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Introduction
The modeling and simulation of highly flexible slender structures may be based on coarse grid space
discretizations which reflect the characteristic behaviour of geometrically exact beam models. In time,
we get nonlinear configuration spaces that are typical of mechanical systems with large rotations. The
use of Lie groups appears to be effective and has been successfully exploited before.
Half-explicit methods avoid all kinds of Newton-Raphson iterations which are a bottleneck for the effi-
ciency of classical implicit integrators in beam analysis. The idea of half-explicit Runge-Kutta integra-
tors was introduced by Brasey and Hairer [2], widened for higher orders of convergence by Murua and
Arnold [3]. In a recent work [4], a half-explicit Runge-Kutta method on Lie groups has been developed
and tested for two benchmarks of beams described by the Cosserat model. In the present work, we dis-
cuss stabilization techniques to avoid the drift-off effect for this Lie group integrator that is based on the
index-2 formulation of the equations of motion.

Methodology
The Runge-Kutta Lie group integrator follows a local coordinates approach and represents the configu-
ration variables q ∈ G in a neighborhood of t = tn by q(t) = q(tn)◦exp

(
θ̃θθ n(t)

)
with local coordinates θθθ n

that are defined by the equations of motion

T(θθθ n) θ̇θθ n = v, M(q)v̇ =−g(t,q,v)−B⊤(q)λλλ , 000 = ΦΦΦ(q) (1)

with θθθ n(tn) = 000. Here, G denotes a nonlinear configuration space with Lie group structure, operator
•̃ : Rk → g maps θθθ n ∈ Rk to the corresponding element in the Lie algebra g, T is the tangent operator
(that is non-singular in a neighborhood of θθθ n = 000), v are the velocity coordinates, M(q) is the mass and
inertia matrix, g(t,q,v) is the vector of external and internal forces, ΦΦΦ(q) is the constraint function at
position level and B(q) represents its gradient [1]. Following the approach of Brasey and Hairer [2], the
constraint equations ΦΦΦ(q) = 000 in (1) are substituted by their time derivative that reads on Lie groups [1]

B(q(t))v(t) = 000 (2)

with q(t) = q(tn)◦exp
(
θ̃θθ n(t)

)
. These hidden constraints at the level of velocity coordinates are enforced

in all but one stages of an explicit Runge-Kutta method resulting in a half-explicit discretization that
requires the solution of systems of linear equations to get stage vectors V̇ni, ΛΛΛni approximating v̇(tn+cih),
λλλ (tn+cih), (i = 2, . . . ,s+1), see [2, 3, 4]. With at most one extra stage, these methods achieve for p ≤ 5
the classical order p of the underlying Runge-Kutta method [4].
In Fig. 1, this convergence behaviour is illustrated by numerical test results for the roll-up maneuver of a
geometrically exact beam with G =

(
S3 ⋉R3

)N+1 and N the number of edges in space discretization [4].
Here, the constraints ΦΦΦ = 000 result from the negation of shear effects. In the numerical tests, we observe
constraint residuals ∥ΦΦΦ(qn)∥ in the size of 10−11, i.e., the integrator does not suffer from the drift-off
effect [3] that may result from substituting ΦΦΦ = 000 by (2). That is in line with previous experience, see [1,
Section 3.6], for G being the Special Euclidean group SE(3) that is covered twice by S3 ⋉R3.

Drift-off effect

We obtain a different outcome in a more general setting as illustrated in the left plot of Fig. 2 by numer-
ical test results for the Heavy top benchmark [1] on G = SO(3)×R3. Here, the drift-off effect yields
constraint residuals of size O(hp) for a method of order p = 5 and h denoting the time step size. The
error constant of this O(hp)-term may be reduced by a factor of 30 substituting the hidden constraints (2)
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Figure 1: Half-explicit Runge-Kutta Lie group integrators applied to roll-up maneuver.
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Heavy top benchmark: index-2 Baumgarte
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Figure 2: Half-explicit integrator of order p = 5 applied to heavy top benchmark. Constraint residuals.

by B(q)v+αΦΦΦ(q) = 000 with a suitable parameter α > 0, see Fig. 2 (right). For moderate values of α ,
this index-2 Baumgarte approach [5] stabilizes the evolution of constraint residuals without introducing
artificial stiffness.
Alternatively, the constraints ΦΦΦ(q) = 000 may be enforced by adapting classical projection techniques [3] to
the Lie group setting. Let θθθ

+
n denote the numerical solution of (1) at t = tn+1 = tn+h, then qn+1 ≈ q(tn+1)

is not just set to qn+1 = qn ◦exp
(

θ̃θθ
+
n

)
, see [4], but defined by qn+1 = qn ◦exp

(
θ̃θθ
+
n + δ̃δδ ΦΦΦ

)
with δδδ ΦΦΦ ∈Rk

such that ΦΦΦ(qn+1) = 000 and M(qn)δδδ ΦΦΦ +B⊤(qn)µµµn = 000.
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