination values of laser power and scan speed on 
stainless steel 316L with the layer thickness of 20 µm. Their study 
shows the parameters generates four different melting status shown 
in Fig. 6. 

In case I, which is called the no-melting zone, the energy 
density is insufficient to melt the powder leaving the powder in its 
initial state. In case II, a medium laser power scans the powder with 
a low scan speed leading to the partially melted powder. This phase 
forms coarsened balls after crystallization, which is the first form of 
the balling phenomenon. A high laser power and high scan speed 
melt the powder with balling phenomenon along the scanned 
pattern in the form of thin cylindrical lines in case III. Complete 
melting occurs in the case of IV as the high laser power forms a 
solid surface by continuous lines of fully melted powder along the 
scan paths. 

 

Fig. 6. The dependency of structure on procedural parameters [8] 

3.4. Design of experiments 
This work employs the Taguchi method to design the experiments. 
Taguchi method is a statistical method, which designs experiments 
using Orthogonal Array (OA) technique to eventually improves the 
quality of a manufacturing process [23]. The OA technique 
converts the parameter design values to S/N ratio and calculates the 
design robustness [15]. To improve the product quality, the quality 
characteristics must deviate as little as possible from the target 
value. OA is a systematic and statistical way of testing interactions 
between control factors. It provides a uniformly distributed set of 
experiments, which covers all the paired combinations of the 
variables [31] instead of the full factorial analysis, which is 
unnecessary because it requires a huge amount of material, 
specimens fabrication, and a great deal of time. 

Table 4. Control factors and levels for DOE 
 

 

Taguchi method requires a three-step procedure, namely, 
system design, parameter design, and tolerance design. First, it 
selects the control factors, namely, process parameters and their 
designated levels, namely, values of the process parameters. Table 4 
shows the parameters, namely, the laser power and scan speed, and 
the assigned values for each parameter selected for this work based 
on the literature [13, 26, 36, 38, 39]. In this research, there will be 
two sets of experiments corresponding to the selected parameters. 
The first set of experiments, shown in Table 5, prints a 10 mm x10 
mm x 5 mm samples considering merely the laser power and scan 
speed, while hatch spacing and beam diameter are kept fix at their 
machine default values. The layer thickness is also set to a constant 
value of 30 µm throughout the work. Taguchi L16 OA is used for 
designing first set of experiments. This set of experiment studies the 
microstructure, porosity, and densification of the printed samples to 
map them onto the laser power and scan speed. This study ultimately 
helps to obtain the optimal range of energy density for maximum 
densification. The second set of experiments will be designed by 
Taguchi method considering the knowledge of an optimum range of 
energy density which result in maximum density values, obtained 
from the first run, to drive the optimum values for the parameters 
with a decisive impact on the ultimate properties of a fabricated part. 
The level values of parameters are derived from the results of first 
set of experiments. In this phase, 64 experiments will be conducted 
(L64 OA). This set of experiments will study the effect of the laser 
power, scan speed, beam diameter, and hatch spacing on the porosity 
and ultimate mechanical properties of printed samples. Fig. 3 shows 
the designed sample for running the second set of experiments. The 
laser power and scan speed will vary inside the optimum range 
derived from set 1in the previous phase. The results and data 
acquired from second set will be used in developing ANN. 

3.5. Mechanical properties 
As Fig. 7 shows, a series of tests measure the mechanical 

properties and characteristics of the printed samples acquired by 
DOE. Various mechanical tests, namely, tensile, hardness, and 
impact investigate the mechanical characteristics of the fabricated 
product including surface finish, residual stresses, porosity, 
microstructure, and densification. The first set of samples studies 
the effect of a limited number of process parameters, namely, laser 
power and scan speed on the microstructure, porosity and density 
values for the samples printed by Ti6Al-4V, using SEM and 
Archimedes principle. The second set studies the aforementioned 

Factor Level values Levels 

Laser Power, W 100, 125, 150, 175 4 

Scan Speed, mm/sec 600, 800, 1000, 1200 4 

 
Table 5. Taguchi method of DOE 

 

No. Laser 
Power 
(W) 

Scan 
Speed 
(mm/s) 

No. Laser 
Power 
(W) 

Scan 
Speed 
(mm/s) 

1 100 600 9 150 600 

2 100 800 10 150 800 
3 100 1000 11 150 1000 
4 100 1200 12 150 1200 
5 125 600 13 175 600 
6 125 800 14 175 800 
7 125 1000 15 175 1000 
8 125 1200 16 175 1200 
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mechanical properties of the printed samples to optimize a wider 
range of process parameters. 

ANOVA employs the data acquired from the previous sets of 
experiments for data analysis, variance analysis, and ultimately 
helps in designing the Neural Network (NN) with the capability of 
intelligent suggestion of the process parameters. The next section 
provides more details about this approach. 

 

Fig. 7. Mechanical properties summary 

3.6. Data analysis 
3.6.1. Signal/noise ratio and analysis of variance 
(ANOVA) 

The signal/noise (S/N) is a method of variability measurement 
of the manufacturing process, which evaluates the process 
parameters at all individual levels ensuring the resulting optimum 
process conditions are robust and stable, meaning that the parameters 
minimize the process variation. The following equations calculate 
the three S/N ratios. Eq. 2 shows the lower-the-better (such as 
surface roughness), Eq. 3 shows the higher-the-better (such as 
mechanical strength), and the Eq. 4 shows the nominal the better 
(such as the dimension) [15, 25]. 

 

 
 

 
Where n is the number of measurements and Yi is the observed 
performance characteristic value and s is the standard deviation of 
the responses for the given factor level combination. 

After the calculation of S/N value, a method called Analysis 
of Variance (ANOVA) statistically evaluates the significance of the 
control factors (i.e. process parameters in our work) and their 
influence on the experimental results (mechanical properties). 
ANOVA studies the variance of properties with the levels of 
parameters by employing the data available after material and 
mechanical testing [31]. The provided graphs and distribution 

charts will describe the variance of properties within the tested 
range of levels; thus, they will obtain the optimal range of the values 
for Ti-6Al-4V in the DMLS process. This will complete the 
correlation between the material and process-properties for the 
DMLS process, which will guide in the development of a ANN 
system. 

4. Future Work: Neural Network method 
There are two main methods for modeling the manufacturing 

process: physics-based and data-driven modeling. The physics-
based modeling technique analyzes the manufacturing process from 
a physical point of view. However, this traditional analytical 
modeling method is not always suitable to model some modern 
complex manufacturing processes, such as AM, due to the number 
of process variables and the non-linear nature of the problem. 

Another modeling method is empirical modeling, which 
employs experimental data and statistical theory [31]. Many 
applications in manufacturing engineering successfully 
implemented the ANN as a good empirical modeling method. This 
work employs the acquired data from the experimental sets to model 
the process by creating a correlation between the process parameters 
and ultimate properties of the fabricated parts. To obtain this 
objective, ANN uses the acquired experimental data and the data 
provided by the framework to develop a predictive function for 
fabrication of parts in accordance with the desired requirements, 
namely, mechanical properties, microstructure, fabrication time, 
dimensional accuracy, and surface roughness. Furthermore, 
developing the ANN system will help to study the effect of other 
dynamic mechanical properties and environmental parameters on 
the DMLS process. 

This work will employ the Feed-forward Artificial Neural 
Network (ANN) to model the process. Fig. 8 shows the schematic 
architecture of this ANN. Furthermore, Fig. 9 shows the ANN 
architecture and the different inputs and outputs, which will be used 
by this project to train the model. 

 

Fig. 8. Schematic diagram of multilayer feed-forward NN Architecture 
[53] 

The trained ANN system in this project may integrate into an online 
monitoring and control (OMC) systems in the DMLS process. A 
plentiful research nowadays has focused on the development of 
OMC systems [40-45] to avoid/diminish the defects and 
abnormalities generated during the fabrication process and use the 
AM process for mass customization [21, 22, 4648]. Monitoring and 
control of the thermal specifications and thermal evolution of any 
inherently thermal AM process is crucial as it affects significantly 
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Fig. 9. The schematic ANN architecture of this research 

the microstructure and ultimate mechanical properties of a 
fabricated part [49-51]. Nowadays, most vendors try to handle the 
frequent thermal abnormalities of the fabricated parts such as 
distortion by designing some temporary support structures to be 
able to facilitate the conduction during the fabrication process as 
well as strengthening the structure. However, scholars have tried to 
reduce the fabrication time and material by designing the topology-
optimized support structures [52], the fabricated parts still need a 
significant work for post-processing. Thus, it seems that controlling 
the process parameters real-time is the ultimate way to overcome 
the current drawbacks in any inherently thermal AM process 
including the DMLS process. The functions trained by ANN in this 
project can considerably improve/complete a control system to 
adjust the process parameters real-time, improve the ultimate 
quality of a fabricated part, and reduce the post-processing 
operations. 
 
5. Conclusion 
The study presents a framework for the optimization of direct metal 
laser sintering process based on improving our knowledge of the 
correlation between the manufacturing process, material properties, 
and the ultimate quality of the fabricated part with the process 
parameters. The proposed framework supports/achieves several 
objectives. It allows us to measure the influence of laser power and 
scan speed on the microstructure and porosity of a fabricated part. 
Second, it helps obtain the optimal range of the energy density for 
a maximum densification. Third, it provides a way to measure the 
influence and sensitiveness of laser power, scan speed, hatch 
spacing and beam diameter within the optimal range of energy 
density, ultimately resulting in the optimization of these 
parameters. Fourth, it leverages the acquired data to achieve a clear 
understanding of the effect of the parameters on the mechanical 
properties, residual stresses, surface roughness, dimensional 
accuracy, and microstructure development. Finally, it helps in the 
development of an intelligent neural network for parameter 
suggestion and build-time estimations. 
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