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ABSTRACT
SpiNNaker is an efficient many-core architecture for the real-time
simulation of spiking neural networks. To also speed up deep neu-
ral networks (DNNs), the 2nd generation SpiNNaker2 will contain
dedicated DNN accelerators in each processing element. When re-
alizing large CNNs on SpiNNaker2, layers have to be split, mapped
and scheduled onto 144 processing elements. We describe the un-
derlying mapping procedure with optimized data reuse to achieve
inference of VGG-16 and ResNet-50 models in tens of milliseconds.

KEYWORDS
Neural algorithms and machine learning, SpiNNaker2, deep neural
networks, neuromorphic hardware

1 INTRODUCTION
Neuromorphic hardware provides efficient realizations of spiking
neural networks (SNNs) and promises unprecedented energy effi-
ciency for artificial intelligence [1, 2, 11]. Yet, SNNs lack the accu-
racy and robustness of commonly applied deep neural networks
[8]. To overcome this gap, the 2nd generation SpiNNaker system
integrates hardware accelerators for DNN layers in the individual
processing elements (PEs). This flexibility allows to choose between
spiking and deep neural networks depending on whatever is more
efficient for the task at hand. This paper presents a systematic distri-
bution strategy for large convolutional neural networks (CNNs) on
SpiNNaker2, achieving inference times and energy efficiency that
are orders of magnitude better than DNN applications on previous
SpiNNaker systems [5, 9, 12] and competitive with dedicated DNN
chips [7].

2 SPINNAKER2 ARCHITECTURE
The Spinnaker2 system is a many-core architecture conceptualized
for the acceleration of neuromorphic processes [4, 6]. It consists of
36 Quad Processing Elements (QPEs), each containing 4 PEs. QPEs
are arranged on a 2D grid and connected over a Network-on-Chip
(NoC) with 4 neighbouring modules (see figure 1). Each NoC lane
provides a maximum throughput of 16Byte per clock cycle. Data
can be provided over several interfaces including 4 LPDDR4 DRAM
connections. Each PE module includes a general purpose ARM-
Cortex-M4F core, 128kByte SRAM for data and instruction memory,
and specialized accelerators adapted for specific operations [4].
For the context of DNN layers we included a broadcast output-
stationary 16x4 2D MAC array. It supports SIMD execution of both
2D convolution (CONV) andmatrix multiplication (MM) operations.
∗Both authors contributed equally to this research.

The accelerator can be started directly from the ARM core within
the PE or from the global NoC. It independently fetches the input
activations from the local SRAM and the weights via the NoC from
a different PE, computes the CONV or MMwith 64 MAC operations
per clock cycle, and writes back the results to the local SRAM. The
memory bandwidth amounts to 16 Bytes per clock cycle from the
NoC and 16 Bytes read andwrite to the SRAM. Furthermore it reuses
input feature map values by shifting them, therefore decreasing the
feature map fetch from 16byte/clk to 4byte/4*clk after the initial
16byte memory access [7]. To mitigate the delay from accessing
other global SRAM cells NoC packets are prefetched before being
processed. In this work we assume that all input operators are
quantized to 8bits. In the final SpiNNaker2 chip the accelerator will
support 16bit and 8bit input resolution and 32bit, 16bit and 8bit
output resolution both in signed and unsigned variations. Further
optional ReLU activation can be toggled. In the current version all
other operations of deep networks like ReLU or max pooling are
computed on the ARM core. By including the MAC array into PE,
which increases silicon area by around 7% in 22nm FDX technology,
the SpiNNaker2 becomes a competing-with-state-of-the-art DNN
inference chip with a compute capacity of 4.6 TOPS and estimated
energy efficiency of up to 6.4 TOPS/W [4].

3 MAPPING DNNS ON SPINNAKER2
We optimize our mapping of DNNs for low latency processing
of single input samples. Therefore, layers are processed one after
another on the whole chip, weights are fetched from DRAM, and
intermediate feature maps are kept on-chip whenever possible. To
reduce unnecessary data movement, original operations like CONV,
activation function, memory padding, pooling, and quantization
are fused into operation blocks executed on the same PE.

Due to limited PE SRAM and the highly-distributed nature of the
given hardware system, full utilization of memory and processing
units requires the splitting of resource-intensive tasks into inde-
pendent pieces. The splitting is done on CONV, MM and matrix
addition (MA), and other operations follow their resulting partition
scheme. CONV layers are split first along output channels, then
along width and height of ouput maps and finally along input chan-
nels, whereas MM is split along input width and then output width.
There is no split priority for MA.

Furthermore the SpiNNaker2 architecture greatly benefits from
hardware-aware meta-compiling of the task to avoid communica-
tion congestion and allows a faster and power-economical execu-
tion through data reuse and data locality strategies (see figure 2).
We divided the system hierarchically into QPE-blocks each consist-
ing of 4 QPEs. Furthermore, QPE-blocks were grouped into double
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Figure 1: SpiNNaker2 chip overview

QPE-blocks. Through data-reuse inside a QPE unit, one PE can
fetch data from other PE SRAM cells. This can complete another 12
input-weights combinations in each QPE without having to fetch
data from outside the QPE. This relaxes transmissions between QPE
units and provides a significant increase of data bandwidth during
computation. For data-reuse inside QPE-blocks, double QPE-blocks
and inside the whole array, QPE units need to exchange data with
each other and write into their local SRAM before computation. Via
mapping into the hierarchical structure, data fetches are kept as
local as possible, reducing transmission load on the NoC. Further-
more, the introduction of storage QPEs helps partly to overcome the
bottleneck caused by the DRAM by keeping intermediate results
on-chip. For CONV, after external fetch, only the weights flow via
NoC inside SpiNNaker2 to ensure that each local part of the input
feature map convolves with all the available on-chip weights. For
the case of MM data reuse will decrease the overall workload of all
MAC arrays and increase that of all ARM cores. Therefore only the
storage QPE strategy is used for MM. The same applies for MA.

4 RESULTS
As the SpiNNaker2 chip is not yet available, we developed a Python
simulator that replicates the timings of computation steps (ARM
and MAC array) and data transfer (SRAM, NoC, DRAM). As bench-
marks we simulated VGG-16 [10] and ResNet-50 model [3] with two
different mapping strategies: The baseline method splits each layer
into small pieces that can be computed in a single PE and reads
the inputs and weights from DRAM for each piece. The optimized
strategy employs the data reuse strategies shown in the previous

Figure 2: Data-reuse through NoC in SpiNNaker2

Figure 3: Overall processing time

section to reduce DRAM access. The inference time is shown in
figure 3: For both models the optimized approach is more than
3 times faster than baseline and performs classification of single
images in 43.5 ms resp. 19.5 ms. Note that the time used for fetching
input/weights and writing results are included in CONV and MM.
The simulation results were obtained with 500 MHz NoC frequency,
250 MHz PE clock and 2 GByte/s DRAM bandwidth.
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