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Abstract— We are now living in an age of AI enabled smart homes, autonomous vehicles, and chatbots. Researchers 

are coming up with complex AI algorithms that are useful in various areas like speech and image recognition, even 

surpassing human accuracy. Increased complexity, growing competition and splurge in demand of AI enabled devices 

constantly put pressure on vendors to improve the chip performance and deliver the product as early as possible. System 

designers tend to use simulation techniques to quickly analyze and improve their model before implementing it in silicon. 

But till now these simulation techniques have not been leveraged for the AI domain. This paper proposes a novel framework 

to leverage Virtual Prototyping for early design exploration of power and performance targeting AI centric designs. We 

have used this framework to model a known Convolutional Neural Network, resnet-18 and simulated it on NVDLA 

hardware model. In our case study, we were able to determine key bottlenecks in the hardware design and were successful 

in our goal of reducing the inference latency to 5ms and minimizing the total energy and average power consumption. 

   Keywords—Deep Neural Networks, Virtual Prototyping, Design Space Exploration, Hardware Acceleration 

I.  INTRODUCTION  

In the last few years, a lot of effort has been put to improve the vision-based algorithms and natural language 

processing. Researchers have been able to surpass human accuracy in tasks such as scene understanding, object 

detection, speech recognition. Deep Neural Network (DNN) has been the key driving force behind a broad 

spectrum of artificial intelligence applications. Unlike its predecessor, DNN automatically detect patterns and 

extract features from the training data. However, training these models have become a challenge as they require 

immense amount of data and computation power. Conventional CPUs have not been very helpful because of its 

inherent design while GPUs have fairly been successful in parallelizing the computation with its large number of 

processing cores and high data bandwidth thereby reducing the total inference time. Thus, in order to further 

improve the performance of a chip we require AI algorithm specific hardware accelerators to efficiently process 

DNN. 

 

Depending upon the target platform, data center or edge, designing AI chips has forced companies to explore 

multiple factors such as power usage, memory bandwidth, data storage, area of the chip while having tradeoff of 

performance of AI algorithm and cost of a chip. Growing competition and desire to meet the requirements of AI 

algorithms has put a lot of pressure on companies to release new products in a short span of time with improved 

performance. Simulation techniques such as Virtual Prototyping (VP) has been widely used by the designers to 

efficiently model and deploy the architecture of a chip. Virtual Prototyping gives flexibility to a system architect 

to vary different parameters of a virtual hardware chip to get an optimal design in a short span of time. However, 

this technique has not been leveraged in designing hardware for AI algorithms. 

 

The key contributions of this paper are as follows: 

1. Translating AI algorithms into taskgraph based workload models. This is achieved by a novel 

framework which automatically generate taskgraphs from prototxt file. 

2. Taskgraph based workload models are used for design space exploration of AI centric hardware. 
3. A case study to present exploration of Resnet-18 (a CNN algorithm) running on NVDLA hardware 

model to achieve a target inference latency of 5 ms, with minimum power and energy consumption.  

 
The rest of the article is organized as follows. Section II discusses the related work, Section III covers the 

framework and the Section IV covers the case study. 
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II. FRAMEWORK DESCRIPTION 

Early design exploration for AI centric hardware is a non-trivial task. It requires knowledge of both AI algorithms 

and hardware quite early in the design cycle. The lack of any comprehensive technique which can explore the AI 

algorithm in context of next generation AI hardware is the key motivation of this paper.  

This paper proposes a framework:   

• To create abstract baseline operators employed in AI algorithms  

• To create performance model of AI algorithms from diverse set of inputs, using the abstract baseline 

operators.  

• To create AI centric hardware, characterized with power and performance attributes.  

• To explore AI algorithms in context of AI centric hardware.  

 

The above aspects are briefly discussed as follows: 

A. Creation of abstract baseline operators employed in AI algorithm 

Baseline operators like Convolution, BatchNorm, AveragePool etc are the building blocks of any AI algorithm. In 

order to represent a performance model of an AI algorithm, it is required to first characterize baseline operators in 

terms of compute and memory load. Abstract baseline operator represents the load on the system in terms of 

processing cycles and read/write bytes and is not targeted for functional correctness.  

 

Fig 1: Abstract model of Convolution Operator created in Synopsys Platform Architect Ultra 

Figure 1 shows Convolution operator, which is one of the most significant operators for any CNN algorithms. As 

depicted in the figure, the parameterization allows the operator to be configured for any set of inputs. Likewise, 

there are other essential operators in the AI Operators library. 

B. Creation of AI algorithm workload using baseline operators 

Creating taskgraph-based performance model of any AI algorithm can be a non-trivial task, as it requires an in-

depth knowledge of the algorithm. This paper proposes a mechanism to automatically generate taskgraph from any 

AI algorithm such as resnet-18, vgg16 etc. This enables quick exploration of different algorithms for a hardware 

engine. With reduced turnaround time, a performance analyst can focus on optimizing the AI-centric hardware 

architecture.  

AI workload model can be generated from a diverse type of inputs like software traces, profiler traces etc, however 

this paper focuses on creation of workload model from prototxt file format. Prototxt file is a text file that has 

structural information of a neural network in serialized fashion. It captures the complete topology of a neural 

network, where each layer is described with its attributes and connectivity with top and bottom layer. 
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Figure 2: Snippet of the prototxt file on the left side and the translated workload in Synopsys Platform Architect Ultra on right hand side. 

The framework provides a parser which automatically translates the algorithm, as captured in the prototxt file into 

taskgraph-based workload model. The parser scans the description of each layer, (in terms of its input interface, 

load attributes and output etc.), to create, connect and characterize an equivalent baseline operator. Once complete, 

a connected taskgraph is created (Figure 2). 

AI Workload model can be checked in terms of its correctness and bottlenecks by simply simulating the workload 

model without any hardware design. To see the fidelity of the workload model, framework provides a mechanism 

to configure number of resources. Depending upon the number of configured resources, which by default is infinite, 

the elasticity of the workload model can be observed. It is also helpful in determining maximum theoretical gain an 

AI algorithm can achieve. 

C. AI centric hardware engine 

Due to popularity of AI algorithms in various domains, many hardware platforms have special features that target 

AI algorithm processing. For designing the next generation AI platforms, it is important to understand the compute 

and memory characteristics of an algorithm. This paper talks about a mechanism to model a configurable 

application-specific accelerator for improved throughput and energy efficiency. 

 

For instance, a fundamental component in AI-algorithms, especially in neural networks, is multiply-and-add 

(MAC) operations, which can be easily parallelized. Techniques like vectorization (SIMD) and parallel threads 

(SIMT) can be highly instrumental in increasing the performance of the system. Furthermore, high parallel 

compute requires high memory bandwidth. 

 

Here AI-centric hardware engine is modelled as Virtual Processing Unit (VPU) which is a composition of 

processing and memory resources. The process engine (PE) models the computation delay while the memory 

driver (MD) models the memory traffic in terms of read and write bytes. A VPU is configurable to have n-sub 



 

4 

 

resources. It is also possible to construct hierarchies of heterogeneous or homogeneous VPUs to create a 

subsystem. To further characterize a VPU for performance studies, attributes like operations-per-cycle, stochastic 

cache, branch prediction, pipeline depth etc. can be enabled. 

 

Systematically building a configurable hardware engine is of great importance while catering to different design 

strategies. This allows a performance analyst to capture families of designs with different trade-offs in capability, 

performance and energy efficiency. Such design flow for multiple architectures also facilitate re-use and 

comparison of configurable hardware engines. The AI algorithms are evolving very rapidly and to be ahead in 

competition the architecture must be optimized for a wider set of algorithms.  

 

Synopsys Platform Architect Ultra provides a structured way to exercise various configurations for what-if 

analysis and optimization. The capability to record and visualize power & performance statistics across multiple 

simulations enables easy comparison of parameterized designs. Case study presented in the next section utilizes 

these features to optimize an AI SoC.   

III. CASE STUDY 

This section covers a case study to demonstrate the AI Exploration framework for early architecture exploration. 

The study explores power and performance metrics of Resnet-18 algorithm executing on an NVDLA accelerator. 

The aim of this study is to achieve an inference latency of 5 ms as the key performance indicator (or KPI), along 

with power and energy as other optimization objectives.   

A. WorkLoad Model 

Resnet-18 [1] is a CNN model with 18 layers trained on ImageNet dataset comprising of 1 million images. The 

network can classify up to 1000 different objects and is a member of a family of CNN model which beat the state 

of art accuracy in image recognition (Imagenet large scale visual recognition challenge) in 2015. This family of 

CNN can be made deeper as it doesn’t suffer from vanishing gradient problem and uses shortcut connection to 

improve the overall accuracy of the model. 
 

Workload model of Resnet-18 is generated by parsing the prototxt file (Figure 3) and deducing the load 

characteristics in terms of compute and memory along with connectivity of each layer/operation. Synopsys 

Platform Architect Ultra tool automates the generation of workload model and provide plugins to further refine 

the model. For each operation/layer in the algorithm, there is a representative operator available in the tool. 

Operations like convolution, pooling etc can be easily modelled with these operators while creating the workload. 

 

 
Figure 3: Resnet-18 performance model generated in Synopsys Platform Architect Ultra 

 



 

5 

 

B. Hardware Model 

 
 Figure 4: Real NVDLA core and equivalent Hardware model (blue boxes) created in Synopsys Platform Ultra 

 

The Hardware model of the NVDLA in Platform Architect Ultra (Figure 4) represents the 5 main resources of the 

real NVDLA [5]: 

- The Convolution core 

- The Single Data Point Processor (SDP) 

- The Planar Data Processor (PDP) 

- The Cross-channel Data Processor (CDP) for local response normalization (LRN) 

- The Data Reshape Engine 

 

In this system, compute and DMA engines are modelled through VPU(s) and interconnects are represented by 

AXI bus. The design also contains a global SRAM and a global DDR memory controller. 

 

Each operator is assigned a hardware resource to execute upon by mapping it to the appropriate VPU in the design. 

Initial run of a simulation, where Resnet-18 workload model is mapped to NVDLA accelerators with default 

configuration, gives a starting point to further analyze the system. 

  

 
Figure 5: Different traces obtained with simulation executed with Initial Configuration 
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As seen in the figure above, the first trace depicts execution of a Resnet-18 taskgraph. The trace shows the activity 

of compute and memory centric tasks. Tasks in_image_fetch, in_kernel_fetch and out_feature represents the 

memory accesses while processing task represents the compute part of an operation. The prolonged activity of 

processing task shows that, in its default configuration, the performance of NVDLA is processing bound. This is 

also evident from the second trace which shows inactivity on memory ports for a long period of time. As a 

consequence, the DDR memory is under-utilized along with bus throughput and the number of outstanding 

transactions being low. 

 

To accelerate the computations in the system, number of operations need to be parallelized by increasing the 

SIMD width. This can be easily exercised by setting up simulation sweep over parameters that configures the 

number of operations per cycle in the processing element. 

 

 
Figure 6: Resource utilization traces for different SIMD width 

 

The result in Figure 6 shows the impact of SIMD width on the total execution time for ResNet-18 and the 

utilization of the DMA and the processing elements of the data path. As evident from the results, the performance 

is dominated by processing bound tasks until SIMD width is 32. With SIMD-64 and SIMD-128, the processing 

aspect seem to be reducing with memory bound activity dominating the performance. While doubling the SIMD 

width from 64 to 128, the performance gain looks to be diminishing.  With this, it can be inferred that both SIMD-

64 and SIMD-128 are promising data points. Our next steps shall be to optimize the memory path. 

 

In the next step we refined the analysis by sweeping over different parameters in the hardware. Impact of the 

burst-size, the number of outstanding transactions, the DDR memory speed, the clock frequency and the SIMD 

width of the data path was studied. Following table shows the different sweeping parameters and the values that 

are tried to get the best scenario. 

 

Sweeping Parameter Sweeping Values 

Burst size 16, 32 

Outstanding transactions 4, 8 

DDR memory speed DDR4-1866, DDR4-2400 

Clock frequency of data path 1, 1.33, 2GHz 

SIMD width 64, 128 operations per cycle 

 

Synopsys Platform Architect Ultra allows to sweep different parameters and run the simulations in parallel to 

extract the top-level power and performance metrics. Figure 7 shows the results of some of scenarios (primarily 

of 128 SIMD width) created from different values of sweeping parameters. 
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Figure 7: Results summary of different simulations with different values of sweeping parameters 

 

 

Pivot chart in Figure 8 shows the results from sweep of the different design parameters. The blue bars represent 

the total execution time for processing one frame of Resnet-18. Burst size seems to be most significant parameter, 

followed by the DDR speed, and the width and the clock frequency of the PE. The number of outstanding 

transactions has only a minor impact on performance (light vs. dark blue bars).  

 

 
Figure 8: Pivot Chart to show results summary of different simulations with different values of sweeping parameters 

 

The first step is to check, which configurations fulfill the KPI of 5ms interference latency. This limit is shown by 

the red line.  For further analysis we only focused on the configurations, which satisfy the performance 

requirement. 
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Figure 9: Filtered Pivot Chart to show configuration that meets the performance requirement 

 

The above figure shows the filtered pivot chart for all configurations that meet the performance requirement. In 

addition to the blue bars for the total execution time the green line shows the average power dissipation in mW 

and the orange line shows the aggregated energy consumption in mJ. The power/energy consumption numbers 

have been achieved by mapping the UPF3.0 compliant power models on different blocks in Hardware. 

 

The energy consumption is flat, so performance gain and increased power seem to level out over the different 

options. The 2GHz clock (results on right side) shows higher performance, but also drastically higher power 

consumption, especially for the wider data path. The 2nd configuration on the left shows the lowest power, with 

latency well below 5ms limit. Thus, the goal of 5ms latency with lower power and energy consumption is achieved 

with following configuration: 

 

Hardware Parameter Value 

Burst size 32 bytes 

Outstanding transactions 4 

DDR memory speed DDR4-1866 

Clock frequency of data path 1GHz 

SIMD width 128 operations per cycle 

 

IV.  CONCLUSION 

In this paper we discussed the exploration of AI centric hardware engine, by automatically creating AI workload 

model from standard prototxt schema in conjunction with a characterized AI centric hardware engine. We also 

demonstrated a goal directed power and performance study to achieve an inference latency of 5ms with optimized 

power consumption. 
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