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Synopsis 

Future waterborne transport operations in short-sea, sea-river, and inland waterways can be performed by 

autonomous vessels.  The automation of maritime shipping directly emphasizes reducing crew numbers, 

minimizing operational costs, and mitigating human error during the operation. Recent researches have focused 

on understanding autonomous navigation while the reliability of unattended machinery plant has received very 

little attention. This paper aims at developing a method for predicting the performance of failure-sensitive 

components that may be left unattended in autonomous shipping. The presented methodology adopts Bayesian 

Inference as the basis of the artificial intelligence for predicting maintenance schedules including repair, 

inspection, and irregular checks of unattended systems. A Multinomial Process Tree (MPT) is used to model 

the failures within the system, identify faulty components, and to predict their failure times. A real case study 

from a short sea voyage is adopted to demonstrate the application of the presented methodology. The results of 

this research will assist decision and policy-makers to prevent costly failures in Maritime Autonomous Surface 

Ships (MASS) and extend the service life of autonomous systems before any human intervention.  
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1. Introduction: Maritime Autonomous Surface Ships  

Future Maritime Autonomous Surface Ships (MASS) are expected to have a considerable impact on maritime 

trade. The European Waterborne Technology Platform (Waterborne TP) states that smart marine transportation is 

essential for safe, sustainable, and efficient shipping. For the development of effective autonomous operations, it 

is vital a ship’s ability to monitor the health of on-board systems, conduct prognosis to establish what is going 

wrong, and make informed. For the smart-ship revolution to become a reality and for the societies to confidently 

benefit from it, autonomous shipping must be trustworthy. Many tasks that are currently done by a ship’s crew 

cannot so easily be replaced by a machine within an unmanned vessel. This challenges the effectiveness of 

maintenance and repair procedures on broken equipment when the crew is planned to be eliminated by autonomous 

shipping. In the absence of the on-board crew, the operation will be susceptible to emerging risks and will create 

an unprecedented demand from system design including propulsion. For example, the machinery used in the main 

engine consists of many critical components that still are preserving the hard-to-replace skills and expertise of a 

crew. The most straightforward solution to minimize failures of machinery on unmanned vessels is to make all 

critical components redundant or eliminating the failure-sensitive moving components for the engine room by 

replacing the conventional diesel engine with batteries. However, these solutions are impractical (i.e. not very 

energy-dense) and expensive which leads to very limited demand for these solutions from ship owners. Further to 

this, the existing market and regulatory arrangements mainly focused on investigating how advanced control 

systems, navigation software, and online communications could control an unmanned vessel. DNV GL has 

initiated projects revolving around ship automation and autonomous control. The ReVolt project is one example 

that has designed as a proof of concept for autonomous ships. Other projects conducted with DNV GL involvement 

for the Advanced Autonomous Waterborne Applications Initiative (AAWA), led by Rolls-Royce, are investigating 

a wide array of aspects relevant to commercial unmanned shipping from technical development to safety, legal 

and economic aspects as well as societal acceptance, Rolls-Royce (2017). The project Maritime Unmanned 

Navigation through Intelligence in Networks (MUNIN) was a collaborative research project, co-funded by the 

European Commissions under its 7th Framework Program, with aiming to develop and verify a concept for an 

autonomous ship. Ships have multiple crew members that are employed to keep the engine room operating, and 

their absence may change the design of power plants significantly, Colon (2018). To determine the required 

changes in the machinery of autonomous ships is necessary to understand the reliability of the current engine 
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rooms. The AAWA states that the systems of an autonomous ship “should be resilient to failure and extended 

maintenance intervals”, Rolls-Royce (2017). The findings of MUNIN include that “Current preventative 

maintenance procedures need to be updated to ensure operability of components during the voyage”, Rødseth and 

Burmeister (2012). What is often neglected is the importance of trustworthy and enabling effective maintenance 

for the unattended system integrated with autonomous ships. Trustworthy can come from all levels of the system, 

including reliability, predictive maintenance, mitigating emerging risks that result in extending the operation time 

of autonomous ships without human intervention and reducing marine accidents by eliminating human 

interventions. This needs to incorporate the system’s reliability to rare and unanticipated disturbances and 

compromised functioning, as an integrated capability. This paper proposes a dynamic predicting approach for the 

reliability of the marine machinery systems when they are unmanned. A systematic framework is presented for 

modeling failures propagated through the machinery that results in operation disruption. The main concern is to 

understand the failure events that will put the system performance at risk without human intervention. To this end, 

a “closed-loop” reliability model is constructed to act as a framework for evaluating the degradation of the system 

under the influence of the disruptive event. A real case study of Maine Engine (ME) is adopted to demonstrate the 

application of the presented research methodology. The results highlight the importance of predicting appropriate 

hazard rate functions that is essential for understanding the performance of the system or redesign unattended 

machinery according to the maintenance activities. 

 

2. Reliability Assessment of Unattended Marine Machinery 

The focus of this study is on the machinery plant used on merchant ships. Generally, most of the ships run on 

two-stroke diesel engines, connected to the propeller via a gearbox. They are usually equipped with a single main 

engine and outfitted with at least two diesel generators and auxiliary engines. Both main and auxiliary engines are 

supported with a fuel oil system which cleans the fluid and prepares it for use. The engine is started with air from 

the compressor and cooled with a triple layer seawater-based cooling system. Mostly, they are equipped with a 

single rudder and propeller and one or two bow thrusters. Auxiliary systems need to keep the engines running, 

which will be in connection with the fuel oil system, lubrication oil system, cooling water system, starting air 

system, and exhaust gas system. A schematic overview of the power plant machinery is illustrated in Figure 1. 

The figure is only an overview of the critical components in the engine room, while the case study of this research 

will only consider the main engine, gearbox, clutch, stern tube and manoeuvring system for implementing the 

reliability assessment of unattended machinery as the example of the framework. The engine itself consists of 

many parts, but not all the components will be weak points if left unattended, Colon (2018).  

 
Figure 1: General overview of the machinery plant on-board autonomous vessels. 

 

 

No engine room can operate continuously forever, and it will experience break-down eventually. This means 

without human inspection an autonomous ship essentially needs to be able to evaluate the performance of the 

entire system and at least to understand faults, Colon (2018). To remove humans from operations, it is first essential 

to understand the impact of human intervention on critical components. It is therefore crucial to combine the 

empirical knowledge of expert engineers about maintenance processes with operational data obtained from 

previously performed activities. This will assist in the prediction of system health state and provide important 

information to establish optimal maintenance strategies for mitigating technical and operational failures. Despite 
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the advent of sensing and monitoring technologies that enable detection of component malfunction, not every 

failure can be predicted automatedly, and engineers play an imperative role in identifying and diagnosing faults in 

ship engine rooms.  These unbound observed values are an assistive source of data for the reliability analysis of 

the Unattended Machinery Plant (UMP). The inspections performed by engineers are important to estimate the 

level of component reliability according to the frequency required actions for maintenance schedules. In general, 

crew tasks can be divided into four major categories including: (1) irregular checking of equipment; this action 

leads to an understanding of whether something is wrong with the system or not. It is assumed that if a crew 

member spends more time on equipment, or deals with it more frequently, then that equipment is deemed less 

reliable; (2) performing planned maintenance; this action represents performing the repair on equipment according 

to the schedule. Therefore, the frequency of ‘Maintenance’ will be used here as a conservative indication of non-

critical failure in the system i.e. a part of the system is not in a nominal state, but performing maintenance can be 

postponed until a more convenient time; (3) repairing equipment that regrading as performing unplanned 

maintenance. This action represents performing major repairs before maintenance is planned. Therefore, the 

frequency of ‘Repair’ will be used here as an indication of a critical failure in the system which leads to stoppage 

in operation; (4) Continue operating safely. These four actions form the basis of the analysis in this article as they 

can give the best available indication of the reliability of machinery if the main objective is to remove human 

interruption. The frequency of each action is adopted from Colon (2018) to populate the reliability model.  

To understand how disruptive failure events, propagate through an unattended system and cause a drastic change 

in the operation from its nominal condition to degraded functioning of the critical components; it is essential to 

understand how the system will change from its nominal condition. For this purpose, the performance of such 

components will be modelled by introducing the Categorical Failure Functions (CFFs) dependent on operation 

time. Defining CFF is however not a very straightforward task since the process involves a great deal of uncertainty 

and unknown probabilities of the problem variables. Moreover, CFF should be defined in the context of 

multivariate activities that represent required “Repair”, “Maintenance” and “Check” actions for a group of 

components in a system. This will result in a nonlinear CFF with multiple unknown variables. As suggested by 

Heck et al. (2013), Multinomial Process Tree (MPT) is a good option to describe CFF for multiple failures in the 

form of categorical probability distributions. MTP models are simple, substantively motivated statistical models 

that can be applied to categorical data and represent the performance of operation globally. MPT models address 

categorical data based on the assumption that the sample frequencies observed for the Event-data set follow a 

multinomial distribution. In the case of categorical data, a multinomial distribution is the most general and 

theoretically neutral statistical distribution, which is a generalization of the binomial distribution to more than two 

categories. In a multinomial distribution, observations are independent and identically distributed (iid) over the 

categories and each category has a parameter representing the probability that a random observation falls into it, 

Batchelder and Riefer (1999). MPT will, express the probability parameters as a function of the system behavior 

for different circumstances and re-parametrize the multinomial distribution for an objective situation. Each branch 

of the tree represents a different hypothesized sequence of the processing stages of operation, resulting in a specific 

response category regarding the obtained knowledge from the system. Hierarchical Bayesian Model (HBM) is a 

statistical approach to reasoning under uncertainty using probability distributions of problem parameters and 

provides a tool for the propagation of uncertainty in risk and reliability analysis applications, Kelly and Smith 

(2009). Due to the complexity of systems in autonomous ships, any reliability prediction model needs to perform 

as a function that follows a desired trusted level. Recently conducted researches on reliability assessment of marine 

operations and predicting the availability of systems highlight the key attributes of HBM, namely the ability to 

incorporate qualitative information (i.e. evidence) into the parameters, Bahootoroody et al. (2019a,b), Khalaj et 

al. (2020), Leoni et al. (2019). In this study, HBM is employed to estimate the uncertainty of random variables 

associated with the MPT model. 

 

3. Method: Prediction of Disruptive Events 

In this study, an MPT model is constructed based on engineer tasks to prevent failures in the critical 

components of an unattended system. A processing tree consists of a single root and a collection of processing 

branches, each terminating in a particular response category. The necessary activities can be divided into four main 

categorial actions as Repair, Maintenance, or Check, and Do nothing/Continue operation. The general overview 

of the MPT model for predicting the functional capacity of the system is shown in Figure 2. The unknown 

parameters represent the probability of each processing branch  that will result in 

proceeding to the probability of a category . The categories  represent a nonlinear 

function that stands for the behavior of the system. As illustrated in the MPT model, the right-hand side of the root 

categories shows the critical failures and the rest describe non-critical or negligible failures (i.e. malfunctions), 

and the  is specifically considered as no failure in the system. In general, an MPT model can have paths (denoted 

by , ) leading to category . For each branch, there is a probability distribution over the directed 

links that proceed from that node, and these distributions are required to satisfy a certain functional form 

1 2{ , ,..., ,..., }i n   =θ ( ; )ijP B θ

( )P C
1 2{ , ,..., ,..., }i nC C C C=C

nC

ijB 1,2,..., ji I= jC
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underlying parameters, as suggested by Batchelder et al. (1999), that leads to a particular form for the branch 

probabilities, given by Eq. (1): 

       

  
1

( ; ) (1 )iks iks

S
a b

ij ij s s
s

P B   
=

= −θ   
 

(1) 

Where is the ith branch that leads to category  , furthermore, the parameter ij is always a positive number 

and also ,  are non-negative integers. For example for a    simple tree consist of two three node as 

1 2C A C → , there is two Branches as B11 1(C A) represents for 1  and B22 2(A C )→ represents for 2 . 

Therefore, the branch probabilities are defined as 1 0

11 1 2 1 2( ; , ) 1 ( ) (1 )P B    =   −  and vice versa. Once the tree 

structure of the model has been established, the probability of categories is given by 

      
 

(2) 

Where jI is the number of branches ending in category j, and  The essential condition for the final 

probabilistic structure of the model are that it needs to satisfy that  , for all the processing branches , 

which allows each parameter to vary independently between [0,1]. The developed MPT model of the machinery 

performance is presented in Figure 2. 

  

  
Figure 2: Conceptual method for performance analysis of unattended machinery subject to random disruptions. 

The circles show the uncertain condition of the system due to experiencing random disruptions such as abnormality 

or breakdown in an operating component. The probability model consists of two main parts, firstly modelling the failure 

by running the MCMC package for predicting unknown parameters from available observation event data, and secondly 

running Monte Carlo simulation for predicting the frequency of required actions (e.g. maintenance or repair) based on the 

posterior distribution derived from Bayesian Inference. The parameter is represented for the observation of event data. 

Generally, a system may need a k number of actions to maintain its components in a reliable condition. Therefore, the 

observation parameter will be a set of frequencies Kn,k for each action in connection with the related critical component. 

Parameter n is defined as the total number of critical components. Each set of frequencies will describe the outcome of the 

required action as Cjk for a particular component j=1,…,n, and kth observation. Node C is the nonlinear function for predicting 

the probability of categorial actions ( , )C θP , whileθ is the unknown and unobservable parameters in the MPT. Then Monte 

Carlo Simulation will set for N trials to populate the posterior distribution obtained from MCMC for estimating failure events 

in each consecutive trial. Subsequently, the set of variables 𝑘 is the observation that is connected to the categories C 

for monitoring performance of critical system components, for instance, the frequency of repair planned 

maintenance, or unregular check for the gearbox in the main engine. The lead node C is defined as the nonlinear 

categorical failure function that forms system behaviour in connection with the branches variables 𝛉 𝜖 𝐈. To set up 

the hierarchical Bayesian inference for the proposed model Figure 2, first, it is needed to identify the prior 

distributions of unknown parameters of process branches 𝛉. Due to the shortage of engineering data and physical 

information regarding the details of the entire process, non-informative prior distributions must be adopted for 

inference, as recommended by previous researches Batchelder et al. (1999) and Heck, et al. (2018). Based on 

the recommendations made by Kelly, et al. (2009), in this study the 𝐵𝑒𝑡𝑎(𝛼, 𝛽) prior distribution is used with 
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1 =  and 1 = , that simply represent uniform distributions to remove any bias in addressing the unknown 

parameters as well as making the inference easy to implement and to utilize new evidence through multinomial 

distribution. Assuming independent branches, the probability for a category 𝐶𝑖 is given by summation of branch 

probabilities followed by Eq. (1). This will allow constructing of the categorical likelihood function as a platform 

to feed the observation in the model. Sine the categorial functions are assumed to be indirectly depended 

distributed, then the likelihood can represent by the multinomial distribution. As the concern is to understand the 

behaviour of the whole system then the final likelihood should be based on the augmentation of all possible 

observations, that will result in a product of k number of multinomial distributions for n failure sensitive 

components with the conditions in categorial actions C and unknown parameters of disruptions 𝛉. The open source 

Monte Carlo Markov Chain (MCMC) WinBUGs software package, developed by Spiegelhalter et al. (2003), is 

used to predict the marginal posterior distributions of parameters and to estimate the system hazard rate needed 

for evaluation of system reliability and the possibility of extending maintenance intervals of UMP. The next section 

presents a case study to demonstrate the application of the presented methodology. This includes the recommended 

procedure to implement the model for estimating unattended system reliability, as presented in Table 1. 
 

Table 1: Implemented procedure for running MCMC simulations. 

Step Task 

1 Construct the categorial process tree (Figure 2) 

2 Identify branches, I and unknown parameters, 𝛉 for intermediate nodes 

3 Identify each root ending to the leaf nodes, 𝑩𝒊𝒋  

i is the associate categorial action and j, the relative branch to reach lead node 

4 Determine branch probabilities using Eq. 1 

5 Identify all i number of category actions Ci in the lead node 

for repair, planned maintenance, and unregular check items  

6 Derive categorial failure function P(C) for all root probabilities using Eq. 2 

7 Derive categorial Likelihood function; 𝑳(𝑘, 𝑛|𝐂, 𝛉) ~ ∏ multinomial(𝑘, 𝑛, 𝐂, 𝛉)𝑘
1   

8 Derive priors for each random unknown parameter; Beta (𝛼, 𝛽) 

9 Run MCMC for estimating the posterior distribution 𝑃′(𝐂, 𝛉|𝑘, 𝑛, 𝛼, 𝛽) ~ 𝑳(𝑘, 𝑛|𝐂, 𝛉) . 𝐁𝐞𝐭𝐚 (𝛼, 𝛽)    
10 Predict the hazard rate function for the performance of the system H(trials) ~ 𝑃′(𝐂, 𝐧)/ ∫ 𝑃′(𝐂, 𝐧) 

, where the trials are performed per each consecutive operation day 

4. Case Study: Unattended Main Engine 

To demonstrate the application of the method, a case study is used involving a reliability assessment of the 

critical components of the Main Engine (ME). This study considers a MAN B&W K98MC-C7-TII which is a two-

stroke diesel engine with an output power of 36 to 84 MW; suitable for most large-size vessels. The structure of 

event data and prior observations is obtained from the survey analysis conducted by Colon (2018). The system 

breakdown is designed to ensure retaining the most critical components that impact operations directly. This 

criterion is suggested by Colon (2018) to exclude any parts that can only be repaired or replaced during a major 

overhaul. Accordingly, by creating a list of the critical machinery and equipment breakdowns, the analysis starts 

with identifying the frequency indices of crew activities on each item. This is done by processing the data acquired 

from several expert engineers and presented by Colon (2018). A summary of the observed frequencies is presented 

in Table 2. Three main actions are considered for perceiving the frequency index of expert engineer feedbacks 

about monitoring the machinery namely irregular Check, planned Maintenance, and unplanned Repair. To be more 

conservative about the performance of unattended machinery under unexpected disruptions, the frequency 

observations of both planned maintenance and unplanned repair are considered as the critical failure event. In 

Table 2, Ci, i=1,…,9 are categorized for doing maintenance or repair actions while c10 is defined as an irregular 

check of critical items. In general, failure of each component may affect the operation of all other sensitive 

components in ME; however, from the observations, no event-data were reported. Then the off-diagonal arrays 

categorial actions matrix are left zero. 

Recently, BV (2019) and Colon (2018) have introduced the Frequency Index (FI) to be used in the risk and 

reliability assessment of autonomous ships. The index is defined as the occurrence frequency of an event per year 

per ship. The highest values of FI = 5, 4, and 3 represent events occurring ‘multiple times per day’, ‘once a day to 

once a week’ and ‘once a week to once a month’, respectively. While the lowest values of FI = 2 and 1 represent 

‘once every 3 months to once a year’ and ‘once every 5 to 10 years’, respectively. The highest value of FI ≥  6 

indicates the frequency of required actions (i.e planned or unplanned maintenance and checks) that the component 

may need to be inspected or repaired more than once per day.  More details about the adopted FI ranges and their 

descriptions are provided in BV (2019) and Colon (2018). BV (2019 uses a 0 to 7 FI scale to interpret the index 

while Colon (2018) uses 0 to 5 scale.   

 

Table 2: Frequency index for selected critical components and multiple maintenance actions (based on expert 

crew). 
  Repair or Maintenance Check 
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Cylinder cover C1 
3 

 
4 

Gear box C2 
3 
 

3 

Stern tube seal cover C3 
6 

 
5 

Piston cylinder C4 
3 

 
1 

Manoeuvring system C5 
3 
 

4 

Clutch C6 
4 
 

2 

Attached pump C7 
4 

 
3 

Driving gears C8 
3 

 
2 

Turning gear and 
tuning wheel 

C9 2 1 

 

Interpreting the definition of FI 

FI ranges 

Frequency 

(Per ship per 

year) 

Definition 

FI≥6 <1000 Multiple times per day 

4-5 100 Once a day to once a week 

3-4 10 Once a week to once a month 

2-3 1 Once every 3 months to once a year 

1-2 0.1 Once every 5 to 10 years 

1 0.01 Once in a ship’s lifetime 

1 > 0.001 Once in a fleet’s lifetime 

 

 

To model the performance of unattended ME, an MPT model is constructed based on all failure-

sensitive components that understood by engineer tasks aiming to prevent failures in the system. The 

necessary activities are divided into two main categories as repair or planned maintenance (represented 

by Ci) for i=1,…,9, or check (represented by C10). The likelihood of a performance deviating from the 

normal (safe) condition is calculated using Eq. 1 and Eq. 2. The unknown parameters 𝜃 represents the 

occurrence probability of each processing branch which will ultimately lead to the occurrence of the 

event category C. As illustrated in the MPT model in Figure 3, the right-hand side of each branch 

represents critical disruptions while the left side describes non-critical conditions in the operation. 

According to the descriptions, the category Ci needs major actions due to its critical impact on the 

operation, while C10 category requires urgent inspections of the involved components.   
 

 
Figure 3: Designed MPT model for performance analysis of unattended components listed in Table 2. 

   

The simulations performed for 200 operation days with the assumption that all critical components are in their 

perfect condition at time zero, and the forthcoming days the performance simulated to evaluate how long the 

components are enough resilient to survive the critical disruptions in the operation. The MPT model is populated 

by the frequency data of repair, maintenance, and check that is obtained from expert actions for the manned vessel 

(colon, 2018). This survey analysis was performed by colon, (2018) to observe the faulty components for the 

application of unmanned vessels. In the present paper, these event data are adopted to evaluate the extended 
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duration that unattended machinery can continue to operate without any actions by human force is needed. It must 

be noted that disruption is known to be any condition that the system operation deviates from non-nominal and 

may need either repair or planned maintenance for recovery, while in the faulty condition the system may need 

urgent check and the operation will remain in the nominal state.  Figure 4 presents the degradation probability of 

each failure-sensitive component in the unattended ME due to observing random disruption. It is known that 

system reliability will be reduced drastically as the major disturbance is spread in any of that critical equipment.  

It should not that the expected probability of failures predicted over 1000 days of operation. Moreover, the 

probability of occurrence for the lower line (i.e. normal operation) represents the chance of failure for the critical 

components without any given conditions, While the upper line (i.e. non-nominal operation) shows the 

probabilities given that the operation observe major disruption in the system, such as leaking in the stern tube. 

Therefore, in general the expected probability of failure for the components like stern tube is almost 10 percent 

while as the major disruption occurs then the probability drastically will increase up to 70 percent, though it is 

rare. These values are the categorial failure probability that allows assessing of the maintainability of operation 

for the likelihood to experience entire system failure without human involvement in the operation. For this purpose, 

the survival function of the main engine is predicted according to the perceived posterior distribution of 𝑃′(𝐂, 𝐧). 

Figure 5 highlights that the main engine is not reliable enough to be left unattended at least after 100 days of 

operation as the system will lose 20 percent of its maximum reliability. The upper and lower bound of the 

survivability of the main engine is also presented with dots to show the extent of uncertainty associated with the 

estimated reliability of unattended machinery.   

 

Figure 4: Probability of deviation from nominal operation to non-nominal condition due to major disruptions. 

 
Figure 5: Predicted survival function of the entire main engine system without human intervention (Markers in 

the plots represents for the uncertainty of predicted failure rates in time for different confidence intervals). 

It is also necessary to determine the trusted period that the system can be confidently left unattended to operate in 

with an acceptable level of reliability. For this reason, the hazard rate function of the system obtained for the first 
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200 days of operation is calculated. The data presented in Figure 6 suggests that system degradation starts to 

become critical after 216 hours of continuous operation. It is also worth to mention that the system is highly 

expected to observe at least two major disruptions by approaching its 500 hours of the operation. It can be 

concluded that the current main engine is reliable enough to be left unattended for 9 days. Figure 6 shows that the 

system is expected to remain in this state until the 500th operation hour; however, it may be faced with failure or 

unexpected stops any time after the 10th operation day. The colored circles represent the uncertainty associated 

with observing the failure rate in the operation. 

 
Figure 6: Hazard rate of the unattended main engine and the trusted period before human intervention (Markers 

in the plots represents for the uncertainty of predicted failure rates in time for different confidence intervals).  

 

5. Conclusions  

In this paper, a new method is presented for the reliability assessment of unattended machinery in autonomous 

shipping.  A systematic framework is developed for understanding failure events and estimating a trusted period 

of operation in which the operators and maintenance crew can be removed from vessels. A multinomial process 

tree is adopted for modelling categorical failures in the system, and Bayesian inference is employed to predict the 

uncertain parameters involved within the process tree. The event data obtained from the expert engineer actions 

(Repair, Maintenance, and Check of the critical components) due to the advantages of providing useful information 

to the performance evaluation of the system, as well as feedback for identifying and amending the flaws in the 

design or operation of components. It is realized that for the particular ME examined in the case study, the 

operation can reliably be continued without human intervention for nine days of continuous operation, while it is 

prone to have critical disruption within 40 days. The results of this study demonstrate that the proposed method 

can be significantly helpful for mitigating the risk of failure in autonomous shipping and applying extensions of 

interval time for maintaining unattended machinery on-board unmanned vessels. 
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