
EasyChair Preprint
№ 3760

Enhancing Deep Learning Capabilities with
Genetic Algorithm for Detecting Software
Defects

Kajal Tameswar, Geerish Suddul and Kumar Dookhitram

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 6, 2020

Enhancing Deep Learning Capabilities with Genetic

Algorithm for Detecting Software Defects

Kajal Tameswar, Geerish Suddul and Kumar Dookhitram

University of Technology, Mauritius (UTM)

Pointe-aux-Sables, Mauritius

kajaltameswar@gmail.com, {g.suddul, kdookhitram}@umail.utm.ac.mu

Abstract. Regardless of existing and well-defined processes, some defects are inevitable,

resulting in software performance degradation. The use of traditional machine learning

techniques can automate the prediction of software defects. This automated approach

significantly improves the quality of the finished product and reduces the cost incurred during

development and maintenance stages. The accuracy of artificial neural networks for the automatic

prediction of software bugs, can be further enhanced with the use of metaheuristics algorithms.

We propose a hybrid approach which combines Genetic Algorithm (GA) and Deep Neural

Network (DNN) to better classify software defects. GA is used as a pre-learning phase to

automatically optimize the input features for the DNN, as irrelevant variables have a substantial

negative impact on the prediction accuracy. Results from experiments using the PROMISE

dataset, demonstrates that a DNN consuming optimized features yields better results.

Keywords: machine learning, software bugs, defect prediction, hybrid model, genetic algorithm,

deep neural network.

1. 0 Introduction

The technological evolution of software has become an essential and pervasive part of

our personal and professional life. Today’s wearable technology, implanted medical

devices and autonomous driving cars are just a few examples that demonstrate the

beginning of a new era of software transformation. The purpose of software defect

prediction is to discover major design and programmatic issues which can reduce the

huge costs and time imperatives associated with them (Safial, 2019). IEEE defined the

term fault or bug as ‘inappropriate and unexpected behavior in a computer program’.

However, due to exponential growth in application software, the assurance of quality

in software remains largely an unnoticed subject leading to performance degradation of

the industry. As a concern, testing comes into play to find defects or bugs while running

a program to produce a zero-defect software (Chauhan and Singh 2014). Without

mailto:kajaltameswar@gmail.com
mailto:kdookhitram%7d@umail.utm.ac.mu

proper testing, a project becomes a definite recipe for disaster that can raise its cost and

affects its quality. While bugs persistently continue to worsen the performance of

software, the necessity of effective and rapid methods to find software defects is high.

There have been several techniques introduced to reduce the presence of defects in

software. For instance, metrics based on object-oriented, traditional and process

approaches have broadly been employed in almost every defect prediction model

(Emam et al.2001; Catal and Diri, 2009). Further applications of software metrics are

demonstrated by Khoshgoftaar et al.2007 with a statistical prediction model based on

function-approximation problem analysis and regression. Unfortunately, most of the

presented methods fail in providing efficient results, mainly because the architecture of

each software is almost unique. As such, prediction models have to take into

consideration parameters which are completely different, thereby having difficulty to

generalize. To overcome this complicated issue, non-parametric techniques like

machine learning and computational intelligence can be considered.

Despite of multiple powerful advances in programming languages and bug detection

techniques, software defects affect virtually almost all software products and services.

In response to this problem, researchers have widely been studying the topic bug

prediction using machine learning approaches which have the potential to leverage the

prediction of software bugs (Puranika et al.2016, Hassan, 2009; Menzies et al.2007;

Kim et al.2008; Menzies et al. 2008). Nevertheless, there still exist many uncertainties

with machine learning approaches, as no single techniques have prevailed due to

existing imbalanced datasets and lack of formal approaches (Hassan et al.2018). We

present a novel hybrid approach in this paper using deep neural network along with GA

to build an efficient classification-based optimization system for prediction of software

defects.

The rest of the paper has been prepared as follows. Section 2.0 provides a short view of

related works that have been done in the field of software defects defection. Section 3.0

provides the proposed model. Experimental outcomes and results of the proposed

approach are described in Section 4.0. Performance analysis and discussion of results

are discussed in section 5.0. Finally, Section 6.0 presents a brief conclusion and future

work of the proposed model.

2.0 Literature Review

This section discusses the different software defect prediction techniques identified in

the literature. Recently, machine learning approaches have become very popular

techniques for defect prediction in software (Hall et al.2012; Catal and Diri, 2009). In

this context, many algorithms have been designed each having its own data

requirements and levels of complexity. Examples comprise of regression algorithms,

classification techniques, clustering methods, deep learning and hybrid techniques

which is a blend of optimization algorithm and machine learning.

Several supervised classification algorithms such as neural networks, naïve bayes,

Support Vector Machines (SVM), linear regression, and K-nearest neighbor, as

described by Perreault et al. 2017 have been used for the prediction and detection of

software bugs. On the other hand, regression approaches have been tackled using SVM

by Elish et al. 2008. SVM has also been used for classification (Gray et al. 2009) of

defects, which has a special focus on the pre-processing of the input data. Shivaji et al.

2013 investigated a naïve bayes classification algorithm combined with feature

selection module for efficient prediction. Each of the approaches have shown different

levels of efficiency, making them difficult to implement. A more efficient deep learning

neural network model is presented by Yang et al. 2015. Along the same approach the

work of Gondra et al. 2008 demonstrates that labelled datasets with software metrics

can help better train neural network models. Another model proposed by Yang et al.

2006 shows the combination of neural network with radial basis function and Bayesian

method.

In unsupervised clustering algorithms, the application of ambiguous datasets has been

very popular. For instance, Bishnu et al. 2012 came up with a k-means clustering model

for software bug prediction. Hybrid approaches based on K-means algorithms have

been attempted, such as application of the Neural-Gas and Quad Tree techniques for

optimum exploration and cluster labelling of real-world datasets (Rani and

Rajalakshmi, 2012; Meenakshi et al.2012).

Hybrid approaches have the advantage of combining the best of different techniques

and hence further improves the accuracy of prediction models. Azar et al. 2011

developed a model using ant-colony optimization technique for prediction of software

bug. Another study (Rong et al.2016) proposed a hybrid Support Vector Machine model

combined with the bat search algorithm. Manjula and Florence, 2018 presented a

machine learning based hybrid model by combining genetic optimization algorithm

with decision tree algorithm. Wahono et al. 2014 build a model using neural network

based on bagging technique and genetic algorithm for prediction of software bug in

order to improve performance.

In regards to the above work, we noticed that software defect prediction models have a

high cost associated with it. While some approaches have high processing time other

are intricately complex. Genetic Algorithm (GA) has been extensively used in neural

network optimization and is known to be successful in achieving optimal solutions.

While substantial work has been done regarding neural network parameter optimization

using GA in several applications, there has not been sufficient research performed on

investigating them in the field of defect prediction. To overcome this problem, we

present a hybrid-based model using GA to optimize deep neural network for software

defect prediction.

3.0 Proposed Model

The proposed software defect prediction model comprises of a Deep Neural Network

(DNN) and Genetic Algorithm (GA). It therefore follows a two-fold approach, as

below:

i) Application of GA for feature optimization.

ii) Application of DNN for classification purpose.

3.1 Genetic Algorithm

Genetic Algorithm is a metaheuristic evolutionary algorithm based on the principle of

selection and mutation. In our context, GA is applied for the purpose of searching the

parameter space, finding the global optimum solution and optimizing the weight and

threshold of the neural network effectively (Suzuki et al.2013). The parameters that has

been used for the implementation of GA were set as: size of population = 100; number

of generations = 50; probability of crossover = 0.5; and mutation probability = 0.2.

3.1.1 Deep Neural Network

This section defines the Deep Neural Network used for this study related to prediction

of software defects. Deep neural network is useful for the learning of effective features

and discriminative patterns in nature, especially for software bug prediction (Yang et

al.2015). DNN can also be applied to unlabeled datasets. In our model, we used one

input layer and 10 hidden layers to produce the output.

3.1.2 Hybrid Intelligence of Genetic Algorithm with Deep Neural Network

The fundamental ideologies of GA are to generate an initial population of chromosomes

followed by selection and crossover in order to achieve effective population having the

fittest chromosome (optimal value) among them. Figure 1 below shows the proposed

architecture, involving the steps required to build the hybrid predictive model using GA

together with DNN.

 Fig 1: Steps involving building process of GA and DNN.

4.0 Experimental Study and Results

The experimental studies carried out for this proposed approach is described in this

section. The hybrid DNN+GA model has been developed using Python packages

(Tensor Flow, Scikit-Learn and Keras). TensorFlow is used to train and calculate

accuracy of the prediction model. Scikit-Learn is used to read and split the dataset for

Initialize

population

Feature
Selection

Selection Crossover Mutation Replacement

Dee

 :

 :

Fitness

Evaluation

stopping

criteria

met?

Stop

No

Deep learning Network

Yes

training and testing purpose. Keras provides the possibility to speed up experimentation

cycles on CPU and GPU. All experiments have been conducted using a laptop

consisting of the following configuration: Corei7-6500U CPU, x64 based processor and

16 GB RAM. The PROMISE datasets have been used for training and prediction.

4.1 Dataset details

In PROMISE repository consists of five primary datasets, namely: AR1, AR3, AR4,

AR5, AR6. Since they are all related having similar attributes (e.g. loc, comment loc,

cyclomatic complexity), we have decided to combine the dataset altogether. The dataset

consists of 29 features, and 1050 records, out of which 70% will be used for training

and the remaining 30% used for testing. A random state of 65 is used to ensure that

each experiment splits the dataset with the same record in every set to acquire

appropriate calculation of prediction accuracy for the model.

The datasets are categorized as follows:

i) LOC counts (total_loc, blank_loc, comment_loc,

code_and_comment_loc, executable_loc, unique_operands,

unique_operators, total_operands, total_operators): Defines numbers of

lines of code

ii) Halstead (vocabulary, length, volume, level, difficulty, effort, error

time): Based on number of operators and operands

iii) McCabe (cyclomatic_complexity, cyclomatic_density, decision_density,

design_complexity, design_density, normalized_cyclomatic_complexity,

formal_parameters): This keeps a measure of the number of possible

alternative paths through the code

iv) Others (branch_count, decision_count, call_pairs, condition_count,

multiple_condition_count)

4.1.1 Fitness Evaluation using performance evaluation metrics

For the performance of the defect prediction model, the following metrics have been

used using these annotations which are as follows:

TP = True Positive, FP = False Positive, TN = True Negative, and FN =False Negative.

Metric Description Formula

Accuracy Used for the

determination of

chromosomes selection

and for performance

measurement of the

hybrid prediction model

(TP+TN)/Total number of

samples used

Recall The percentage result that

have correctly been

classified by our

algorithm

TP/ (TP+FN)

Precision Defined as the proportion

of occurrences predicted

as defective which

actually are defective

TP/(TP+FP)

 Table 1: Evaluation metrics.

5.0 Performance analysis and discussion of results

5.1 Experimental scenario 1

In first instant, experiments were conducted whereby only the DNN has been taken into

consideration. These experiments are conducted for AR1, AR3, AR4, AR5, AR6

(combined dataset) with all 29 attributes in the dataset. The efficiency of the DNN

prediction model is evaluated and presented statistically in table 2 and in a confusion

matrix in table 3. The time taken to run the algorithm was 31. 34 seconds

Table 2: Result for statistical performance analysis using Deep Neural Network (DNN).

 Precision Recall Accuracy

 0.895 0.895 87.21%

Table 3: Confusion matrix using Deep Neural Network (DNN).

Actual class Predicted Class

 Defective Non-Defective

Defective 5 17

Non-Defective 7 243

Figure 2 depicts the ROC curve that shows the performance of the classification model

by plotting the true positive and false positive rate; achieving an accuracy of 92.21%

for DNN.

 Fig.2 ROC analysis curve.

5.1.1 Experimental scenario 2

Secondly, using the same settings and configurations, experiments has been conducted

using the proposed hybrid model, and the results are presented in Table 4 below.

The attributes that had been considered for GA to perform feature selection on DNN

was LOC counts and Halstead only. The time taken to run the algorithm was around 12

hours.

Table 4: Result for statistical performance analysis using proposed hybrid approach

(DNN+GA).

Precision Recall Accuracy

 0.896 0.896 92.21%

Table 5: Confusion matrix using Deep Neural Network (DNN) and GA.

Actual class Predicted Class

 Defective Non-Defective

Defective 3 5

Non-Defective 6 258

Figure 3 depicts the ROC analysis curve which takes into consideration both the true

positive rate and false positive rate where proposed hybrid approach illustrates better

performance when compared to DNN with an accuracy rate of 95%.

 Fig 3: ROC analysis curve.

The result of experimental study shows that the proposed hybrid approach provides

reliable performance that can be used for software defect prediction model. The result

produced for the hybrid model has achieved accuracy of 92.21 % while DNN an

accuracy of 87.21%.

6.0 Conclusion and Future work

In recent years, early prediction of software defects methods along with their problems

and applications are emerging rapidly. This paper presents a hybrid approach for

software defect prediction using Deep Neural Network (DNN) classification scheme

combined with Genetic Algorithm (GA) using benchmark dataset from PROMISE

repository. The performance of this hybrid approach when compared with a

conventional DNN shows an increase of around 5% with regards to prediction accuracy.

Future research is highly applicable for this current study where this methodology

implemented can be improved by using real-time application datasets. Furthermore,

there are some requirements to consider such as overfitting phenomena and noise

factors when designing the neural network. Thus, parameters of the learning functions

for the neural network should be selected properly for better optimization of hyper

parameters in the networks. In addition, control parameters like crossover rate and

mutation rate of genetic algorithm should be taken into consideration in order to derive

suitable combinations to enhance performance of the model.

References

1. A. E. Hassan. Predicting faults using the complexity of code changes. In Proceedings of the 31st
International Conference on Software Engineering, pages 78–88. IEEE Computer Society, 2009.

2. Azar, D., Vybihal, J.: An ant colony optimization algorithm to improve software quality prediction
models: case of class stability.Inf. Softw. Technol. 53(4), 388–393,2011

3. Ayon, Safial.: Neural Network based Software Defect Prediction using Genetic Algorithm and
Particle Swarm Optimization. 1-4. 10.1109/ICASERT.2019.8934642,2019

4. B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. On the relative value of cross-company
and within-company data for defect prediction. Empirical Software Engineering, 14(5), pp. 540–

578, 2009

5. Bishnu, P.S. and Bhattacherjee, V., Software fault prediction using Quad Tree-based K-means

clustering algorithm, IEEE Transaction in Knowledge Data Engineering 24(6), pp.1146–1150,

2012.

6. Catal, C., Diri, B.: A systematic review of software fault prediction studies, Expert Syst. Appl.,

2009, 36 (4), pp. 7346–7354

7. Elish, K.O and Elish, M.O.: Predicting defect-prone software modules using support vector

machines. J. Syst. Softw. 81(5), pp. 649–660, 2008

8. F. Hassan1, S. Farhan2, M. A. Fahiem3, H. Tauseef,2018, A Review on Machine Learning
Techniques for Software Defect Prediction, Technical Journal, University of Engineering and

Technology (UET) Taxila, Pakistan Vol. 23(2), pp. 2313-7770, 2018.

9. Gondra, I., Applying machine learning to software fault-proneness prediction. Journal of System

Software. 81(2), 186–195, 2008.

10. Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B., Using the support vector machine as a

classification method for software defect prediction with static code metrics. Engineering

Applications of Neural Networks, pp. 223–234. Springer, Berlin, 2009.

11. Hall, T., Beecham, S., Bowes, D., A systematic literature review on fault prediction performance

in software engineering’, IEEE Transaction Software Engineering, 38 (6), pp. 1276–1304, 2012.

12. M. M. R. Henein, D. M. Shawky, and S. K. Abd-El-Hafiz, “Clustering-based Under-sampling for

Software Defect Prediction,” 13th International Conference on Software Technologies (ICSOFT),
pp. 185 – 193, 2018

13. T. M. Khoshgoftaar and K. Gao, "Count Models for Software Quality Estimation," in IEEE
Transactions on Reliability, vol. 56, no. 2, pp. 212-222, June 2007.

14. Perreault, L., Berardinelli S., Izurieta C. and Sheppard J., Using Classifiers for Software Defect
Detection. 26th International Conference on Software Engineering and Data Engineering (SEDE),

2017

15. Rasneet K. C. and Iqbal S., Latest Research and Development on Software Testing Techniques

and Tools, International Journal of Current Engineering and Technology, 4(4), 2014

16. S. C. Yusta, “Different metaheuristic strategies to solve the feature selection problem,” Pattern

Recognit. Lett., vol. 30, no. 5, pp. 525–534, 2009.

17. S. Kim, E. J. Whitehead, and Y. Zhang. Classifying software changes: Clean or buggy? Software

Engineering, IEEE Transactions on, 34(2):181–196, 2008.

18. S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect prediction,”

Proc. of the International Conference on Software Engineering, pp. 297-308, May 14 - 22, 2016.

19. Shivaji, S., James Whitehead, E., Akella, R., Kim, S.: Reducing features to improve code change-

based bug prediction. IEEE Transaction on Software Engineering, 39(4), 552–569, 2013.

20. Suzuki, M., Tsuruta, S., Knauf, R.: Structural diversity for genetic algorithms and its use for

creating individuals. In: IEEE Congress on Evolutionary Computation, Cancun, pp. 783–788
(2013)

21. Puranika S., Deshpandea P., Chandrasekaran K., A Novel Machine Learning Approach for Bug
Prediction, 6th International Conference on Advances In Computing & Communications, ICACC,

6-8 September 2016.

22. Menzies T., Greenwald J., and Frank A., Data mining static code attributes to learn defect

predictors. IEEE Transactions on Software Engineering, 33(1), pp. 2–13, 2007.

23. Menzies T., Turhan B., Bener A., Gay G., Cukic B., and JiangY., Implications of ceiling effects

in defect predictors. In Proceedings of the 4th international workshop on Predictor models in

software engineering, pp. 47–54. ACM, 2008.

24. Wahono, R.S., Herman, N.S., Ahmad, S.: Neural network parameter optimization based on

genetic algorithm for software defect prediction. Adv. Sci. Lett. 20, 1951–1955 (2014)

25. X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-in-time defect

prediction,” in QRS’15: Proc. of the International Conference on Software Quality, Reliability
and Security, 2015.

26. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J., Deep learning for just-in-time defect prediction.
IEEE International Conference on Software Quality, Reliability and Security (QRS15), pp. 17-26,

2015.

