
EasyChair Preprint
№ 4463

Pattern Recognition using Singular Value
Decomposition (SVD)

P Pankaj, Brijesh Kumar Markandey and Arun Kumar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 26, 2020

Pattern Recognition using Singular Value
Decomposition (SVD)

Pankaj
(MIT2020114)

Brijesh Kumar Markandey
(MIT2020115)

M.Tech Information Technology
Indian Institute of Information Technology Allahabad

Arun Kumar
(MIT2020116)

Abstract—This paper contains details about pattern recog-
nition and singular value decomposition. We are explaining
and analyzing the applications of singular value decomposition.
It was found that the singular value decomposition is widely
used in computer science fields like Machine learning and in
transforming some curve. singular value decomposition is used
in matrix factorization and recommendation systems.

Index Terms—Matrix factorization, Recommendation System,
Pattern recognition, singular value decomposition(SVD)

I. INTRODUCTION

The matrix AAT and AT A are very special in linear
algebra. Consider any m × n matrix A, we can multiply it
with A to form AAT and AT A separately. Let’s introduce
some terms that frequently used in SVD. We name the
eigenvectors for AAT as ui and ATA as vi here and call
these sets of eigenvectors u and v the singular vectors of A.
Both matrices have the same positive eigenvalues. The square
roots of these eigenvalues are called singular values.
In linear algebra Singular value decomposition is used
to transform the picture that is we can rotate and stretch
using SVD. Consider a matrix AmXn, SVD this matrix
into two unitary matrices which are orthogonal matrices and
ractangular diagonal of singular values.

AmXn = UmXmΣmXnVnXn

SVD is used to transformation that is we can rotate
and stretch the image. In the given equation matrix U and
matrix V represents rotation of matrix while Σ represents
stretching.

AT A = (VΣT UT)UΣVT

AT A = VΣT ΣVT

AAT = (UΣVT)(VΣTUT)

AAT = UΣΣTUT

In the represented figure a circle is given, there are two
vectors given that are yellow(Y) and red(R). When we are
applying V on this circle, the circle is rotated after that we are
applying Σ the circle is stretched horizontally and the circle
becomes ellipse and at last we are applying U and this ellipse
is again rotated and the resultant is an ellipse which is rotated.

Fig. 1.

To understand in better way let’s consider an example
-

A =
[

3 1 1
−1 3 1

]
AT =

3 −1
1 3
1 1


We konw that -

U = AAT

U =
[
11 1
1 11

]
Using characteristic equation -

(A-λI) = 0

After solving the characteristic equation -
λ = 12, 10

Putting the values of λ -

U =
[
1 1
1 −1

]
Applying Gram-Schimdt process -

U =

[
1√
2

1√
2

1√
2

−1√
2

]

We can calculate V also using similar process -

V =


1√
16

2√
16

1√
16

2√
5

1√
5

0
1√
30

2√
30

−5√
30



Pattern Recognition is the act of taking a raw data and
making an action based on the category of the pattern. Pattern
Recognition can be defined as the classification of the data on
the basis of the knowledge gained or on the basis of statistical
information extracted from patterns and their representations.

Fig. 2.

Following are the application of Pattern recognition -
a. Biomedical Image Processing.
b. Optical Character Recognition.
c. Multimedia Document Recognition. etc etc. . . .
In layman’s point of view, everything from your Netflix
recommendations to your favorite shopping websites uses PR
as a core concept. We will get a hang of all these things after
we cover the general idealogy of PR.

Fig. 3.

Explanation of Block Diagram -
1.First of all sensor senses the image or sound and convert it
into signal data.
2.Segmentation is the part which enables segregating sensed
object from the background noise.
3.Feature Extraction phase extracts the properties on which
system will make patterns.
4.Next phase classifies the data into catagories.
5.Finally, the post-processor can take account of other con-
siderations such as the cost of the error to decide appropriate
action.

II. PROPOSED MODEL

In this report we are going to discuss about the Singular
Value Decomposition (SVD). SVD method can transform a
matrix A into product USVT , which allows us to refactoring
a digital image in to three matrices. The using of singular
values of such refactoring allows us to represent the image
with a smaller set of values, which can preserve useful
features of the original image, but use less storage space in
the memory, and achieve the image compression process.

Singular Value Decomposition (SVD) is said to be the
important or best topic in linear algebra by many renowned
mathematicians in all over the world. SVD has many practical
and theoretical values special feature of SVD is that it can be
performed on any real (m, n) matrix.

Let’s say we have a matrix A with m rows and n columns,
with rank r and r ≤ n ≤ m. Then the A can be factorized
into three matrices:

A = USV T

Fig. 4. Illustration of Factoring A to USV T

Where Matrix U is an m × m orthogonal matrix,

U = [u1, u2, u3, ...ur, rr + 1, ..., um]

column vectors ui, for i = 1, 2, . . . , m, form an orthonormal
set:

utiuj = δ =

{
1, ..., i = j0, ...i6=j

Fig. 5. Flow chart of Face Recognition with SVD

The above flow chart is used in face recognition.
First all raw data S of N faces is taken. Using this raw data
we need to find the mean face f using S. Forms a matrix A
with the computed f . Calculate SVD of matrix A. For each
known individual, compute the coordinate vector xi. Choose a
threshold ε1 that defines the maximum allowable distance from
face space. Determine a threshold ε0 that defines the maximum
allowable distance from any known face in the training set S.
Now if ε1 is less then or equal to ε0 then Face is present in
training set otherwise it is not present in training set.

III. APPLICATION

A. Dimensionality Reduction

The first and most important application is to reduce the
dimensionality of data, the SVD is more or less standard for
this, PCA is exactly the same as the SVD. You may want to

reduce the dimensionality of your data because:
1. You want to visualize your data in 2d or 3d.
2. The algorithm you are going to use works better in the
new dimensional space
3. Performance reasons, your algorithm is faster if you reduce
dimensions.
In many machine learning problems using the SVD before a
ML algorithm helps so it’s always worth a try.

B. Multi-Dimensional Scaling

MDS is a dimensionality reduction technique similar to
SVD but not confined to linear mappings; many manifold
learning techniques are variations or different computational
approaches to the same idea and method as MDS. (By the
way, MDS is pretty good for data visualization after analysis.)

C. Pseudo-Inverse

Now, from SVD, we can clearly see that (not putting in
the derivation), the Pseudoinverse looks like this -

A+ = (AT A)−1AT

And, let us also remember the basic rules of Matrices
-
1. (AB)−1 = B−1A−1

2. A−1.A = I
3. A.I = A
Now, let us assume A is square and non-singular. Then -

A+ = (AT A)−1AT

A+ = A−1(AT)−1 (form1)
A+ = A−1.I (form2)
A+ = A−1 (form3)

D. Face Recognition

The SVD can be used to compress images, but there are
some better algorithms of course.
Face recognition is one of the standard applications of PCA.
Consider using the ORL face database -
1.Composed of 400 images with dimensions 112 x 92.
2.There are 40 persons, 10 images per each person.
3.The images were taken at different times, lighting and facial
expressions.
4. The faces are in an upright position in frontal view, with a
slight left-right rotation.

Fig. 6. The ORL database, we can use k-fold cross validation with k=10

1.We randomly divide the 400 images into 10 sets such that
each contains 40 different persons.

2.For each iteration, 9 sets are used for training while the
remaining set is reserved for testing.
3.There will be 10 recognition results and we can check
for their consistency and compute the average recognition
accuracy.

Fig. 7.

Final Result -

Fig. 8.

E. Image Compression

First decompose the image using SVD as usual into U, V
and D matrices and then keep only k vectors.
The following Matlab code does this:
1.Percentage compute the SVD of I
2.[U,D,V] = SVD(I);
3.Percentage compute the k rank approximation of I
4.Uk = U(:,1:k);
5.Vk = V(:,1:k);

6.Σk = Σ(1:k,1:k);
7.Percentage of the compressed image
8.Ik = Uk ∗ Σk ∗ (Vk)′;

CONCLUSION

Thus it is observed that SVD gives good pattern recognition
results with less computational complexity compared to other
recognition techniques. A certain degree of compression as
required by an application can be achieved by choosing an
appropriate value of k (i.e. the number of eigen values). In
other words, degree of compression can be varied by varying
the value of k. However to achieve high value of compression
ratio image quality is to be sacrificed. Therefore it is required
to select proper value of k to choose between compression
ratio and image quality. Once the value of k is selected for
specific application or for specific video the same benchmark
can be used for all the frames.

REFERENCES

[1] Singular value decomposition: https://en.wikipedia.org/wiki/
Singularvaluedecomposition

[2] Singular Value Decomposition Applied To Digital Image Processing :
Lijie Cao

[3] Machine Learning — Singular Value Decomposition (SVD)
Principal Component Analysis (PCA) : Jonathan Hui
https://medium.com/@jonathanhui/machine-learning-singular-value-
decomposition-svd-principal-component-analysis-pca-1d45e885e491

[4] Andrew Ng ML Course
[5] Hong X., Xu Y., Zhao G. (2017) LBP-TOP: A Tensor Unfolding Revisit.

In: Chen CS., Lu J., Ma KK. (eds) Computer Vision – ACCV 2016
Workshops. ACCV 2016. Lecture Notes in Computer Science, vol
10116. Springer, Cham

[6] Division of Computing Studies Arizona State University Polytech-
nic Campus Mesa, Arizona 85212

[7] (IJACSA) International Journal of Advanced Computer Science and
Applications, Vol. 3, No. 7, 2012.

[8] International Journal of Advancements in Research Technology, Volume
2, Issue 8, August-2013 ISSN 2278-7763

APPENDIX

CODE:

f u n c t i o n [ef , d] = s v d R e c o g n i t i o n 0 (newName , r , N, A, U, S , V, f b a r , e0 , e1)
%newName = ’ j a n e t 1 . t i f f ’ r = # o f sv
c h o s e n
Ur = U (: , 1 : r)
X = Ur ’* A
fnew = imread (newName)
fnew = i m r e s i z e (fnew , [1 1 2 , 9 2])
f = reshape (fnew , 10304 , 1)
f0 = d oub l e (f) f b a r
x = Ur ’* f 0 fp = Ur* x
e f = norm (f0 fp)
i f e f < e1

D = X x* ones (1 , N)
d = s q r t (diag (D’*D))
[dmin , i ndx] = min (d)

i f dmin < e0
f p r i n t f ([’ Th i s image i s f a c e # ’ , num2str (i ndx)])

e l s e
f p r i n t f (’ The i n p u t image i s an unknown f a c e ’)

end
e l s e

f p r i n t f (’ The i n p u t image i s n o t a f a c e ’)
end

