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Abstract 

Rate controlled production (RCP) model is used to 

simulate and investigate the performance of the oil wells 

which are completed by autonomous inflow control 

devices. In order to quantify the performance of the RCP 

model, a dimensionless version of the model is 

considered, and its parameters are estimated. We 

demonstrate how the model and the measurement 

uncertainties can be quantified within the Bayesian 

statistical inference framework. In this relation, 

Hamilton Monte Carlo (HMC) is used to draw samples 

from the joint posterior probability distribution. We 

demonstrate that at the calibration step the modified 

model is able to capture the variations in the 

measurements. However, the cross- validation with the 

new data has revealed that the modified model tends to 

overpredict the pressure drop. This inadequacy cannot 

be explained by the measurement noise or the 

uncertainty in the estimated parameters. These results 

also imply that the original RCP model needs revision. 

Keywords: AICV performance, RCP model, Bayesian 
inference, parameter estimation, MCMC, Stan 

1 Introduction 

Increase in oil production and recovery have been 

always the main objective of the oil industry. Hence, 

different methods and technologies have been 

developed to achieve this goal. One of the proven 

methods is to drill long horizontal wells, which 

increases the reservoir contact and consequently makes 

the oil production feasible and more economical.                                

 However, long horizontal wells are likely to 

experience more pressure differences between the heel 

and toe section. This leads to non-uniform flow and 

consequently breakthrough of unwanted fluids in the 

heel section of the well, as shown in Figure 1.This 

phenomenon is known as heel to toe effect (Mathiesen, 

et al., 2014).  

Autonomous Inflow Control Valve (AICV) together 

with Autonomous Inflow Control Devices (AICD’s) 
like RCP valves are among the newest technologies that 

have been developed for Increased Oil Recovery (IOR). 

By balancing reservoir drawdown, these valves delay 

the onset of water and/or gas breakthrough and in case 

of breakthrough, it will restrict the production of these 

unwanted fluids significantly.  

 

 
Figure 1.Uneven flow along the wellbore resulting in      

water and gas breakthrough. 

A mathematical model describing the performance of 

the RCP valve was originally developed by Mathiesen 

et. al. in 2011 (Mathiesen, et al., 2011).This model is 

later being used to describe the AICV performance too. 

In recent years, both lab and production data from 

various oil wells have been used to check the validity of 

the model (Mohd Ismail, et al., 2018; Langaas, et al., 

2020). This model has been implemented in reservoir 

simulators such as NETool and Eclipse in order to 

simulate the performance of the valve under static and 

dynamic conditions. 

In order to be able to employ the model, one needs to 

estimate the model parameters prior to its deployment. 

It appears that one of the methods used by many 

practitioners for parameter estimation prior to utilization 

of the model in NETool is the trial-and-error method 

(Aakre, et al., 2018; Halvorsen, et al., 2016). 

Nevertheless, if one assumes that the model is correct, 

in most practical cases, the classical least square or 

similar methods are sufficient to produce good estimates 

for the model parameters (Moradi, et al., 2021). 

However, there are some evidences that the model does 

not explain all the variations in the data (Langaas, et al., 

2020). There has also been attempts to modify the model 

(Voll, et al., 2014). 

In order to be able to verify model inadequacy, two 

pre-conditions are needed to be satisfied. The first one 



is accurate and precis measurements of the valve 

behaviour and the second one is the quantification of the 

different sources of the uncertainty. In this short paper, 

we will demonstrate how results from accurate 

measurements can be used within the Bayesian 

statistical inference framework to quantify and model 

the sources of the uncertainty and check how good the 

model explains the variations in the measurements. 

2 AICV Principle  

AICV utilizes viscosity and density differences between 

the reservoir fluids in such a way that it will keep the 

valve open for oil and closed for unwanted fluids like 

gas and water. Figure 2 illustrates AICV in open and 

closed position, respectively. 

 

 

 
Figure 2. AICV is open for oil, illustrated by the black 

region (top) and closed for gas, illustrated by the green 

region (bottom). 

This is achieved by taking advantage of the pressure 

differences in the Laminar Flow Element (LFE) and 

Turbulent Flow Element (TFE). These two flow 

restrictors are connected in series, which is illustrated in 

Figure 3 . AICV consists of two flow paths: the main 

flow path and the pilot flow path. Pilot flow path 

consists of two flow restrictors of LFE and TFE. When 

reservoir fluid enters the main path, a small portion of 

the flow is guided through the pilot flow, which is 

located near the main path. If a fluid with high viscosity 

enters the AICV, its flow through LFE will lead to a 

higher pressure drop over LFE. This phenomenon can 

be explained by Darcy-Weisbachs equation: 

𝛥𝑃 = 𝑓 ×
𝐿𝜌𝑣2

2𝐷
=

64

𝑅𝑒
×

𝐿𝜌𝑣2

2𝐷
=

32𝜇𝑣𝐿

𝐷2
(1) 

where 

ΔP is the pressure drop. 

𝑓 is the friction factor (64/Re) 

Re is Reynolds number. 

𝜌 is the fluid density. 

µ is the fluid viscosity. 

𝑣 is the fluid velocity. 

𝐿 and 𝐷 are the length and diameter of the LFE 

respectively.  

After passing through the LFE, which is a pipe 

segment, fluid enters a chamber. The second flow 

restrictor TFE, which is a nozzle, is placed in this 

chamber. The pressure drop across the TFE as described 

by Bernoulli, is calculated using the equation: 

 

𝛥𝑃 =
𝐶

2
𝜌𝑣2, (2) 

in which, 𝐶 is a geometrical constant. Combination of 

these two flow restrictors results in a pressure drop, 

which determines how the AICV functions. As it is 

shown in Figure 3, high P2 will move the piston 

upwards closing the AICV for unwanted fluids while 

low P2 will keep the piston at its neutral position that 

maintains the oil production. 

The concept and principle of AICV is described in 

detail in earlier SPE papers (Taghavi, et al., 2019; 

Aakre, et al., 2014). 

 

 

Figure 3. Combination of the laminar and turbulent flow 

restrictors in series in the AICV pilot flow. 

3 RCP Model 

The RCP model for the valve can be described as: 



∆𝑃𝑇𝑜𝑡 = (
𝜌𝑚𝑖𝑥

2

𝜌𝑐𝑎𝑙
) ∙ (

𝜇𝑐𝑎𝑙

𝜇𝑚𝑖𝑥
)

𝑦

∙ 𝑎𝐴𝐼𝐶𝐷 ∙ 𝑄𝑥 (3) 

 

where ∆𝑃𝑇𝑜𝑡 is the differential pressure across the AICV 

𝜌𝑐𝑎𝑙 and µ𝑐𝑎𝑙 are the calibration fluid density and 

viscosity, and 𝜌𝑚𝑖𝑥 and µ𝑚𝑖𝑥 are the mixture fluid 

density and viscosity. The parameter 𝑎𝐴𝐼𝐶𝐷 is a valve 

characteristic given by the ICD strength, 𝑄 is the 

volumetric mixture flow rate, and 𝑥 and 𝑦 are constants 

(Mathiesen, et al., 2011). 

In order to reduce the complexity in this short article, 

we will concentrate our efforts on a single-phase oil 

flow. In addition, the model will be evaluated for three 

types of oil with different densities and viscosities. 

The model described by Eq. (3), is dimensionally 

inconsistent. In order to avoid handling this 

inconsistency and its consequences, we study the flow 

rate vs. pressure drop with respect to a reference fluid at 

the same temperature. Therefore, we have chosen water 

at 20 degrees and a flow rate around 120 l/h. The 

measured pressure drop for water under these conditions 

is around 10 bar. Consequently, since 𝑎𝐴𝐼𝐶𝐷 is a 

geometric parameter and hence independent of the fluid 

type, it will not play a role in the analysis. Then from 

Eq. (3) follows that the relative pressure drop with 

respect to water is 

 

∆𝑃𝑜𝑖𝑙

∆𝑝𝑤𝑎𝑡𝑒𝑟
= (

𝜌𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
)

2

(
𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑜𝑖𝑙
)

𝑦

(
𝑄𝑜𝑖𝑙

𝑄𝑤𝑎𝑡𝑒𝑟
)

𝑥

(4) 

 

As it was mentioned earlier, there are some 

indications that the RCP model does not explain all the 

variations in the data. For this reason, we propose to use 

a multiplicative noise term in order to quantify possible 

model discrepancies. The modified dimensionless RCP 

model is  

 

∆𝑃𝑜𝑖𝑙

∆𝑝𝑤𝑎𝑡𝑒𝑟
= 𝛼 (

𝜌𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
)

2

(
𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑜𝑖𝑙
)

𝑦

(
𝑄𝑜𝑖𝑙

𝑄𝑤𝑎𝑡𝑒𝑟
)

𝑥

(5) 

 

where 𝛼 denotes the multiplicative noise term. Since the 

relative pressure drop is positive, we assume that a priori 

𝛼 is distributed according to Gamma distribution, with 

its mode at one. An 𝛼-value very close to one is an 

indication that the model can adequately describe the 

variations in the data. The statistical inference will 

reveal the probable values of 𝛼. In the following, Eq. 
(5) along with the experimental data are used to 

estimate the parameters 𝛼, 𝑥 and 𝑦. These estimates are 

used to evaluate the performance of the modified RCP 

model. 

4 Experimental Setup  

The experiments were performed on the AICV 

prototype test rig at InflowControl’s multiphase test 

facility located in Porsgrunn, Norway. A simplified 

schematic of the test rig showing the key elements of 

equipment and key measurement locations is shown in 

Figure 4. The tests can be carried out with water, 

pressurized air, and silicone oil as test fluid. The test 

facility is designed for single- and multiphase oil, water, 

and gas. A multistage centrifugal pump increases the 

water/oil pressure from the water/oil supply. 

Compressed air at room temperature can be regulated to 

the desired pressure for each case, up to maximum 200 

bar. Flow rates, density and temperature are measured 

close to the inlet of the test vessel by a Coriolis 

flowmeter. A pressure transmitter measures the inlet 

pressure, whereas a differential pressure transmitter 

measures the differential pressure over the test vessel. 

Multiphase flow tests can be performed by injecting the 

desired oil flow rate to the test vessel, which is already 

filled with gas. The desired oil flow rate is injected from 

a separate test rig, which is connected to the single-

phase test rig. The green dashed line in Figure 4 show 

the multiphase test flow path. 

 

 

Figure 4. AICV prototype test rig setup. 

4.1 Test Conditions and Data 

Single-phase flow tests were performed with silicone 

oil as test fluid. The system conditions such as 

temperature and pressure, flow rates, pressure drops 

over the AICV and fluid properties, such as viscosity 

and density are controlled and measured in each test. 

The data obtained during the tests are listed in Table 1 

in the Appendix. Temperature, density, and mass flow 

rate were measured using a Coriolis flow meter and the 

differential pressure across the AICV were measured by 

using a high precision pressure transmitter. Viscosity 

was measured and calculated manually using an 

Ubbelohde type viscometer. Viscosity measurements 

were performed several times under stable conditions in 

order to minimize the uncertainties. The accuracy of the 

different measuring tools employed in the tests are 

listed in Table 2 in the Appendix. 

5 Bayesian Inference 

The calculus of Bayesian inference is based on the 

application of two rules, the product, and the sum rules 

of the probability theory. One of the useful forms of the 



product rule is the Bayes theorem. In the present 

context, we have noisy measurements, 𝐷 and a model, 

𝑀 with unknown parameters represented by 𝜃. We are 

seeking to estimate 𝜃. Then by the Bayes theorem we 

have 

 

𝑃(𝜃|𝐷, 𝑀, 𝐼) = 𝑃(𝐷|𝜃, 𝑀, 𝐼) ×
𝑃(𝜃|𝑀, 𝐼)

𝑃(𝐷|𝐼)
(6) 

𝑃(𝜃|𝐷, 𝑀, 𝐼) is the posterior distribution over the 

possible values of 𝜃 consistent with the measurements, 

the model and any other available and relevant 

background information denoted by 𝐼; like any 

information about the valve construction. On the right-

hand side of the above equation, 𝑃(𝐷|𝜃, 𝑀, 𝐼) is the 

likelihood, which is a statement about how likely it is to 

measure D given the model and specific values for 𝜃. 

The term 𝑃(𝜃|𝑀, 𝐼) is known as the prior distribution. 

In the present context, it models the expert opinion about 

the possible values of the 𝜃. The last term 𝑃(𝐷|𝐼) 

functions as the normalization constant and is 

independent of 𝜃 and hence not relevant in the present 

context. We remind the reader that the letters in the 

parentheses stand for logical propositions and “,” 

denotes the logical “AND” operation. However, in 

calculations we work with algebraic expressions. The 

context will determine the use. 

Often, as in the present case, the inference on 𝜃 also 

depends on some other parameters, for which neither 

their true values are known nor are they of primary 

interests. Nevertheless, due to dependency of inference 

on them, they must be part of the estimation process. 

These parameters are known as the nuisance 
parameters. Here the sum rule of the probability theory 

can be useful. Let 𝜔 denote the vector of the nuisance 

parameters, then by the sum rule we have 

 

𝑃(𝜃|𝐷, 𝑀, 𝐼) = ∫ 𝑃(𝜃, 𝜔|𝐷, 𝑀, 𝐼)𝑑𝜔
Ω

(7) 

 

The above operation is called marginalization. 

Basically, calculating the above integral is the same as 

averaging the integrant over all possible values of 𝜔. 

Marginalization is a very powerful concept and will be 

used in the next section. The reader is referred to 

(Kruschke, 2015) for further reading on Bayesian 

inference. 

6  Statement of the Inference 

In the following, let the model parameters, the nuisance 

parameters, data, and the model be denoted by 𝜃, 𝜔, 𝐷 

and 𝑀, respectively. That is,  

 
𝜃 = (𝛼, 𝑥, 𝑦)  
𝜔 = (∆𝑝𝑤 , 𝑄𝑤 , 𝜎𝜇 , 𝑄𝑜, 𝜇𝑜)  

𝐷 = (∆𝑝𝑜𝑑 , 𝑄𝑜𝑑 , 𝜇𝑜𝑑 , 𝜌𝑜, 𝜌𝑤, 𝜇𝑤 , 𝜎𝑝 , 𝜎𝑞)   

𝑀 = 𝑀(𝜃, 𝜔) = ∆𝑝𝑜(𝜃, 𝜔)  

The description of each symbol is listed in Table 3 in the 

Appendix. The main reason for the choice of the 

nuisance parameter vector 𝜔, is that we are uncertain 

about the true values of these parameters. For example, 

even though we have taken great care in measuring the 

viscosity, there is no guaranty that the conditions under 

which the oil flows through the valve are exactly the 

same as the viscometer. Therefore, we have chosen to 

include 𝜎𝜇 as one of the nuisance parameters. Similar 

reasons are behind the choice of other components of 𝜔. 

We emphasise that this is an important component in 

quantification of the sources of the uncertainty. The lack 

of knowledge about the true values of the parameters 

under different test conditions, which are not possible to 

be controlled during the experiments, constitute an 

important source of the uncertainty. 

By the Bayes theorem, the joint posterior distribution 

is 

 

𝑝(𝜃, 𝜔|𝐷, 𝑀, 𝐼) ∝ 𝑝(𝐷|𝜃, 𝜔, 𝑀, 𝐼) × 𝑝(𝜃, 𝜔|𝑀, 𝐼). (8) 

 

The choice of the likelihood is determined by the 

measurements noise, while the choice of the prior 

distribution is based on the uncertainty in the expert 

knowledge about the true values of the parameters, 

before considering the measurements. For example, as 

was mentioned previously, 𝛼 represents the 

multiplicative noise. It is positive and we expect its 

value to be one. However, there are reasons to believe 

that the model tends to overestimate the pressure drop 

over the valve. Therefore, we suspect that there is a good 

chance that 𝛼 can attain values below one. For these 

reasons, we choose 𝛾(2,2), the gamma distribution with 

the parameters (2,2), to represent our prior knowledge 

about 𝛼. The expected value of this distribution is one 

and its mode is at one-half. However, after seeing the 

data, the posterior distribution of 𝛼 might be different, 

which as we shall see, is indeed the case. Note that 

𝛾(2,2) has non-zero mass for all 𝛼 > 0. That is, the 

prior distribution does not exclude any positive values 

of 𝛼. It only makes some values less probable. The 

marginal posterior distribution of 𝛼 will allow the data 

to modify the belief represented by the prior. In a similar 

manner, the expert knowledge on the other parameters 

can be incorporated in the inference process through 

appropriate choice of the prior distributions for each 

parameter. We have summarized the choices of the 

priors and the likelihoods for each parameter in Figure 

5. 

 



 

Figure 5.The choice of prior distribution (in red/whole) 

and the likelihood (in blue/dashed). 

Due to logical independence between the parameters, 

the joint posterior distribution in Eq. (8) is the product 

of all the distributions listed in Figure 5. All the 

parameters are positive and in case of 𝑥, it is larger than 

2. This means that all the normal distributions are 

truncated at zero. In the case of 𝑥, we have a truncated 

gamma distribution with lower limit being 2. The 

marginal posterior distribution is found by integrating 

over the domain of 𝜔. 

7 Markov Chain Monte Carlo 

Simulation 

It is difficult to find an analytical expression for the 

joint- and the marginal posterior distributions of the 

parameters. This is generally a challenging task in 

Bayesian statistics. A common approach is to 

approximate the joint posterior distribution by large 

number of samples. The generation of samples are often 

conducted by a class of dependent sampling methods 

known as Markov Chain Monte Carlo (MCMC). 

Roughly explained, the method works by sampling the 

distribution relative to the height of the distribution 

function on its domain. The frequency distribution of 

these samples will on the long run converge to the true 

distribution. Computationally, one starts with a random 

sample and generates a chain of samples following 

certain sets of rules, which will guaranty that the chain 

will eventually visit all the regions relative to their 

probability mass. Since in practice one can only 

generate finite number of samples, it is important to 

check if the chain has found the regions of highest 

probability mass. There is a so-called burn-in period, 

below which all the samples are discarded. The reason 

for this is to make sure that in a set containing a finite 

number of samples, the samples from regions with low 

probability mass are not over-represented. 

For the purpose of this study, we run a MCMC 

method known as Hamiltonian Monte Carlo (HMC), 

using the statistical software known as Stan, which 

comes also as a R package known as RStan (Stan 

development team, 2019). We have run four chains, 
each with different starting points. Figure 6 shows the 

output of the chains for each of the model parameters. 

As it can be seen, regardless of the initial starting point 

of the chain, after a burn-in period of roughly 10K, all 

the chains are stabilized and converged. For more 

details, we refer the reader to (Kruschke, 2015). 

 

 

Figure 6.The trace plot of the MCMC chains for model 

parameters. 

After ignoring the burn-in samples, the pairs plot can 

be used to represent the marginal posterior distributions 

of the model parameters. The plot consists of both single 

and pairwise marginal posterior distributions of the 

model parameters. It is basically 1D and 2D histogram 

of the samples of the model parameters (see Figure 7).  

 

Figure 7. Pairs plot of the model parameters. 

The histogram density of the parameter 𝛼 reveals that 

the model is hugely over predicting the relative pressure 

drop over the valve. More specifically, the pressure 

drops over the valve have to be scaled down to 2.2%-

3.2% of their predicted values by the model in order to 

be consistent with the measurements. 

7.1 Calibration and Validation 

The dataset D used in the MCMC simulation is 

generated by running experiments on two different oil 

types with viscosities 6.6 cP and 36.4 cP (see Table 4 in 

the Appendix). The measurements and the posterior 

samples from the MCMC with 99% credible intervals 

are plotted in Figure 8. Except for two points, for the 
case of 36.4 cP oil, all the pressure drops predicted by 

the model are within the 99% credible interval. That is, 



at the calibration step, the model can describe most of 

the variations in the measurements. At this stage, 

without further measurements, it is difficult to explain 

the reason(s) for the two borderline outliers observed in 

the dataset for 36.4 cP oil. 

The validation is conducted on a new dataset, which 

was not used in the estimation of the model parameters. 

This second dataset is generated by running the 

experiment on an oil with viscosity 12.6 cP. For this, we 

need to find the posterior predictive distribution.  

Indeed, let 𝐷𝑁 = (∆𝑝𝑜𝑁, 𝑄𝑜𝑁) denote the unobserved 

new data.  Then the posterior predictive distribution is 

defined as 𝑝(𝐷𝑁 |𝐷, 𝑀, 𝐼). In order to be able to use the 

model M, one needs to know the model parameters. 

 

Figure 8. Calibration (top row) and validation (bottom 

row). The dashed lines are drawn for visualization purpose. 

By application of the marginalization, we get 

𝑝(𝐷𝑁 |𝐷, 𝑀, 𝐼) = ∫ 𝑝(𝐷𝑁 , θ, ω|𝐷, 𝑀, 𝐼)𝑑𝜃𝑑𝜔
Λ

(9) 

 
Note that by the product rule, the integrant can be 

expressed as 
𝑝(𝐷𝑁 , θ, ω|𝐷, 𝑀, 𝐼)

= 𝑝(𝐷𝑁 |θ, ω, 𝐷, 𝑀, 𝐼) × 𝑝(θ, ω|𝐷, 𝑀, 𝐼) (10) 
 

 

The observant reader recognizes that the second term on 

the right-hand side is the joint posterior distribution 

defined by Eq. (8). The first term on the right-hand side 

is called the sampling distribution and its functional 

form is same as the likelihood. The difference is that 

unlike likelihood, which is a function of the model 

parameters, the sampling distribution is a function of 𝐷𝑁 

and is normalized to unity over the domain of 𝐷𝑁. By 

applying the following algorithm, one can generate 

samples from the posterior predictive distribution, 
 

1. Generate (θi, ωi) from 𝑝(θ, ω|𝐷, 𝑀, 𝐼) 

2. Generate 𝐷𝑁𝑖 from 𝑝(𝐷𝑁 |θ𝑖 , ω𝑖 , 𝐷, 𝑀, 𝐼) 

3. 𝑖 = 𝑖 + 1, go to step 1.  

The above algorithm is iterated a given number of times. 

The histogram of the generated samples 𝐷𝑁𝑖 can then be 

considered as an estimate for the posterior predictive 

distribution defined by Eq. (9). Note that we are already 

in disposition of the samples (θi, ωi). They are the 

samples generated from the joint posterior distribution 

during the calibration step. Thus, we only need to 

conduct the step 2 in the above algorithm. From the 

product rule, and the nature of measurements noise, 

follows that the sampling distribution can be expressed 

as product of two normal distributions 

𝑝(𝐷𝑁 |θ, ω, 𝐷, 𝑀, 𝐼) 
= 𝑝(∆𝑝𝑜𝑁 |M(θ, ω), 𝑄𝑜𝑁, 𝐷, 𝐼) ×

𝑝(𝑄𝑜𝑁 |𝑞𝑜𝑁, 𝜎𝑞 , 𝐼) (11)
 

in which 
𝑝(∆𝑝𝑜𝑁 |M(θ, ω), 𝑄𝑜𝑁, 𝐷, 𝐼) =

𝒩(∆𝑝𝑜𝑁|M(θ, ω), 𝑄𝑜𝑁, 𝐷) (12)
 

and 

𝑝(𝑄𝑜𝑁 |𝑞𝑜𝑁, 𝜎𝑞 , 𝐼) = 𝒩(𝑄𝑜𝑁|𝑞𝑜𝑁, 𝜎𝑞). (13) 

 

In the above expressions 𝑞𝑜𝑁 is the given flow rate 

for which one seeks to calculate the corresponding 

pressure drop. The algorithm for generating samples 

from the sampling distribution can be formulated as 

follows 

 

2.1. Generate 𝑄𝑜𝑁𝑖 from 𝒩(𝑞𝑜𝑁, 𝜎𝑞) 

2.2. Generate ∆𝑝𝑜𝑁𝑖 from 𝒩(∆𝑝𝑜𝑁|M(θ, ω), 𝑄𝑜𝑁𝑖, 𝐷) 

The result of the cross-validation with 99% credible 

error-bars is given in Figure 8. For low flow rates or 

equivalently low-pressure drops, the model prediction is 

within the 99% credible interval of the measurements. 

However, it appears that for high flow rates, the model 

has some tendency to over-predict the differential 

pressure over the valve. 

8 Conclusions 

In this paper, we demonstrated how the model and the 

measurement uncertainties can be quantified within the 

framework of the Bayesian statistics. In order to avoid 

complications due to dimensional inconsistency of the 

original model, we proposed a dimensionless version of 

the model. The result of our analysis revealed 

discrepancies, which could not be explained by the 

measurement noise or the uncertainty in the estimated 

parameters. The model inadequacy can be divided into 

global and local categories. The most serious problem 

observed was at the global level. Indeed, the predictions 

of the dimensionless model given by Eq. (5)  had to be 

scaled down to 2.2%-3.2% of their values in order to be 

at the same level as the measurements. This has not been 

observed before or reported in literature. We believe that 

 



the main reason for this is that this type of scaling would 

in general be absorbed into the 𝑎𝐴𝐼𝐶𝐷 factor and hence 

would slip away unnoticed. Further studies are needed 

to determine the source(s) of this inconsistency. If one 

accepts the correction factor 𝛼 and hence the modified 

dimensionless model given by Eq. (5), the deviation at 

the local level is less significant. The model validation 

has revealed that there is a tendency for the modified 

model to over-predict the pressure drop. A closer study 

of the results has revealed that a slight increase in oil 

viscosity during its passage through the valve can 

explain most of the overestimated pressure drop 

tendencies by the model. Further studies under more 

stringent conditions will be conducted in order to 

uncover the causes of these observations. 
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Appendix 

Table 1. Experimental results with model oil of different 

viscosities. 

Table 2. Accuracy of the test devices 

 

 

 

 

 

 

 

 

 

 

Table 3. Data and parameters description. 

Table 4. Calibration data set. 
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Test#1; Oil 6.6 cP 

19.44 929.65 922.53 19.59 1.01 

15.58 824.79 921.59 19.50 0.89 

9.93 710.16 920.60 19.18 0.77 

7.12 642.89 920.01 18.94 0.70 

5.23 587.78 919.54 18.85 0.64 

3.42 514.06 919.13 19.62 0.56 

1.17 353.74 918.34 18.06 0.39 

Test#2; Oil 12.6 cP 

19.73 1109.32 937.98 20.02 1.18 

15.49 1021.85 937.51 19.34 1.09 

10.12 882.52 936.54 19.25 0.94 

6.82 774.99 935.77 18.93 0.83 

5.36 712.71 935.48 19.11 0.76 

3.02 575.30 934.97 18.61 0.62 

0.92 388.95 934.03 19.57 0.42 

Test#3; Oil 36.4 cP 

19.97 1460.89 953.18 21.95 1.53 

15.13 1305.44 952.57 20.46 1.37 

10.05 1126.45 951.34 20.31 1.18 

7.08 966.33 951.62 20.28 1.02 

4.99 868.67 952.29 20.54 0.91 

2.96 760.25 953.07 20.88 0.80 

0.93 503.04 950.56 20.05 0.53 

Device Measured 

Property (ies) 

Accuracy 

Coriolis Mass flow, 

Temperature, 

Density 

0.1 % 

Pressure 

transmitter 

Differential 

pressure 

0.04 % 

Viscometer Viscosity 0.2 % 

Name Description 

𝑥, 𝑦, 𝛼  Model parameters 

∆𝑝𝑤  True differential pressure of water 

𝑄𝑤  True volume flow rate of water 

𝜎𝜇  Standard deviation of oil viscosity 

𝑄𝑜  True oil flow rate 

𝜇𝑜  True oil viscosity 

∆𝑝𝑜𝑑  Measured differential pressure of oil 

𝑄𝑜𝑑  Measured volume flow rate of oil 

𝜇𝑜𝑑  Measured oil viscosity 

𝜌𝑜, 𝜌𝑤  Oil and water density 

𝜇𝑤  Water viscosity = 1 

𝜎𝑝  Standard deviations of the ∆p 

measurements 

𝜎𝑞  Standard deviations of the flow 

measurements 

∆𝒑𝒐  True differential pressure of oil 
𝜌
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920 19.44 0.47 1007.72 1006.41 4.69 6.6 6.4 

920 15.58 0.21 894.97 894.73 4.07 6.6 6.4 

920 9.93 0.13 771.40 771.83 1.53 6.6 6.4 

920 7.12 0.50 698.79 697.72 2.32 6.6 6.4 

920 5.23 0.50 639.21 636.61 5.09 6.6 6.4 

920 3.42 0.35 559.29 558.47 5.46 6.6 6.4 

920 1.17 0.11 385.19 385.44 2.78 6.6 6.4 

950 19.97 0.10 1532.66 1530.58 2.81 36.4 36.2 

950 15.13 0.08 1370.44 1370.49 1.28 36.4 36.2 

950 10.05 0.08 1184.07 1183.58 0.93 36.4 36.2 

950 7.08 0.04 1015.46 1015.78 1.09 36.4 36.2 

950 4.99 0.05 912.19 912.41 1.38 36.4 36.2 

950 2.96 0.03 797.69 799.07 2.22 36.4 36.2 

950 0.93 0.05 529.20 529.44 6.00 36.4 36.2 


