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Abstract. This work aim purpose of this work is to present a parametric analysis
of the effect of fiber orientation angle on elastic wave dispersion relations in the
case of the CARALL composite. The material under consideration has 14 layers.
Aluminum alloy and carbon/epoxy resin fibers are used to create the layers. The
overall configuration of the CARALL composite is considered to be [Al, θ5, Al]s,
and the angle is the parameter whose values are taken in the range [0°, 90°]. The
stiffness matrix approach is used to determine the dispersion curves. In addition,
the computer program "Dispersion calculator" is utilized. The shift in phase
velocity of the basic symmetric mode and the horizontal shear mode is mostly
noticed due to differences in the fiber orientation angle. The other modes'
sensitivity to the angle is negligible.
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1. Introduction

Existing analytical and semi-analytical modeling approaches for analyzing guided
wave propagation in anisotropic composites such as multi-layer wind turbine
blade assemblies and tidal plant hydrofoils. Dispersion curves, which
characterize the frequency dependence of guided wave velocities in a certain
structure, must be computed to order to measure wave propagation velocity. The
majority of dispersion curves are computed using analytical or semi-analytical
finite element techniques. According to [Nayfeh, 1991], harmonic elastic waves
propagate in n-layer anisotropic plates. Using the transfer matrix method, the
solutions for each layer were identified and expressed as wave amplitudes, with
stresses and displacements at the layer interfaces replacing the wave amplitudes
[Nayfeh, 1991]. To take into consideration the attenuation and change in
propagation direction brought on by the composite's anisotropic structure, Hosten
and Castaings [1993] modified the transfer matrix formula. According to the
transfer matrix technique, four waves with the same frequency and spatial
characteristics should occur at each interface at the border of each layer of the N-
layer composite laminate. An iterative root-seeking approach can yield an endless
number of wave numbers at each frequency. To use matrix approaches for
anisotropic layer simulation, the matrix must be expanded to six
dimensions[Lowe, 1995]. The disadvantage of this strategy is that it gets unstable
when the fd is huge (frequency multiplied by the plate thickness). [Knopoff,
1964] endorsed using the worldwide matrix method for excessive frequencies or
thick plates. However, when the number of components increases, the matrix gets
more complicated, and the approach becomes slower [Lowe, 1995; Knopoff,
1964]. For the computation of dispersion curves, the global matrix model has been
incorporated in the commercial program "DISPERSE" [Pavlakovic et al., 1997 ].
Nayfeh and Chimenti [1988] advanced the equations of movement for a transverse
isotropic plate linked to a fluid and presented a non-stop blending concept for
uniaxial fibrous composites with transverse isotropy. For a fluid-coupled
composite plate, general transmission curves had been calculated. In the
example of circumferential wave propagation, Towfighi et al. used coupled
differential equations to solve the problem of producing dispersion curves for
curved anisotropic plates. Based on the Fourier series expansion of unknown
values, they presented a method for an organized and comprehensive solution
[Towfighi et al., 2002]. [Karpfinger et al., 2008] proposed a spectrum-primarily
based totally technique that employs spectral differentiation matrices to discretize
the underlying wave equations and solves the applicable equations as a
generalized eigenvalue problem. The eigenvalues are the wave numbers of the
various modes at a given frequency. This technique has the advantage of solving
the generalised eigenvalue problem without the need of special functions. As a
result, it is straightforward to employ in circumstances where traditional root-
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finding methodologies are highly limited or difficult to apply due to attenuating,
anisotropic, or poroelastic media.

2. Dispersion curves
There are three methods to plot the dispersion curves: the first is based on

numerical simulations, the second on data collected by experiment, and the third
on a specialized coding program like Matlab.

In this paper, a numerical simulation was performed for hybrid composite
plates (CARALL) to calculate the dispersion curves.
[Sorohan et al., 2011] describes a method for getting all dispersion curves using
simply numerical simulation and typical commercial finite element software. The
approach is simply a series of modal assessments for a representative piece of the
analyzed structure. Hora and Ervená [2012] provide Fourier transform methods
for obtaining Lamb wave dispersion curves (FT). In both the frequency and spatial
domains, propagating Lamb waves are sinusoidal. As a result, the temporal FT can
be used to transition from the time domain to the frequency domain, followed by
the spatial FT to the frequency-wavenumber domain, where individual mode
amplitudes and wavenumbers can be monitored. [Schöpfer et al., 2013] provide a
method for calculating dispersion curves using laser vibrometer measurements.
The matrix pencil approach is used after Fourier translating the measurement data
into the wavenumber domain.

Harb and Yuan [2015] offer a non-contact hybrid device consisting of an Air-
Coupled Transducer (ACT) and a Laser Doppler Vibrometer for profiling the A0
Lamb wave dispersion of an isotropic aluminium plate (LDV). The ACT applies
ultrasonic pressure on the surface of the plate. The pressure waves are re-fracted
into the plate in part. The LDV is used to calculate the excited Lamb wave mode's
out-of-plane velocity along the plate at various distances.

[Packo et al., 2014] shows how to compute dispersion curves and evaluate
numerical models for directed waves. The proposed technique employs the wave
equation and through-thickness-only discretization of anisotropic, multilayer
plates to calculate the Lamb wave properties calculate the Lamb wave properties,
the proposed technique employs the wave equation and through-thickness-only
discretization of anisotropic, multilayer plates. [Honarvar et al., 2009] present an
alternative strategy. [Honarvar et al., 2009] provide an alternate method for
obtaining the frequency equation's solution from its three-dimensional
representation in the form of dispersion curves. To begin, a three-dimensional
depiction of the frequency equation's real roots is shown. Making a correct cut in
the velocity frequency plane yields the dispersion curves, which are the numerical
solutions to the frequency equation. Many researchers employ iterative strategies
to solve frequency equations, such as linear Schwab and Knopoff [1970] and
[Mal, 1988] or quadratic Schwab and Knopoff [1970] interpolation [Haskell,
1953] and [Press et al., 1961] or extrapolation [Lowe, 1995] algorithms that are
extremely quick on a single root. When two roots are close together, such as at
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longitudinal mode dispersion curve intersections, the function changes sign twice,
making such schemes unstable. Slower but safer iteration techniques such as
Newton-Raphson, Bisection, and Mueller [Press et al., 1987] could be used to
solve the frequency equations. These techniques, however, are difficult, slow, and
time-consuming due to the huge number and diversity of operations, particularly
in multilayered media [Honarvar et al., 2009].

2.1 Investigated CARALL structure

The dispersion curves for the CARALL composite of the following general
configuration of corner layers, namely [Al, +θ5, Al]s, are calculated in this study.
The composite under consideration has 14 layers, four of which are AluminumAl-
loy1100 [Callister, 2002] and the remainder are Carbon/Epoxy prepreg [Rokhlin
et al., 2011]. Table 1 shows the mechanical and physical parameters of the
materials employed. CARALL's entire thickness is constant and equal to t=10
[mm]. The aluminum layers have a thickness of tAL=4 [mm], while the
carbon/epoxy layers have a thickness of tCE=6 [mm].

Table 1. Mechanical properties of the used materials
Material E1 [GPa] E2 [GPa] G12 [GPa] υ12 υ23 ρ [g/cm³]
AluminumAlloy1010 69 69 25.9 0.33 2710
Carbon/Epoxy 150.95 12.80 8 0.46 0.45 1610

Figure 1 depicts a multicouche composite material with a local (stratified)
coordinate system (x'1, x'2, x'3) and a global coordinate system (x1, x2, x3).
Assume that the elastic wave propagates along the global coordinate system's axis
x1. The angle defines the fiber's orientation as well as the local coordinate system
(couche) for each layer (figure 1). The dispersion relationships are computed for
the following coordinates: θ: =0º, 30º, 45º, 60º et 90º.

Figure 1. Layered plate for investigated CARALL with local (x'1, x'2, x'3) and
global coordinate systems (x1, x2, x3), where x1 is the direction of elastic wave

propagation.
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2.2 Numerical Examples

We give our calculations on the Al-fibermatrix(carbon/epoxy) system using the
Dispersion Calculator program in this part. (1) shows the stiffness matrix and the
density of carbon-epoxy of 1610 kg/m3 (in GPa).

First, we show how to calculate the various mode families on [Al,05,Al]s and
[Al,905,Al]s laminates with a thickness of 10 mm. Then, to demonstrate the
method's capability on the orientation angle variation, we compute the dispersion
curves corresponding to [Al,305, Al]s, [Al,455,Al]s, [Al,605,Al]s. Wave
propagation is always along 0 for coherence considerations.

2.3 Dispersion diagrams

Figures 2 and 3 illustrate the dispersion curves produced for fiber orientation
angles of 0° and 90°. The assumed frequency f and phase velocity Vp ranges
are 0 [kHz] ≤ f ≤ 200 [kHz] and 0 [m/ms] ≤ Cp≤ 20 [m/ms], respectively. The
phase velocity of the antisymmetric fundamental mode A0 (bending wave) is
substantially dependent on frequency in both circumstances, as illustrated for the
comparatively low frequency f < 30[KHz]. As a result, this mode is quite
dispersive. The basic horizontal shear mode SH0, on the other hand, is essentially
constant. In both cases, the phase velocity of the SH0 mode Vp=2.733 [m/ms] up
to frequency f=200[KHz]. For =0° and =90°, the phase velocity Vp of the
fundamental symmetric wave mode S0 (pressure or longitudinal wave) is equal to
(f=10[KHz]) Vp=7.51[m/ms] and Vp=4.35[km/s]. The initial greater shear
horizontal mode SH1 appears at the same frequency f 80[KHz] in both laminates.

(1)
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Figure 2: Dispersion curves for the investigated CARALL composite "fiber
orientation angle θ=0°"

Figure 3. Dispersion curves for the investigated CARALL composite "fiber
orientation angle θ= 90°"

Figure 4 displays the fundamental elastic wave modes A0, SH0, and S0 for 30°,
45°, and 60° fiber orientation angles. To improve clarity, the frequency range has
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been reduced to 0 [kHz] ≤f ≤80 [kHz]], with just the first upper modes visible. In
practice, the remaining higher wave modes are insignificant. The introduction of
higher modes significantly impedes adequate comprehension of the structure's
dynamic response.

The phase velocity range vp does not change. As can be shown, the fiber
orientation angle has no effect on the phase velocity of the fundamental
antisymmetric mode A0. At =60°, however, the phase velocity Vp of the
fundamental horizontal shear mode SH0 initially increases from Vp=3.05[km/s] to
Vp=4.4[km/s]. As the fiber orientation angle rises, the phase velocity of the
fundamental mode S0 decreases monotonically.

Figure 4. Dispersion curves (fundamental modes A0, SH0, S0) and fiber
orientation angles θ=30°, 45°, and 60° were produced for the examined CARALL

composite.

It should be noted that the frequency of coupling at which the initial horizontal
shear mode SH0 occurs does not change appreciably across all parameter values
studied, and the phase velocity is largely indifferent to the frequency f. As can be
seen, changes in the orientation of the fiber have no influence on the speed of
phase of the fundamental mode A0. The fundamental mode has the greatest
influence on the phase velocity Vp; when the parameter value increases, the phase
velocity increases monotonically. As previously stated, the effect of frequency
fluctuation is very small up to a specific frequency; nevertheless, the larger the
value of the fiber orientation angle, the greater the influence on frequency.

3. Conclusions
The current study looks at how the fiber orientation angle affects the dispersion

relationships of the CARALL composite. The examined composite material has
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14 layers, four of which are aluminum alloy and the remaining are prepreg
Carbon/epoxy. The total thickness of the considered composite material is
constant and equal to t=10 [mm]. The angle is the parameter with values ranging
from [0°, 90°] and the typical configuration of the CARALL composite is [Al,+θ,
Al]s. The gathered data may be summarized as follows. The existence of the upper
horizontal shear mode SH1 limits the frequency's useful range. The basic
antisymmetric mode A0 is almost insensitive to angle change in this region. The
phase velocity of the basic modes SH0 and S0, on the other hand, is parameter-
dependent. The unambiguous maximum is found at θ =60° in the first example,
and the phase velocity falls monotonically with the rise and decrease of 60°. In the
second situation (S0), the phase velocity is maximum at 0° and falls
monotonically as the parameter value increases.
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