
EasyChair Preprint
№ 15829

Beyond the Blockchain Address: Zero-Knowledge
Address Abstraction

Sanghyeon Park, Jeonghyuk Lee, Seunghwa Lee, Jung Hyun Chun,
Hyeonmyeong Cho, Mingi Kim, Hyun Ki Cho and Soo-Mook Moon

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 14, 2025

Beyond the Blockchain Address:
Zero-Knowledge Address Abstraction

Sanghyeon Park

Seoul National University

Seoul, Republic of Korea

lukepark@snu.ac.kr

Jeonghyuk Lee

CPLABS Incorporated

Gyeonggi, Republic of Korea

ljh@cplabs.io

Seunghwa Lee

Kookmin University

Seoul, Republic of Korea

ttyhgo@kookmin.ac.kr

Jung Hyun Chun

Hanyang University

Seoul, Republic of Korea

Hyeonmyeong Cho

CPLABS Incorporated

Gyeonggi, Republic of Korea

Mingi Kim

Sungkyunkwan University

Seoul, Republic of Korea

Hyun Ki Cho

CPLABS Incorporated

Gyeonggi, Republic of Korea

Soo-Mook Moon

Seoul National University

Seoul, Republic of Korea

smoon@snu.ac.kr

Abstract
Merging Internet (web2) identities with blockchain (web3) identi-

ties is increasingly important for enhancing user experience and

ensuring regulatory compliance. However, conventional solutions

that map web2 identities to web3 accounts often lead to privacy

concerns and fragmented identifiers across networks. To address

these challenges, we propose a new identity scheme named Address
Abstraction (AA), which redefines blockchain address and signing

systems while preserving key properties: uniqueness, immutability,

and privacy-preservation. This approach eliminates the limitations

of chain-specific identity systems, enabling users to interact with

multiple blockchains using their web2 certificates and unified iden-

tifiers. This chain-agnostic identifier also promotes cross-chain

compatibility. We further present Zero-Knowledge Address Abstrac-
tion (zkAA), an implementation of AA that uses zero-knowledge

proofs to uphold AA’s core properties. Additionally, a proof ag-

gregation technique combines multiple proofs into one, achieving

approximately 5.5 times gas cost savings during verification in real-

world scenarios. As of August 2024, zkAA with proof aggregation

incurs an additional cost of only $0.66 per transaction on Ethereum.

CCS Concepts
• Security and privacy→ Authentication; Privacy-preserving
protocols; • Computer systems organization → Distributed
architectures.

Keywords
Digital Identification, Zero-Knowledge Proofs, Blockchain.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-

tional License.

SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0629-5/25/03

https://doi.org/10.1145/3672608.3707839

ACM Reference Format:
Sanghyeon Park, Jeonghyuk Lee, Seunghwa Lee, Jung Hyun Chun, Hyeon-

myeong Cho, Mingi Kim, Hyun Ki Cho, and Soo-Mook Moon. 2025. Beyond

the Blockchain Address: Zero-Knowledge Address Abstraction . In The
40th ACM/SIGAPP Symposium on Applied Computing (SAC ’25), March 31-
April 4, 2025, Catania, Italy. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3672608.3707839

1 Introduction
The rapid growth of various blockchains has introduced challenges

in wallet setup and key management due to cryptography differ-

ences, particularly in address and signature systems. This results

in inconsistent identifiers across chains, complicating user experi-

ence. Meanwhile, decentralized applications (dApps) often rely on

conventional identification systems, such as social login [14], for

efficiency and secure management. They often include Know-Your-

Customer (KYC) processes, which are important for improving

security against harmful activities and malicious users [8, 19].

Consequently, the need for integrating identity management

across both multiple blockchains and traditional systems has be-

come increasingly apparent. However, previous attempts at creating

the unified identity have encountered numerous challenges.

1.1 Related Work and Challenges
Integrating web3 identities into web2 systems is relatively straight-

forward due to the centralized nature of web2. However, incor-

porating web2 identities into web3 presents challenges, such as

identifier fragmentation and privacy concerns. A common strategy

is creating a bi-directional mapping between different identifiers,

that is, linking web2 authentication tokens to their corresponding

web3 blockchain addresses [22, 36, 42, 44]. However, this approach

merely links rather than unifying identities, requiring careful man-

agement of multiple credentials across web2 and web3. The issue

is further compounded in multi-chain dApps, where managing

multiple chain-specific addresses results in fragmented identifiers.

Zero-Knowledge Proofs (ZKPs) have been utilized in various

studies to enhance privacy in linking. Holonym [20] uses ZKP to

authenticate the possession of web2 credentials, specifically JSON

https://orcid.org/0000-0001-7388-5178
https://orcid.org/0000-0003-3697-3317
https://orcid.org/0000-0001-7336-1817
https://orcid.org/0009-0008-1656-0359
https://orcid.org/0009-0007-7891-5883
https://orcid.org/0009-0000-0509-7188
https://orcid.org/0009-0002-9725-4252
https://orcid.org/0000-0001-6550-5278
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.1145/3672608.3707839
https://doi.org/10.1145/3672608.3707839
https://doi.org/10.1145/3672608.3707839

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Park et al.

Web Tokens [18]. Notebook [24] employs ZKP to verify creden-

tials signed by third-party entities. Nevertheless, these methods

rely on the original blockchain address as the identifier, leading

to potential management limitations. Sui zkLogin [39] and Aptos

Keyless [2] link blockchain addresses with web2 credentials using

ZKP, allowing credential-based control. However, these solutions

depend on blockchain-specific cryptography, such as private key

signing (though used ephemerally) and address schemes, and thus

fail to offer a unified identifier across different webs.

Particle Network [28] and NEAR Protocol [27] offer chain ab-

straction [10] solutions, enabling accounts to interact across mul-

tiple blockchains. However, these systems essentially function as

cross-chain message bridges, relying on each chain’s cryptography

and distinct identifiers, failing to provide a unified identifier. Fur-

thermore, the limited list of chains supported by the service provider

restricts users’ ability to use their accounts or publish transactions

on unsupported ones, thus diminishing user sovereignty.

1.2 Contributions
We propose the Address Abstraction (AA) scheme, along with its

implementation, zero-knowledge Address Abstraction (zkAA), to

address the aforementioned challenges—inconsistent identifiers

across blockchains, fragmentation of user identities, and reliance

on chain-specific cryptography. This presents an innovative method

for managing identities, focusing on integration across multiple

webs — web2s and web3s. The key features are as follows:

• In AA, a single credential suffices for all web2 and web3 networks,

eliminating the need to manage multiple secrets.

• This chain-agnostic approach removes the need to map to chain-

specific addresses, enabling a unified identifier across diverse

networks and thereby enhancing interoperability. zkAA can op-

erate on any blockchain supporting smart contracts capable of

verifying zero-knowledge proofs.

• AA allows easy use of web2 features like recovery mechanisms

and regulatory compliance within blockchains, without compro-

mising the user’s sovereign control over their credentials.

• zkAA employs zero-knowledge proofs to verify ownership of

credential data (certificate) without exposing it.

We conduct an empirical evaluation of zkAA by implement-

ing it on Ethereum [43] and layer-2 solutions like Arbitrum [31],

Optimism [33], and Polygon [34]. Proof generation and on-chain

verification are both fast and cost-effective, as shown in Section 6.

We further explore the proof aggregation technique to improve

cost-efficiency. By aggregating 15 proofs, zkAA incurred only an

additional cost of $0.66 per transaction on Ethereum (and less than

$0.01 on other chains), proving it a cost-effective alternative to

traditional blockchain address and signature systems.

To facilitate further research, we have made the implementation

and experimental code publicly available for replication at https:

//github.com/zkAA-onchain/.

2 Background
2.1 Accounts and Addresses
Given the widespread adoption of Ethereum [43], often used as a

basis for many blockchain forks, we use it as the primary example

Table 1: Key Symbols

Symbol Description
R𝑅 , R𝑃 Relations for the registration and publication processes

𝑐𝑟𝑠𝑅 , 𝑐𝑟𝑠𝑃 Common Reference Strings for registration and publication

A, XA Probabilistic Polynomial-Time adversary, Extractor for A
H Cryptographic hash function

𝑝𝑘, 𝑠𝑘 Public and secret keys of the institute

𝑐𝑒𝑟𝑡 Certificate issued by the institute

𝑟 Random number sampled from the finite field
1
(F𝑝)

𝑖𝑑 Identifier calculated by 𝑖𝑑 ← H(𝑐𝑒𝑟𝑡 | |𝑟)
𝑚𝑠𝑔 Executable message

M Set of all executable messages

𝑚 A unique sequence number for each𝑚𝑠𝑔 per 𝑖𝑑

𝜋𝑅 , 𝜋𝑃 Proofs for registration and publication

to explain our approach. Ethereum categorizes accounts into two

types: Externally Owned Accounts (EOAs) and Contract Accounts

(CAs). EOAs are accounts governed by a private key, allowing

users to sign transactions. CAs are accounts that contain program-

matic logic and storage. Account abstraction [6] aims to blur the

distinction between EOA and CA, enabling more advanced and

customizable account behaviors. Regardless, an address remains

the identifier for any account.

Our Address Abstraction (AA) approach can be perceived as a

specialized application of account abstraction, given its function

in modifying the signature system linked to the account. However,

beyond the scope of mere account abstraction, AA decouples user

identifiers from blockchain addresses, enabling a transition to a con-

sistent chain-agnostic identifier. This approach simplifies identity

management across webs and enhances cross-chain compatibility

by allowing users to interact through a single credential.

2.2 Decentralized Identifiers
Self-Sovereign Identity (SSI) allows individuals and entities to con-

trol their digital identities without relying on intermediaries. SSI’s

potential extends to fostering trust in digital interactions across

diverse domains such as finance, healthcare, and supply chain man-

agement [35]. Decentralized Identifiers (DIDs) form the foundation,

enabling verifiable identity management while minimizing data

exposure [41]. Fundamentally, when credentials are treated as Veri-

fiable Credentials (VCs) and their corresponding proofs as Verifiable

Presentations (VPs), AA is closely aligned with the principles of

DIDs. This demonstrates that zkAA, our implementation of the

proposed AA scheme, can serve as a practical implementation of

DIDs due to its low on-chain costs.

3 Cryptographic Preliminaries
The notations used in this paper are listed below, with key sym-

bols summarized in Table 1. Let R represent a relation. Given that

(𝑖𝑜,𝑤) ∈ R, 𝑖𝑜 refers to the public input/output, and 𝑤 is the

witness. The symbol 𝑐𝑟𝑠 signifies the public parameter known as

the Common Reference String (CRS). We denote a Probabilistic

Polynomial-Time (PPT) adversary by A. The adversary’s output is

written as 𝑦 ← A(𝑥), where 𝑥 is the input and 𝑦 is the resulting

1
In this paper, we use 𝑝 = 21888242871839275222246405745257275088696311157297

823662689037894645226208583, in alignment with the requirements of Ethereum’s

precompiled contracts [43].

https://github.com/zkAA-onchain/
https://github.com/zkAA-onchain/

Beyond the Blockchain Address: Zero-Knowledge Address Abstraction SAC ’25, March 31-April 4, 2025, Catania, Italy

output. An extractor, XA , can compute a corresponding witness

whenever the adversary A generates a valid argument.

Specifically, the symbols R𝑅 and R𝑃 denote the relations for the

registration and publication processes in our scheme, respectively.

R𝑅 is represented as the tuple ((𝑖𝑑, 𝑝𝑘), 𝑐𝑒𝑟𝑡 | |𝑟), where 𝑖𝑑 denotes

the abstract identifier, 𝑝𝑘 is the institute’s public key, 𝑐𝑒𝑟𝑡 is the cer-

tificate issued by the institute, and 𝑟 is a random value. The abstract

identifier 𝑖𝑑 is calculated by hashing the concatenation of 𝑐𝑒𝑟𝑡 and

𝑟 using the cryptographic hash functionH , i.e., 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟).
Similarly, R𝑃 is expressed as the tuple ((𝑖𝑑,𝑚𝑠𝑔,𝑚), 𝑐𝑒𝑟𝑡 | |𝑟), where
𝑚𝑠𝑔 represents the executable message the user intends to per-

form. The message’s sequence number for each 𝑖𝑑 , denoted by𝑚,

functions similarly to a nonce (a monotonically increasing counter)

in traditional blockchain accounts. The symbolM refers to the

complete set of executable messages.

The notation 𝑥
$← 𝑋 represents that 𝑥 is uniformly sampled at

random from the set 𝑋 . The order-related notation 𝑎 ≻ 𝑏 implies

that 𝑎 cannot precede 𝑏. Lastly, we use the symbol ⊥ to indicate an

undefined or disregarded value.

3.1 Digital Signatures
Digital signatures are a fundamental component of digital identity

and, nowadays, are widely used in technologies such as JSON Web

Tokens (JWT) [18]. Their primary function is to verify the origin

of data, thereby authenticating it.

The digital signature protocol sig used in this paper comprises

three operations: sig.KeyGen, sig.Sign, and sig.Verify.

• (𝑝𝑘, 𝑠𝑘) ← sig.KeyGen(·): This operation generates a pair of

keys; a secret key 𝑠𝑘 and a corresponding public key 𝑝𝑘 .

• 𝜎 ← sig.Sign(𝑠𝑘, 𝑞): This operation takes the secret key 𝑠𝑘 and a

message 𝑞 as inputs and outputs a signature 𝜎 .

• 0/1 ← sig.Verify(𝑝𝑘, 𝑞, 𝜎): This operation takes the public key

𝑝𝑘 , a message 𝑞, and a signature 𝜎 as inputs and outputs 1 if the

signature is valid and 0 otherwise.

The digital signature scheme used in this work is unforgeable

under chosen-message attacks:

Definition 3.1 (Unforgeability). The following must be satisfied

for all PPT adversaries A. Q is the set of message queries that A
has already seen valid signatures for through sig.Sign from 𝑠𝑘 .

Pr

[(𝑝𝑘, 𝑠𝑘) ← sig.KeyGen(·); (𝑞, 𝜎) ← A(𝑝𝑘) :
sig.Verify(𝑝𝑘, 𝑞, 𝜎) = 1 ∧ 𝑞 ∉ Q

]
≈ 0

(Unforgeability)

Unforgeability denotes that it should be computationally infea-

sible for a probabilistic polynomial-time adversary to generate a

valid signature for any message without access to the secret key.

3.2 Zero-Knowledge Proofs
Zero-Knowledge Proofs (ZKPs) provide a method for verifying

the authenticity of information without revealing underlying data.

Since their inception, significant strides have been made in the

field, notably the development of Zero-Knowledge Succinct Non-

Interactive Arguments of Knowledge (zk-SNARKs) [16]. zk-SNARKs

offer succinct verification, making them well-suited for blockchain.

The ZKP typically involves three operations: zkp.Setup, zkp.Prove,
and zkp.Verify.
• 𝑐𝑟𝑠 ← zkp.Setup(R): This operation takes a relation R as input

and produces a common reference string 𝑐𝑟𝑠 , which serves as a

public parameter for the proof generation and verification.

• 𝜋 ← zkp.Prove(𝑐𝑟𝑠, 𝑖𝑜 ;𝑤): This operation generates a proof 𝜋

given the 𝑐𝑟𝑠 , input/output 𝑖𝑜 , and witness𝑤 .

• 0/1← zkp.Verify(𝑐𝑟𝑠, 𝑖𝑜, 𝜋): The function outputs 1 for success

and 0 for failure of the verification.

Our scheme employs the zk-SNARKs protocol that satisfies the

properties outlined in Groth16 [16]:

Definition 3.2 (Completeness). For a relation R, every (𝑖𝑜,𝑤) ∈ R
satisfies the following:

Pr

[
𝑐𝑟𝑠 ← zkp.Setup(R);𝜋 ← zkp.Prove(𝑐𝑟𝑠, 𝑖𝑜 ;𝑤) :

zkp.Verify(𝑐𝑟𝑠, 𝑖𝑜, 𝜋) = 1

]
= 1

(Perfect Completeness)

This property implies that if a statement is true, a proof using

witness𝑤 will always be accepted by an honest verifier.

Definition 3.3 (Knowledge Soundness). For all PPT adversariesA,

there exists a PPT extractor XA that satisfies the following:

Pr

[
𝑐𝑟𝑠 ← zkp.Setup(R); ((𝑖𝑜, 𝜋);𝑤) ← (A||XA) (𝑐𝑟𝑠) :
zkp.Verify(𝑐𝑟𝑠, 𝑖𝑜, 𝜋) = 1 ∧ (𝑖𝑜,𝑤) ∉ R

]
≈ 0

(Computational Knowledge Soundness)

This property is defined by the requirement that it should be

computationally infeasible for a prover to convince a verifier of the

truth of a false statement without the knowledge of the witness.

Definition 3.4 (Zero-Knowledge). The following must be satisfied

for all PPT adversaries A and (𝑖𝑜,𝑤) ∈ R.

Pr

[
𝑐𝑟𝑠 ← zkp.Setup(R);𝜋 ← zkp.Prove(𝑐𝑟𝑠, 𝑖𝑜 ;𝑤) :
A(𝑐𝑟𝑠, 𝜋) = 1

]
=

Pr

[(𝑐𝑟𝑠, 𝜏) ← zkp.SimSetup(R);𝜋 ← zkp.SimProve(𝑐𝑟𝑠, 𝜏, 𝑖𝑜) :
A(𝑐𝑟𝑠, 𝜋) = 1

]
(Perfect Zero-Knowledge)

This denotes that the distribution of a regular proof, generated

with knowledge of the witness, is indistinguishable from that of a

proof simulated by zkp.SimProve without the witness. The simula-

tor utilizes the trapdoor 𝜏 , incorporated during the 𝑐𝑟𝑠 generation

via zkp.SimSetup. This indicates that the proof does not leak any

information aside from the truth of the statement.

3.3 Proof Aggregation
Proof aggregation is an optimization technique that combines mul-

tiple zero-knowledge proofs into a single proof. This reduces the

verification overhead, as the verifier only needs to check a single

proof rather than verifying each proof individually.

Our implementation utilizes recursive aggregation [11, 21], using

recursive circuits that can verify both new statements and previ-

ously aggregated proofs. Specifically, we leverage PLONK [12], a

zk-SNARK system with a universal trusted setup, which makes it

well-suited for efficient proof aggregation.

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Park et al.

3.4 Security Assumptions
The reliable operation of our proposed system is based on the

following security assumptions:

• The hash functionH is modeled as a RandomOracle [4], meaning

it produces outputs that are indistinguishable from randomvalues

for each unique input.

• The blockchain and deployed smart contracts are secure against

attacks like denial-of-service [25]. Moreover, the possibility of

chain reorganization is considered negligible. This ensures the

reliable transaction execution and data access.

• The public key 𝑝𝑘 of the certificate-issuing institute is publicly

available by any entity, as it is recorded in a smart contract.

• The transmission of web2 secrets (the certificate 𝑐𝑒𝑟𝑡) between

the institute and the client is secure and confidential.

4 Address Abstraction
The core concept of Address Abstraction (AA) scheme is the use of a

certificate issued by a web2 institute, denoted as 𝑐𝑒𝑟𝑡 , to generate a

unified and unique identifier, 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟). The secret 𝑐𝑒𝑟𝑡 and
the corresponding abstract identifier 𝑖𝑑 play key roles in generating

abstract transactions, 𝑚𝑠𝑔s, similar to how a private key and its

corresponding blockchain address are used for transaction signing.

Using a random number 𝑟 in generating 𝑖𝑑 effectively prevents

the risk of rainbow table attacks [30]. Furthermore, by integrating

this user-selected 𝑟 , the secret of the identity (𝑐𝑒𝑟𝑡 | |𝑟) is kept confi-
dential, even from the issuer of the 𝑐𝑒𝑟𝑡 , thereby ensuring that it

remains exclusively known to the user.

The AA scheme consists of two key processes: registration and

publication. During the registration phase, the validity of the 𝑖𝑑 is

verified and recorded on a smart contract. After this initial step,

subsequent transactions (publications of𝑚𝑠𝑔) can be processed effi-

ciently by referencing the stored validity status, instead of repeated

𝑖𝑑 validity verifications for each𝑚𝑠𝑔. This distinction also enables

diverse management of registration statuses, such as expirations,

adherence to regulations like the Office of Foreign Assets Control

(OFAC) [32], and compliance with standards like the General Data

Protection Regulation (GDPR) [40], by allowing the contract to

dynamically update validity statuses to reflect changing conditions.

4.1 Definitions
Definition 4.1 (Address Abstraction). To govern the registration

of an abstract identifier 𝑖𝑑 and the publication of abstract transac-

tion𝑚𝑠𝑔s, the system requires six functions (Setup, Certificate,

RegisterProve, RegisterVerify, PublishProve, PublishVerify).

• (𝑐𝑟𝑠𝑅, 𝑐𝑟𝑠𝑃) ← Setup(R𝑅,R𝑃): This function generates the pub-

lic parameters 𝑐𝑟𝑠𝑅 and 𝑐𝑟𝑠𝑃 for registration and publication.

• 𝑐𝑒𝑟𝑡 ← Certificate(·): This function enables users to obtain

a certificate 𝑐𝑒𝑟𝑡 from an institute, which is signed using the

issuer’s secret key 𝑠𝑘 .

• 𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟): This function gener-

ates a proof 𝜋𝑅 to verify that the abstract identifier 𝑖𝑑 is derived

from the certificate 𝑐𝑒𝑟𝑡 and user-selected randomness 𝑟 (i.e.,

𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟)), and that the 𝑐𝑒𝑟𝑡 was issued by the institute

associated with the public key 𝑝𝑘 .

Table 2: Comparative Analysis of Properties

Blockchain Abstract
Address/Transaction 𝑖𝑑/𝑚𝑠𝑔

Unique-

ness

Injectiveness The same address has the

same private key.

The same 𝑖𝑑 has the

same 𝑐𝑒𝑟𝑡 and 𝑟 .

Unforge-

ability

Transaction signing

cannot be achieved

without knowing the

private key.

𝑖𝑑 registration and𝑚𝑠𝑔

publication cannot occur

without knowing the

𝑐𝑒𝑟𝑡 | |𝑟 .
Correctness A user with a valid pri-

vate key always gener-

ates legit signatures.

A user with valid 𝑐𝑒𝑟𝑡

and 𝑟 always generates

legitimate proofs 𝜋s.

Immut-

ability

Tamper

Resistance

A signature is

non-reusable and the

signed transaction

cannot be modified.

Proof 𝜋 cannot be

reused and the

corresponding𝑚𝑠𝑔

cannot be modified.

Chronicle Each transaction has its

own order, controlled by

the account nonce.

Each 𝑚𝑠𝑔 has its own

order, by monotone-

increasing value𝑚.

Privacy-Preservation The private key is not

leaked before/after pub-

lishing transactions.

𝑐𝑒𝑟𝑡 and 𝑟 are not leaked

before/after the registra-

tion and publications.

• 0/1← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘, 𝜋𝑅): This function enables a
user to register a unique 𝑖𝑑 following successful verification. The

inputs include the public parameters 𝑐𝑟𝑠𝑅 , the abstract identity

𝑖𝑑 , the public key 𝑝𝑘 , and a proof 𝜋𝑅 . The function returns a

binary outcome indicating the validation status of the identifier

𝑖𝑑 , where 0 represents invalidity and 1 indicates validity.

• 𝜋𝑃 ← PublishProve(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚; 𝑐𝑒𝑟𝑡 | |𝑟): This function gen-
erates a proof 𝜋𝑃 that attests the user possesses a valid 𝑐𝑒𝑟𝑡 and 𝑟 ,

enabling them to compute 𝑖𝑑 . It also considers the abstract trans-

action𝑚𝑠𝑔 and the transaction sequence order𝑚 as constraints.

• (0/1, 𝑟𝑒𝑠) ← PublishVerify(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚, 𝜋𝑃): This function
executes the requested 𝑚-th abstract transaction 𝑚𝑠𝑔 given a

valid proof 𝜋𝑃 for an identifier 𝑖𝑑 , based on the 𝑐𝑟𝑠𝑃 . The 𝑖𝑑

should correspond with the previously registered identifier via

the RegisterVerify function. Additionally, it requires a mono-

tonically increasing counter𝑚 to ensure the chronological pro-

cessing of𝑚𝑠𝑔. The result of the execution is denoted as 𝑟𝑒𝑠 . If

successful, it returns (1, 𝑟𝑒𝑠); otherwise, it returns (0, ∅).

4.2 Properties
Address Abstraction must satisfy three properties to function as

an alternative to the chain’s inherent identity system: Unique-
ness (4.2), Immutability (4.3), and Privacy-Preservation (4.4).

Table 2 presents a comparison between our scheme and traditional

blockchain address/transaction schemes, especially Ethereum [43].

Definition 4.2 (Uniqueness). System (Setup, Certificate, Regis-

terProve, RegisterVerify, PublishProve, PublishVerify) has

unique identifier 𝑖𝑑𝑘 for 𝑢𝑠𝑒𝑟𝑘 , if 𝑖𝑑𝑘 meets the Injectiveness, Un-

forgeability, and Correctness.

for all ((𝑐𝑒𝑟𝑡 | |𝑟)𝑥 , (𝑐𝑒𝑟𝑡 | |𝑟)𝑦),
(𝑐𝑒𝑟𝑡 | |𝑟)𝑥 ≠ (𝑐𝑒𝑟𝑡 | |𝑟)𝑦 =⇒ 𝑖𝑑𝑥 ≠ 𝑖𝑑𝑦 (Injectiveness)

Under the injectiveness condition, two distinct certificate-and-

randoms will not map to the same identifier, ensuring that each

𝑐𝑒𝑟𝑡 | |𝑟 and its derived identifier 𝑖𝑑 are unique within the system.

for all PPT adversaries A there exists a PPT extractor XA ,

Beyond the Blockchain Address: Zero-Knowledge Address Abstraction SAC ’25, March 31-April 4, 2025, Catania, Italy

Pr


(𝑐𝑟𝑠𝑅,⊥) ← Setup(R𝑅,R𝑃);
((𝑖𝑑𝑅, 𝑝𝑘, 𝜋𝑅); (𝑐𝑒𝑟𝑡 | |𝑟)𝑅) ← (A||XA) (𝑐𝑟𝑠𝑅);
𝑠𝑅 ← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑𝑅, 𝑝𝑘, 𝜋𝑅) :
𝑠𝑅 = 1 ∧ ((𝑖𝑑𝑅, 𝑝𝑘), (𝑐𝑒𝑟𝑡 | |𝑟)𝑅) ∉ R𝑅


≈ 0, and

Pr



(𝑐𝑟𝑠𝑅, 𝑐𝑟𝑠𝑃) ← Setup(R𝑅,R𝑃);

𝑐𝑒𝑟𝑡 ← Certificate(·); 𝑟 $← F𝑝 ; 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟);
𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟);
𝑠𝑅 ← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘, 𝜋𝑅);
((𝑖𝑑𝑃 ,𝑚𝑠𝑔,𝑚, 𝜋𝑃); (𝑐𝑒𝑟𝑡 | |𝑟)𝑃) ← (A||XA) (𝑐𝑟𝑠𝑃);
(𝑠𝑃 ,⊥) ← PublishVerify(𝑐𝑟𝑠𝑃 , 𝑖𝑑𝑃 ,𝑚𝑠𝑔,𝑚, 𝜋𝑃) :
𝑠𝑅 = 1 ∧ 𝑠𝑃 = 1 ∧ ((𝑖𝑑𝑃 ,𝑚𝑠𝑔,𝑚), (𝑐𝑒𝑟𝑡 | |𝑟)𝑃) ∉ R𝑃


≈ 0

(Unforgeability)

The unforgeability property confirms the legitimacy of the iden-

tifier 𝑖𝑑 , the authenticity of the𝑚-th message𝑚𝑠𝑔, and asserts the

knowledge of the related secret 𝑐𝑒𝑟𝑡 | |𝑟 . This ensures that valid reg-

istrations and publications can only be made by those possessing

the required secrets.

Pr



(𝑐𝑟𝑠𝑅, 𝑐𝑟𝑠𝑃) ← Setup(R𝑅,R𝑃);

𝑐𝑒𝑟𝑡 ← Certificate(·); 𝑟 $← F𝑝 ; 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟);
𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟);
𝑠𝑅 ← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘, 𝜋𝑅);
𝜋𝑃 ← PublishProve(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚; 𝑐𝑒𝑟𝑡 | |𝑟);
(𝑠𝑃 ,⊥) ← PublishVerify(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚, 𝜋𝑃) :
𝑠𝑅 = 1 ∧ 𝑠𝑃 = 1 ∧ ((𝑖𝑑, 𝑝𝑘), 𝑐𝑒𝑟𝑡 | |𝑟) ∈ R𝑅
∧ ((𝑖𝑑,𝑚𝑠𝑔,𝑚), 𝑐𝑒𝑟𝑡 | |𝑟) ∈ R𝑃



= 1

(Correctness)

A user with a valid secret 𝑐𝑒𝑟𝑡 | |𝑟 can always generate a proof 𝜋𝑅
for registration and 𝜋𝑃 for all executable messages (𝑚𝑠𝑔 ∈ M) and

a monotonically increasing counter𝑚, to validate to the verifier.

Definition 4.3 (Immutability). Requests on the system (Setup,

Certificate, RegisterProve, RegisterVerify, PublishProve,

PublishVerify) is immutable, if the system ensures the Tamper

Resistance and Chronicle.

for all PPT adversaries A,

Pr



(𝑐𝑟𝑠𝑅,⊥) ← Setup(R𝑅,R𝑃);

(𝑟, 𝑟A) $← F𝑝 s.t. 𝑟A ≠ 𝑟 ;

𝑐𝑒𝑟𝑡 ← Certificate(·); 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟);

𝑐𝑒𝑟𝑡A ← Certificate(·); 𝑖𝑑A ←H(𝑐𝑒𝑟𝑡A | |𝑟A);
𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟);

𝑠𝑅 ← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑A , 𝑝𝑘, 𝜋𝑅) :

𝑠𝑅 = 1 ∧ ((𝑖𝑑A , 𝑝𝑘), 𝑐𝑒𝑟𝑡 | |𝑟) ∉ R𝑅


≈ 0, and

Pr



(𝑐𝑟𝑠𝑅, 𝑐𝑟𝑠𝑃) ← Setup(R𝑅,R𝑃);

𝑐𝑒𝑟𝑡 ← Certificate(·); 𝑟 $← F𝑝 ; 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟);
𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟);
𝑠𝑅 ← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘, 𝜋𝑅);

(𝑚𝑠𝑔,𝑚𝑠𝑔A) $←M s.t.𝑚𝑠𝑔A ≠𝑚𝑠𝑔;

𝜋𝑃 ← PublishProve(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚; 𝑐𝑒𝑟𝑡 | |𝑟);

(𝑠𝑃 ,⊥) ← PublishVerify(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔A ,𝑚, 𝜋𝑃) :
𝑠𝑅 ∧ 𝑠𝑃 = 1 ∧ ((𝑖𝑑, 𝑝𝑘), 𝑐𝑒𝑟𝑡 | |𝑟) ∈ R𝑅
∧ ((𝑖𝑑,𝑚𝑠𝑔A ,𝑚), 𝑐𝑒𝑟𝑡 | |𝑟) ∉ R𝑃



≈ 0

(Tamper Resistance)

This indicates the robustness of the cryptographic system against

unauthorized modifications, ensuring that the probability of an ad-

versary tampering with the registration of an 𝑖𝑑 or the publication

of a𝑚𝑠𝑔, while using the original proofs, is negligible.

for all𝑚 ≥ 0,𝑚𝑠𝑔𝑚+1 ≻𝑚𝑠𝑔𝑚 (Chronicle)

Under the chronicle property, each message succeeds its prede-

cessor in a strictly increasing order.

Definition 4.4 (Privacy-Preservation). System (Setup, Certifi-

cate, RegisterProve, RegisterVerify, PublishProve, PublishVer-

ify) preserves privacy if the secret 𝑐𝑒𝑟𝑡 | |𝑟 associated with the identi-
fier 𝑖𝑑 remains undisclosed before and after any function execution.

for all PPT adversaries A,

Pr


(𝑐𝑟𝑠𝑅,⊥) ← Setup(R𝑅,R𝑃);

𝑐𝑒𝑟𝑡 ← Certificate(·); 𝑟 $← F𝑝 ; 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟);
𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟) :
A(𝑐𝑟𝑠𝑅, 𝜋𝑅) = 1


=

Pr


(𝑐𝑟𝑠𝑅,⊥, 𝜏𝑅,⊥) ← SimSetup(R𝑅,R𝑃);

𝑐𝑒𝑟𝑡 ← Certificate(·); 𝑟 $← F𝑝 ; 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟);
𝜋𝑅 ← SimRegisterProve(𝑐𝑟𝑠𝑅, 𝜏𝑅, 𝑖𝑑, 𝑝𝑘) :
A(𝑐𝑟𝑠𝑅, 𝜋𝑅) = 1


, and

Pr



(𝑐𝑟𝑠𝑅, 𝑐𝑟𝑠𝑃) ← Setup(R𝑅,R𝑃);

𝑐𝑒𝑟𝑡 ← Certificate(·); 𝑟 $← F𝑝 ; 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟);
𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟) :
𝑠𝑅 ← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘, 𝜋𝑅);
𝜋𝑃 ← PublishProve(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚; 𝑐𝑒𝑟𝑡 | |𝑟);
𝑠𝑅 = 1 ∧ A(𝑐𝑟𝑠𝑃 , 𝜋𝑃) = 1


=

Pr



(𝑐𝑟𝑠𝑅, 𝑐𝑟𝑠𝑃 , 𝜏𝑅, 𝜏𝑃) ← SimSetup(R𝑅,R𝑃);

𝑐𝑒𝑟𝑡 ← Certificate(·); 𝑟 $← F𝑝 ; 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟);
𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟) :
𝑠𝑅 ← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘, 𝜋𝑅);
𝜋𝑃 ← SimPublishProve(𝑐𝑟𝑠𝑃 , 𝜏𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚);
𝑠𝑅 = 1 ∧ A(𝑐𝑟𝑠𝑃 , 𝜋𝑃) = 1


(Privacy-Preservation)

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Park et al.

Figure 1: The process flow of zkAA. 0○ Public parameters are
generated. 1○The user obtains a certificate 𝑐𝑒𝑟𝑡 from the insti-
tute. 2○ The user calculates the identifier as 𝑖𝑑 ←H(𝑐𝑒𝑟𝑡 | |𝑟),
and proceeds to register it on the smart contract. 3○ The user
utilizes the registered 𝑖𝑑 to publish abstract transaction𝑚𝑠𝑔s.

This property relates to the system’s ability to protect the user’s

personal information 𝑐𝑒𝑟𝑡 | |𝑟 from exposure, ensuring confidential-

ity. SimRegisterProve and SimPublishProve use the trapdoors

𝜏𝑅 and 𝜏𝑃 from SimSetup to simulate proofs, which are generated

without a witness. Under the privacy-preservation property, the

distributions of simulated proofs 𝜋𝑅 and 𝜋𝑃 are indistinguishable

from real ones, regardless of whether the witness 𝑐𝑒𝑟𝑡 | |𝑟 is known.

5 Zero-Knowledge Address Abstraction
We present a concrete implementation of Address Abstraction (AA),

named zero-knowledge Address Abstraction (zkAA), which utilizes

zk-SNARKs to offer a unified identity across webs while preserving

user confidentiality during identity registration and publication.

5.1 Design of zkAA
Figure 1 presents the zkAA (Setup, Certificate, RegisterProve,

RegisterVerify, PublishProve, PublishVerify) overview. The

details of each function are specified in Algorithms 1, 2, 3, and 4.

• (𝑐𝑟𝑠𝑅, 𝑐𝑟𝑠𝑃) ← Setup(R𝑅,R𝑃): This step generate the public

parameters 𝑐𝑟𝑠𝑅 ← zkp.Setup(R𝑅) and 𝑐𝑟𝑠𝑃 ← zkp.Setup(R𝑃).
• 𝑐𝑒𝑟𝑡 ← Certificate(·): A user obtains a certificate 𝑐𝑒𝑟𝑡 from

the institution. The signed certificate 𝑐𝑒𝑟𝑡 is generated by the

issuer using sig.Sign to sign the claims (i.e., attributes). The user
then computes the identifier 𝑖𝑑 from 𝑐𝑒𝑟𝑡 via the hash function

H , combined with a user-defined random number 𝑟 .

• 𝜋𝑅 ← RegisterProve(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘 ; 𝑐𝑒𝑟𝑡 | |𝑟): The proof 𝜋𝑅 is gen-

erated as 𝜋𝑅 ← zkp.Prove(𝑐𝑟𝑠𝑅, (𝑖𝑑, 𝑝𝑘); 𝑐𝑒𝑟𝑡 | |𝑟), which proves:

(i) 𝑖𝑑 is derived from 𝑖𝑑 = H(𝑐𝑒𝑟𝑡 | |𝑟); and (ii) 𝑐𝑒𝑟𝑡 is signed with

the secret key 𝑠𝑘 corresponding to the institution’s public key

𝑝𝑘 , and so verifiable via sig.Verify.
• 0/1 ← RegisterVerify(𝑐𝑟𝑠𝑅, 𝑖𝑑, 𝑝𝑘, 𝜋𝑅): The user submits 𝑖𝑑

and 𝜋𝑅 , then the contract invokes zkp.Verify(𝑐𝑟𝑠𝑅, (𝑖𝑑, 𝑝𝑘), 𝜋𝑅)
to validate them. If 𝑖𝑑 is valid and not yet registered, it is then

marked as registered in the contract by updating the 𝑛𝑜𝑛𝑐𝑒 map-

ping to 1 for the given 𝑖𝑑 . Since the default value of 𝑛𝑜𝑛𝑐𝑒 is 0,

any value greater than 0 indicates the 𝑖𝑑 is already registered.

• 𝜋𝑃 ← PublishProve(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚; 𝑐𝑒𝑟𝑡 | |𝑟): The user gener-
ates a proof 𝜋𝑃 ← zkp.Prove(𝑐𝑟𝑠𝑃 , (𝑖𝑑,H(𝑚𝑠𝑔),𝑚); 𝑐𝑒𝑟𝑡 | |𝑟), at-
testing that 𝑖𝑑 is derived from 𝑐𝑒𝑟𝑡 | |𝑟 without revealing 𝑐𝑒𝑟𝑡 or 𝑟 .
The proof is tied to the message𝑚𝑠𝑔 and the sequence number𝑚,

Algorithm 1 0○ Setup

1: function Setup(R𝑅 , R𝑃)
2: 𝑐𝑟𝑠𝑅 ← zkp.Setup(R𝑅); 𝑐𝑟𝑠𝑃 ← zkp.Setup(R𝑃)
3: return (𝑐𝑟𝑠𝑅, 𝑐𝑟𝑠𝑃)

Algorithm 2 1○ Certificate

institute has the pair of (𝑝𝑘, 𝑠𝑘) ← sig.KeyGen(·)
1: function Certificate(·) ⊲ [Institute]
2: 𝑐𝑒𝑟𝑡 ← sig.Sign(𝑠𝑘, claim𝑠); return 𝑐𝑒𝑟𝑡

Algorithm 3 2○ Register

𝑖𝑑 ←H(𝑐𝑒𝑟𝑡)
1: function RegisterProve(𝑐𝑟𝑠𝑅 , 𝑖𝑑 , 𝑝𝑘 ; 𝑐𝑒𝑟𝑡) ⊲ [Client]
2: 𝜋𝑅 ← zkp.Prove(𝑐𝑟𝑠𝑅, (𝑖𝑑, 𝑝𝑘); 𝑐𝑒𝑟𝑡); return 𝜋𝑅

3: function RegisterVerify(𝑐𝑟𝑠𝑅 , 𝑖𝑑 , 𝑝𝑘 , 𝜋𝑅) ⊲ [Contract]
4: assert(𝑛𝑜𝑛𝑐𝑒 [𝑖𝑑] == 0)

5: assert(zkp.Verify(𝑐𝑟𝑠𝑅, (𝑖𝑑, 𝑝𝑘), 𝜋𝑅) == 1)

6: 𝑛𝑜𝑛𝑐𝑒 [𝑖𝑑] ← 1; return 1

Algorithm 4 3○ Publish

𝑖𝑑 ←H(𝑐𝑒𝑟𝑡);𝑚𝑠𝑔← (target, funcsig, calldata, value)
1: function PublishProve(𝑐𝑟𝑠𝑃 , 𝑖𝑑 ,𝑚𝑠𝑔,𝑚; 𝑐𝑒𝑟𝑡) ⊲ [Client]
2: 𝜋𝑃 ← zkp.Prove(𝑐𝑟𝑠𝑃 , (𝑖𝑑,H(𝑚𝑠𝑔),𝑚); 𝑐𝑒𝑟𝑡); return 𝜋𝑃

3: function PublishVerify(𝑐𝑟𝑠𝑃 , 𝑖𝑑 ,𝑚𝑠𝑔,𝑚, 𝜋𝑃) ⊲ [Contract]
4: assert(𝑛𝑜𝑛𝑐𝑒 [𝑖𝑑] ≥ 1 and𝑚 == 𝑛𝑜𝑛𝑐𝑒 [𝑖𝑑] + 1)
5: assert(zkp.Verify(𝑐𝑟𝑠𝑃 , (𝑖𝑑,H(𝑚𝑠𝑔),𝑚), 𝜋𝑃) == 1)

6: 𝑛𝑜𝑛𝑐𝑒 [𝑖𝑑] ←𝑚; 𝑟𝑒𝑠 ← execute𝑚𝑠𝑔; return (1, 𝑟𝑒𝑠)

preventing its reuse. In the context of a transaction, the message

contains the recipient address target, the function identifier

funcsig, the encoded inputs calldata, and the cryptocurrency

amount value. To improve efficiency,H(𝑚𝑠𝑔) is used instead of

the raw𝑚𝑠𝑔 to handle cases with large message sizes.

• (0/1, 𝑟𝑒𝑠) ← PublishVerify(𝑐𝑟𝑠𝑃 , 𝑖𝑑,𝑚𝑠𝑔,𝑚, 𝜋𝑃): The contract
verifies 𝜋𝑃 through zkp.Verify(𝑐𝑟𝑠𝑃 , (𝑖𝑑,H(𝑚𝑠𝑔),𝑚), 𝜋𝑃) to vali-

date the sender’s ownership for the message𝑚𝑠𝑔. The identifier

𝑖𝑑 must have been registered previously. The sequence number

𝑚 serves as a counter, similar to an account nonce. If 𝜋𝑃 ,𝑚𝑠𝑔,

and𝑚 are valid, the message is executed, producing a result 𝑟𝑒𝑠 .

5.2 Properties of zkAA
The zkAA satisfies AA’s three core properties: Uniqueness, Im-
mutability, and Privacy-Preservation. A detailed proof is pro-

vided in Section 5.3.

• Uniqueness. zkAA generates a unique identifier, 𝑖𝑑 , for user

identity. Given the random oracle assumption onH , it ensures

injectiveness. zk-SNARK guarantees that the registration and

publication operations require knowledge of 𝑐𝑒𝑟𝑡 | |𝑟 , ensuring
unforgeability. Additionally, the protocol ensures the consistent

generation of valid proofs due to use of zk-SNARKs and contracts,

ensuring correctness.

Beyond the Blockchain Address: Zero-Knowledge Address Abstraction SAC ’25, March 31-April 4, 2025, Catania, Italy

• Immutability. The use of𝑚𝑠𝑔 within proof 𝜋𝑃 generation en-

sures tamper resistance. The sequential number𝑚 acts as a nonce,

preserving the chronology of abstract transactions.

• Privacy-Preservation. zkAA leverages zk-SNARKs to protect

user privacy, revealing only hashed values and keeping the origi-

nal cert| |𝑟 confidential.

5.3 Security Proof
The security model adheres to the simulation-based definition [13].

In this section, we define the ideal-world execution IdealT,S and

the real-world execution Real
zkAA,A for Address Abstraction (AA).

Algorithms 5, 6, 7, and 8 corresponding to Setup, Certificate,

Register, and Publish in the ideal-world execution, along with

their descriptions, are provided in Appendix A.

Definition 5.1 (IdealT,S). IdealT,S denotes the ideal implemen-

tation of the AA scheme with the trusted party T and simulator

S, wherein all storage and operations are performed by T . The
simulator S in ideal-world execution is assumed to be incapable

of forging the function outputs generated by T and distinguishing

any data from random values. In the ideal-world execution, par-

ticipants interact only with T through the interface outlined in

Algorithms 5, 6, 7, and 8.

Definition 5.2 (RealzkAA,A). RealzkAA,A designates our real-

world implementation of AA, zero-knowledge Address Abstraction

(zkAA), with the PPT adversaries A. The actions of honest partici-

pants align precisely with Algorithms 1, 2, 3, and 4.

We assert that the probability of an adversary compromising the

real-world execution is, at most, equivalent to the probability of an

adversary compromising the ideal-world execution.

Definition 5.3. The real-world execution Real
zkAA,A is said to

securely emulate the ideal-world execution IdealT,S if the follow-

ing is satisfied:

for all PPT adversaries A, there exists a simulator S s.t.

for any PPT distinguisher D,

Pr

[D(IdealT,S (·)) = 1

]
≈ Pr

[D(Real
zkAA,A (·)) = 1

]
Theorem 5.4. Under the assumptions that zk-SNARKs are zero-

knowledge and extractable, digital signatures are unforgeable under
chosen-message attacks, hash functions behave like random oracles,
and smart contracts function as trustworthy computation engines
and data storage; zkAA fulfills the security requirement stated in
Definition 5.3.

Proof. We use the hybrid game approach. We define a sequence

of games G0 to G5, modifying the execution step by step while

arguing that differences in the adversary’s view are negligible under

our cryptographic assumptions.

G0: The real-world execution experiment.

G1: Replace proofs from honest participants with simulated ones

using zkp.SimProve. Since they are computationally indis-

tinguishable from real proofs, then G0 ≈ G1.
G2: Run the knowledge extractor on the proofs, and abort if

extraction fails. Given the extractor’s negligible failure rate,

the adversary cannot distinguish this change, so G1 ≈ G2.

Figure 2: The zkAA proof aggregation process. 3○Clients gen-
erate proofs, then the aggregator simulates them off-chain.
The aggregator collects and aggregates the proofs that suc-
cessfully passed the off-chain execution. 4○ The aggregated
proof and the batch of valid𝑚𝑠𝑔s are then submitted to the
smart contract for publication.

G3: Model the hash function as a randomoracle, assigning unique

random values to all hash outputs. Under this model, the

adversary cannot differentiate between the hash outputs and

random values, implying G2 ≈ G3.
G4: Substitute the signatures with unique random values. Since

these signatures are kept secret and the adversary cannot

forge valid ones, they cannot distinguish between the real

signatures and the random values. It follows that G3 ≈ G4.
G5: Emulate all data storage and computations with those pro-

vided by the trusted party T , modeling the ideal-world exe-

cution. Since we assume the blockchain is robust, and thus

participants cannot observe differences, we have G4 ≈ G5.

Therefore, we conclude that G0 ≈ G5, implying that our real-

world execution, zkAA, securely emulates the ideal implementation

of the AA scheme. □

We show that the adversary in real-world execution can forge

inputs/outputs and extract secrets no more effectively than in the

ideal-world execution, and all distributions are computationally

indistinguishable. This signifies that it is infeasible for the A to

forge or extract in real-world execution if such an attack in the

ideal-world execution is deemed impossible.

5.4 Optimization Using Proof Aggregation
To enhance verification efficiency, we employ proof aggregation.

Figure 2 illustrates the aggregation process, which begins after the

completion of steps 0○ to 2○ in Figure 1. Here, multiple clients’

proofs (𝜋𝑃 s) are combined into a single aggregated proof (𝜋𝑎𝑔𝑔),

which is verified in a single on-chain operation.

The aggregation is managed by an Aggregator, a centralized

yet trustless entity. The cryptographic guarantees of zk-SNARKs

ensure that the aggregator cannot alter the proofs.

• 𝜋𝑃 ← PublishProve(𝑐𝑟𝑠, 𝑖𝑑,𝑚𝑠𝑔,𝑚; 𝑐𝑒𝑟𝑡 | |𝑟): Clients generate
proofs and transmit them, along with 𝑖𝑑 , 𝑚𝑠𝑔, and 𝑚, to the

aggregator, rather than directly interacting with the contract.

• (0/1,⊥) ← PublishVerify(𝑐𝑟𝑠, 𝑖𝑑,𝑚𝑠𝑔,𝑚, 𝜋𝑃): The aggregator
simulates the PublishVerify process off-chain to validate each

proof 𝜋𝑃 along with its associated message𝑚𝑠𝑔 and the sequence

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Park et al.

Table 3: Experimental results on zkAA

min [s] max [s] avg (sd) [s]

witness 0.096 0.105 0.099 (0.002)

Registration

proof 0.717 0.804 0.762 (0.016)

witness 0.045 0.053 0.047 (0.001)

Publication

proof 0.437 0.512 0.473 (0.015)

(a) Proof generation time

gas Ethereum Arbitrum Optimism Polygon

Registration 209823 $3.71 $0.04 $0.06 $0.01

Publication 203066 $3.60 $0.04 $0.05 $0.01

(b) Proof verification costs

𝑚. Since this occurs off-chain, it avoids on-chain state transitions

and transaction costs. Valid proofs are batched for aggregation,

while invalid ones are discarded, preventing potential attacks

that could exploit the time-consuming aggregation process.

• 𝜋𝑎𝑔𝑔 ← PublishAggProve(𝑐𝑟𝑠, 𝑖𝑑s,𝑚𝑠𝑔s,𝑚s, 𝜋𝑃 s): The aggre-

gator recursively combines individual proofs 𝜋𝑃 s into a single

aggregated proof 𝜋𝑎𝑔𝑔 . Each recursive step generates a proof

that verifies both the correctness of the current computation and

the validity of prior proofs. By iteratively applying this process,

multiple proofs can be aggregated into one succinct proof.

• (0/1, 𝑟𝑒𝑠s) ← PublishAggVerify(𝑐𝑟𝑠, 𝑖𝑑s,𝑚𝑠𝑔s,𝑚s, 𝜋𝑎𝑔𝑔): The
contract verifies the aggregated proof 𝜋𝑎𝑔𝑔 . If valid, each message

𝑚𝑠𝑔 is executed in sequence, and the results are collected as 𝑟𝑒𝑠s.

We integrate the additional optimization steps PublishAgg-

Prove and PublishAggVerify without modifying the original

zkAA implementation. This preserves all AA properties and en-

sures that the security guarantees of zkAA remain intact.

6 Experiments
To evaluate the efficiency and practicality of our implementation,

we conducted experimentsmeasuring proof generation time and gas

overheads (blockchain transaction fees) across multiple networks.

As of August 2024, the average gas price on Ethereum [43] was

6.70 gwei (1 gwei = 10
−9

ETH), with ETH priced at $2642.46 [9].

In comparison, Ethereum scaling solutions Arbitrum [31] and Op-

timism [33] had average gas prices of 0.07 gwei and 0.10 gwei,

respectively [23]. Polygon [34] had an average gas price of 117.78

gwei, with POL (formerly MATIC) priced at $0.45.

6.1 Implementations
We utilized JSONWeb Token (JWT) [18] as the certificate cert, with
its signature generated using EdDSA [5], which integrates the zero-

knowledge-friendly Poseidon hash [15]. The identifier 𝑖𝑑 was then

derived from 𝑐𝑒𝑟𝑡 using Poseidon hash as well.

zkAA was implemented in Circom [26], based on the Groth16

proof system [16].
2
Our implementation consisted of two circuits:

a registration circuit with 4504 constraints and a publication circuit

with 298 constraints. The contracts were compiled using Solidity

version 0.8.23 with the optimization option set to 2
32 − 1 runs.

2
Though Groth16’s malleability [3, 17] does not harm zkAA, it can also be implemented

with GM17 [17] or PLONK [12] (as in Section 6.4), readily avoiding this limitation.

Table 4: PLONK implementation of zkAA publication

avg time (sd) [s] peak mem. [GB]

Single (No Agg.) 0.58 (0.025) 0.14

3 Proofs Agg. 223.18 (0.355) 35.06

7 Proofs Agg. 442.92 (0.415) 66.30

15 Proofs Agg. 883.37 (3.109) 124.05

(a) Aggregated proof generation time and peak memory usage

gas

Ethereum Arbitrum Optimism Polygon

(per proof)

Single 376802 $6.67 $0.07 $0.10 $0.02

(No Agg.) (376802.00) ($6.67) ($0.07) ($0.10) ($0.02)

3 Proofs 439678 $7.78 $0.08 $0.12 $0.02

Agg. (146559.33) ($2.59) ($0.03) ($0.04) ($0.01)

7 Proofs 466635 $8.26 $0.09 $0.12 $0.02

Agg. (66662.14) ($1.18) ($0.01) ($0.02) ($0.00)

15 Proofs 558138 $9.88 $0.10 $0.15 $0.03

Agg. (37209.20) ($0.66) ($0.01) ($0.01) ($0.00)

(b) Aggregated proof verification costs

6.2 Overhead in Generating Proofs
Table 3a shows the average time required to generate witnesses

and proofs. To follow client sovereignty, the experiments were

conducted on hardware that reflects what real users would use —

a local Apple M1 Pro machine with 16GB of RAM. Each test was

repeated 100 times to obtain averaged results.

Generating the witness and proof took an average of 0.86 seconds

for registration and 0.52 seconds for publication. Although both

times are brief compared to the block interval, registration is about

1.65 times slower due to the inclusion of EdDSA signature verifi-

cation. Since registration is a one-time process per identifier and

publication occurs repeatedly afterward, this two-step approach is

more efficient than verifying the signature with every transaction.

6.3 Verification Costs
Table 3b examines the costs associated with on-chain verification.

On Ethereum, registration costs $3.71 in gas fees, while publication

costs $3.60. More cost-efficient chains like Polygon reduce these

costs to approximately $0.01 for both registration and publication.

In a hypothetical scenario, the NFT marketplace OpenSea [29],

one of the most transaction-intensive web3 services, could lever-

age zkAA to integrate NFT collections across multiple chains and

addresses. It could also support features like account recovery and

regulatory compliance. As of August 2024, adopting zkAA would

add an estimated monthly cost of $23.01 for Ethereum users and

$0.06 for Polygon users, based on 788,393 NFTs sold and 123,358

active traders [37].

6.4 Costs of Proof Aggregation
We implemented an optimized zkAAusing Circomwith PLONK [12].

Aggregator was run on an AMD 5950X processor (32 threads) and

128GB RAM, testing the aggregation of 3, 7, and 15 proofs (see

Table 4). The tests were repeated 10 times to compute the average.

Aggregating more proofs requires higher resources, particularly

RAM. Aggregating 15 proofs required 124.05GB of RAM and 15

minutes. Although proof generation is time-intensive, this can be

adjusted to balance time constraints (Table 4a) and the number of

Beyond the Blockchain Address: Zero-Knowledge Address Abstraction SAC ’25, March 31-April 4, 2025, Catania, Italy

Algorithm 5 0○ IdealSetup

1: function IdealSetup(·)
2: T creates empty private table PrivTab𝑐
3: T creates empty public tables PubTab𝑟 , PubTab𝑝 , PubTab𝑛

Algorithm 6 1○ IdealCertificate

1: function IdealCertificate(·)
2: T generates unique random values 𝑖𝑑 and 𝑐𝑒𝑟𝑡

3: T inserts 𝑐𝑒𝑟𝑡 in PrivTab𝑐 with 𝑖𝑑 as key

4: T sends (𝑖𝑑, 𝑐𝑒𝑟𝑡) to participant

proof aggregated (Table 4b). GPU acceleration or other optimiza-

tions can be used to significantly reduce generation time [1, 7].

As shown in Table 4b, the per-proof cost decreases asmore proofs

are aggregated. Verifying 15 aggregated proofs consumed 558,138

gas, averaging 37,209.20 gas per proof, highlighting significant cost

savings. With proof aggregation, users on OpenSea would incur

an additional cost of $4.22 per month on Ethereum (a reduction of

approximately 5.5 times) and less than $0.07 on scaling solutions.

7 Conclusion
Address Abstraction (AA) provides users with a unified identifier

for interacting across blockchains and traditional webs, eliminating

the need for multiple addresses and certificates. This approach

enhances web2 and web3 integration, facilitates seamless cross-

chain interactions, and improves the user experience. For example,

zero-knowledge Address Abstraction (zkAA) can be integrated into

decentralized applications (dApps) like NFT marketplaces and DeFi,

enabling web2 logins and supporting regulatory compliance.

One concern is that, since zkAA is built on smart contracts, users

require private keys to interact with the blockchain (e.g., to pay

transaction fees). However, this issue can be easily addressed using

several techniques [6, 38], which allow transactions to be published

by others (thus enabling fees to be paid by third parties). As AA

separates signatures from addresses, it aligns with delegation mech-

anisms, making integration with these solutions straightforward.

A Ideal-World Execution
0○ In the IdealSetup function (Algorithm 5), the trusted party

T initializes the core data storage. It creates a private table,

PrivTab𝑐 (accessible only to T), and three append-only pub-

lic tables, PubTab𝑟 , PubTab𝑝 , and PubTab𝑛 (readable by all but

writable only by T). All tables are structured as key-value pairs.
1○ In the IdealCertificate function (Algorithm 6), T issues an

identifier 𝑖𝑑 and a certificate 𝑐𝑒𝑟𝑡 to the participant, storing them

in PrivTab𝑐 with 𝑖𝑑 as the key and 𝑐𝑒𝑟𝑡 as the value. Since 𝑐𝑒𝑟𝑡

is a random value itself, the additional random number 𝑟 can

be omitted in subsequent processes without loss of generality.

2○ In the IdealRegisterProve function (Algorithm 7), partici-

pants submit their 𝑖𝑑 , the institution’s public key 𝑝𝑘 , and the

certificate 𝑐𝑒𝑟𝑡 to T to obtain a proof 𝜋𝑅 . T validates whether

𝑖𝑑 and 𝑐𝑒𝑟𝑡 are valid (exist in PrivTab𝑐). If valid, T randomly

generates 𝜋𝑅 , stores (𝑖𝑑, 𝑝𝑘) as the key and 𝜋𝑅 as the value in

Algorithm 7 2○ IdealRegister

1: function IdealRegisterProve(𝑖𝑑, 𝑝𝑘, 𝑐𝑒𝑟𝑡)

2: Participant sends (𝑖𝑑, 𝑝𝑘, 𝑐𝑒𝑟𝑡) to T
3: if PrivTab𝑐 .get(𝑖𝑑) ≠ 𝑐𝑒𝑟𝑡 then abort ⊲ invalid 𝑖𝑑 , 𝑐𝑒𝑟𝑡

4: if (𝑖𝑑, 𝑝𝑘) ∈ PubTab𝑟 .keys then
5: T selects 𝜋𝑅 from PubTab𝑟 with (𝑖𝑑, 𝑝𝑘) as key
6: else
7: T generates a unique random value 𝜋𝑅
8: T inserts 𝜋𝑅 in PubTab𝑟 with (𝑖𝑑, 𝑝𝑘) as key
9: T sends 𝜋𝑅 to participant

10: function IdealRegisterVerify(𝑖𝑑, 𝑝𝑘, 𝜋𝑅)

11: Participant sends (𝑖𝑑, 𝑝𝑘, 𝜋𝑅) to T
12: if (𝑖𝑑, 𝑝𝑘) ∈ PubTab𝑛 .keys then
13: T sends 0 to participant ⊲ already registered

14: else if PubTab𝑟 .get((𝑖𝑑, 𝑝𝑘)) ≠ 𝜋𝑅 then
15: T sends 0 to participant ⊲ invalid 𝜋𝑅
16: else
17: T inserts 1 in PubTab𝑛 with (𝑖𝑑, 𝑝𝑘) as key
18: T sends 1 to participant

Algorithm 8 3○ IdealPublish

1: function IdealPublishProve(𝑖𝑑,𝑚𝑠𝑔,𝑚, 𝑐𝑒𝑟𝑡)

2: Participant sends (𝑖𝑑,𝑚𝑠𝑔,𝑚, 𝑐𝑒𝑟𝑡) to T
3: if PrivTab𝑐 .get(𝑖𝑑) ≠ 𝑐𝑒𝑟𝑡 then abort ⊲ invalid 𝑖𝑑 , 𝑐𝑒𝑟𝑡

4: if (𝑖𝑑,𝑚𝑠𝑔,𝑚) ∈ PubTab𝑝 .keys then
5: T selects 𝜋𝑃 from PubTab𝑝 with (𝑖𝑑,𝑚𝑠𝑔,𝑚) as key
6: else
7: T generates a unique random value 𝜋𝑃
8: T inserts 𝜋𝑃 in PubTab𝑝 with (𝑖𝑑,𝑚𝑠𝑔,𝑚) as key
9: T sends 𝜋𝑃 to participant

The public key 𝑝𝑘 is known to T .
10: function IdealPublishVerify(𝑖𝑑,𝑚𝑠𝑔,𝑚, 𝜋𝑃)

11: Participant sends (𝑖𝑑,𝑚𝑠𝑔,𝑚, 𝜋𝑃) to T
12: if (𝑖𝑑, 𝑝𝑘) ∉ PubTab𝑛 .keys then
13: T sends (0,⊥) to participant ⊲ unregistered 𝑖𝑑

14: else
15: T selects 𝑛𝑜𝑛𝑐𝑒 from PubTab𝑛 with (𝑖𝑑, 𝑝𝑘) as key
16: if 𝑛𝑜𝑛𝑐𝑒 < 1 or𝑚 ≠ 𝑛𝑜𝑛𝑐𝑒 + 1 then
17: T sends (0,⊥) to participant ⊲ invalid 𝑛𝑜𝑛𝑐𝑒 ,𝑚

18: else if PubTab𝑝 .get((𝑖𝑑,𝑚𝑠𝑔,𝑚)) ≠ 𝜋𝑃 then
19: T sends (0,⊥) to participant ⊲ invalid 𝜋𝑃
20: else
21: T updates PubTab𝑛 with (𝑖𝑑, 𝑝𝑘) as key and𝑚 as value

22: 𝑟𝑒𝑠 ← execute𝑚𝑠𝑔; T sends (1, 𝑟𝑒𝑠) to participant

PubTab𝑟 , and then returns 𝜋𝑅 to the participant. In IdealRegis-

terVerify, T verifies the registration using 𝜋𝑅 and checks the

nonce in PubTab𝑛 to ensure no prior registration. If this is the

participant’s first registration, the nonce for (𝑖𝑑, 𝑝𝑘) is set to 1.

3○ In the IdealPublishProve function (Algorithm 8), T generates

a proof 𝜋𝑃 for the publication of the𝑚-thmessage𝑚𝑠𝑔, provided

the participant’s 𝑖𝑑 and 𝑐𝑒𝑟𝑡 are valid. If valid, T generates 𝜋𝑃 ,

stores (𝑖𝑑,𝑚𝑠𝑔,𝑚) as the key and 𝜋𝑃 as the value in PubTab𝑝 ,
and sends 𝜋𝑃 to the participant. In the IdealPublishVerify

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Park et al.

function, participants verify the publication by submitting their

𝑖𝑑 ,𝑚𝑠𝑔,𝑚, and 𝜋𝑃 . The participant must already be registered,

and𝑚 must be exactly one greater than the current value in

PubTab𝑛 . The function then executes𝑚𝑠𝑔, returns the result 𝑟𝑒𝑠

to the participant, along with the publication success status 1.

Once the publication is completed, PubTab𝑛 is updated by𝑚.

The ideal-world execution (IdealSetup, IdealCertificate, Ide-
alRegisterProve, IdealRegisterVerify, IdealPublishProve, Ide-

alPublishVerify) satisfies the properties:

• Injectiveness. Each 𝑖𝑑 and 𝑐𝑒𝑟𝑡 is uniquely generated and stored,

ensuring that no two distinct 𝑐𝑒𝑟𝑡s map to the same 𝑖𝑑 .

• Unforgeability. Only participants with the correct 𝑖𝑑 and 𝑐𝑒𝑟𝑡

can successfully register and publish messages. The proofs are

securely generated and stored by T , making them unforgeable.

• Correctness. The functions ensure that any participant with

valid credentials can successfully register and publish messages

in the correct sequence.

• Tamper Resistance. By restricting write access to only T , the
system and data are robust against unauthorized modifications.

• Chronicle. The functions enforce the correct message sequence,

requiring the sequence number𝑚 to increment in order correctly.

• Privacy-Preservation. Participants’ private data (𝑐𝑒𝑟𝑡 , 𝑖𝑑) is

never exposed or shared; it is securely stored and used only for

verification purposes within T .

Acknowledgments
This work was supported in part by the Institute of Information &

Communications Technology Planning & Evaluation (IITP) grant

funded by the Korean government Ministry of Science and ICT

(MSIT) (No. 2021-0-00518, 40%), (No. 2021-0-00180, 10%), and (No.

2021-0-00136, 10%), by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MSIT) (RS-2023-

00208245, 10%), by the ITRC (Information Technology Research

Center) support program supervised by the IITP (IITP-2021-0-01835,

20%), and by the IITP under artificial intelligence semiconductor

support program to nurture the best talents (IITP-2023-RS-2023-

00256081, 10%).

References
[1] Miguel Ambrona et al. 2023. aPlonK: Aggregated PlonK from Multi-polynomial

Commitment Schemes. In International Workshop on Security. Springer, 195–213.
[2] Aptos. 2024. Aptos Keyless. https://aptos.dev/en/build/guides/aptos-keyless.

Accessed: Sep. 19, 2024.

[3] Karim Baghery, Zaira Pindado, and Carla Ràfols. 2020. Simulation extractable

versions of Groth’s zk-SNARK revisited. In International Conference on Cryptology
and Network Security. Springer, 453–461.

[4] Mihir Bellare and Phillip Rogaway. 1993. Random oracles are practical: A para-

digm for designing efficient protocols. In Proceedings of the 1st ACM Conference
on Computer and Communications Security. 62–73.

[5] Daniel J Bernstein et al. 2012. High-speed high-security signatures. Journal of
cryptographic engineering 2, 2 (2012), 77–89.

[6] Vitalik Buterin et al. 2021. EIP-4337: Account Abstraction Using Alt Mempool.

https://eips.ethereum.org/EIPS/eip-4337. Accessed: Sep. 19, 2024.

[7] Electric Coin Company. 2020. The Halo2 zero-knowledge proving system. https:

//github.com/zcash/halo2 Accessed: Sep. 19, 2024.

[8] John R Douceur. 2002. The sybil attack. In Peer-to-Peer Systems: First Internation-
alWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7–8, 2002 Revised Papers 1.
Springer, 251–260.

[9] Etherscan. 2024. Etherscan. https://etherscan.io/charts. Accessed: Sep. 19, 2024.

[10] Everclear. 2023. Chain Abstraction - Connext Network. https://www.connext.

network/chain-abstraction. Accessed: Sep. 19, 2024.

[11] FluiDex. 2022. Plonkit. https://github.com/fluidex/plonkit. Accessed: Sep. 19,

2024.

[12] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. PLONK: Per-

mutations over Lagrange-bases for Oecumenical Noninteractive arguments of

Knowledge. IACR Cryptol. ePrint Arch. 2019 (2019), 953.
[13] Christina Garman, Matthew Green, and Ian Miers. 2017. Accountable privacy

for decentralized anonymous payments. In Financial Cryptography and Data
Security: 20th International Conference, FC 2016, Christ Church, Barbados, February
22–26, 2016, Revised Selected Papers 20. Springer, 81–98.

[14] K Goings and P Abel. 2013. The Value of Social Login. Solving the Engagement

Gap. Insights from Consumer Research.

[15] Lorenzo Grassi et al. 2021. Poseidon: A new hash function for {Zero-Knowledge}
proof systems. In 30th USENIX Security Symposium (USENIX Security 21). 519–535.

[16] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In

Annual international conference on the theory and applications of cryptographic
techniques. Springer, 305–326.

[17] Jens Groth and Mary Maller. 2017. Snarky Signatures:

Minimal Signatures of Knowledge from Simulation-Extractable SNARKs. Cryp-

tology ePrint Archive, Paper 2017/540. https://eprint.iacr.org/2017/540

[18] M. Jones, J. Bradley, and N. Sakimura. 2015. JSON Web Token (JWT). https:

//www.rfc-editor.org/rfc/rfc7519. Accessed: Sep. 19, 2024.

[19] Nikolaos Kapsoulis et al. 2020. Know your customer (KYC) implementation with

smart contracts on a privacy-oriented decentralized architecture. Future Internet
12, 2 (2020), 41.

[20] Nanak Nihal Khalsa et al. 2022. Holonym: A Decentralized Zero-Knowledge

Smart Identity Bridge.

[21] Matter Labs. 2022. Recursive Aggregation Circuit. https://github.com/matter-

labs/recursive_aggregation_circuit. Accessed: Sep. 19, 2024.

[22] Duc Anh Luong and Jong Hwan Park. 2023. Privacy-Preserving Identity Manage-

ment System on Blockchain Using Zk-SNARK. IEEE Access 11 (2023), 1840–1853.
[23] Marcov. 2024. Transactions Fee - Totals. https://dune.com/queries/3686777/

6201461. Accessed: Sep. 19, 2024.

[24] Nathaniel Masfen-Yan et al. 2022. Notebook: A Zero-Knowledge Identity Infras-

tructure Layer.

[25] Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and Ari

Juels. 2020. BDoS: Blockchain denial-of-service. In Proceedings of the 2020 ACM
SIGSAC conference on Computer and Communications Security. 601–619.

[26] Jose L Muñoz-Tapia et al. 2022. CIRCOM: A Robust and Scalable Language for

Building Complex Zero-Knowledge Circuits. TechRxiv (2022).

[27] Near.org. 2024. Near. https://near.org/. Accessed: Sep. 19, 2024.

[28] Particle Network. 2024. Particle Network. https://particle.network/. Accessed:

Sep. 19, 2024.

[29] Ozone Networks. 2018. OpenSea. https://opensea.io/. Accessed: Sep. 19, 2024.

[30] Philippe Oechslin. 2003. Making a faster cryptanalytic time-memory trade-off.

In Advances in Cryptology-CRYPTO 2003: 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003. Proceedings 23.
Springer, 617–630.

[31] Offchain Labs. 2020. Arbitrum. https://arbitrum.io/. Accessed: Sep. 19, 2024.

[32] Office of Foreign Assets Control. 2022. FAQs 1095. https://ofac.treasury.gov/faqs/

1095. Accessed: Sep. 19, 2024.

[33] Optimism Foundation. 2020. Optimism. https://www.optimism.io/. Accessed:

Sep. 19, 2024.

[34] Polygon Labs. 2024. Polygon. https://polygon.technology/. Accessed: Sep. 19,

2024.

[35] Alex Preukschat and Drummond Reed. 2021. Self-sovereign identity. Manning

Publications.

[36] Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and

Dawn Song. 2022. Zebra: Anonymous credentials with practical on-chain verifi-

cation and applications to kyc in defi. Cryptology ePrint Archive (2022).
[37] rchen8. 2024. OpenSea. https://dune.com/rchen8/opensea. Accessed: Sep. 19,

2024.

[38] Ronan Sandford et al. 2020. ERC-2771: Secure Protocol for Native Meta Transac-

tions. https://eips.ethereum.org/EIPS/eip-2771. Accessed: Sep. 19, 2024.

[39] Sui. 2023. zkLogin. https://sui.io/zklogin. Accessed: Sep. 19, 2024.

[40] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-

ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[41] W3C. 2022. Decentralized Identifiers (DIDs) v1.0. https://www.w3.org/TR/did-

core/. Accessed: Sep. 19, 2024.

[42] Taotao Wang, Shengli Zhang, and Soung Chang Liew. 2023. Linking Souls to

Humans with ZKBID: Accountable Anonymous Blockchain Accounts for Web

3.0 Decentralized Identity. arXiv preprint arXiv:2301.02102 (2023).
[43] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper (2014).
[44] Guangsheng Yu, Xu Wang, Qin Wang, Tingting Bi, Yifei Dong, Ren Ping Liu,

Nektarios Georgalas, and Andrew Reeves. 2022. Towards Web3 Applications:

Easing the Access and Transition. arXiv preprint arXiv:2210.05903 (2022).

https://aptos.dev/en/build/guides/aptos-keyless
https://eips.ethereum.org/EIPS/eip-4337
https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://etherscan.io/charts
https://www.connext.network/chain-abstraction
https://www.connext.network/chain-abstraction
https://github.com/fluidex/plonkit
https://eprint.iacr.org/2017/540
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://github.com/matter-labs/recursive_aggregation_circuit
https://github.com/matter-labs/recursive_aggregation_circuit
https://dune.com/queries/3686777/6201461
https://dune.com/queries/3686777/6201461
https://near.org/
https://particle.network/
https://opensea.io/
https://arbitrum.io/
https://ofac.treasury.gov/faqs/1095
https://ofac.treasury.gov/faqs/1095
https://www.optimism.io/
https://polygon.technology/
https://dune.com/rchen8/opensea
https://eips.ethereum.org/EIPS/eip-2771
https://sui.io/zklogin
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/

	Abstract
	1 Introduction
	1.1 Related Work and Challenges
	1.2 Contributions

	2 Background
	2.1 Accounts and Addresses
	2.2 Decentralized Identifiers

	3 Cryptographic Preliminaries
	3.1 Digital Signatures
	3.2 Zero-Knowledge Proofs
	3.3 Proof Aggregation
	3.4 Security Assumptions

	4 Address Abstraction
	4.1 Definitions
	4.2 Properties

	5 Zero-Knowledge Address Abstraction
	5.1 Design of zkAA
	5.2 Properties of zkAA
	5.3 Security Proof
	5.4 Optimization Using Proof Aggregation

	6 Experiments
	6.1 Implementations
	6.2 Overhead in Generating Proofs
	6.3 Verification Costs
	6.4 Costs of Proof Aggregation

	7 Conclusion
	A Ideal-World Execution
	Acknowledgments
	References

